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Abstract

The design of resonant radio frequency cavities used in

particle accelerator machines to accelerate charged parti-

cles of various species is heavily based on proper computer

simulations. While the determination of the resulting field

distribution can be obtained by analytical means only for

a limited number of cavity shapes it is essential to apply

appropriate computer programs to find sufficiently accu-

rate approximate solutions. The achievable quality first de-

pends on the underlying mathematical model which then

has to be solved accurately on a discrete level. The pre-

cise knowledge of the distribution of the electromagnetic

fields both within the cavities as well as on the surface of

the resonators is essential for appropriate cavity-shape op-

timizations and accurate beam dynamics studies.

INTRODUCTION

In the context of highly resonating cavities a promis-

ing method to determine the electromagnetic field distri-

bution inside the structures is given by the eigenmode anal-

ysis where a limited number of eigensolutions is used to

characterize the devices within a specified frequency range.

Selected eigenmodes can be determined with the help of

suitable eigenmode solvers once the underlying continuous

mathematical model is properly transformed into a conve-

nient matrix formulation. Under actual operating condi-

tions, the fields in the resonators have to be coupled to

the fields in the external devices either to enable energy

transfer from e.g. the sources to the beam or, conversely,

to dump beam-driven parasitic modes to internal or exter-

nal loads. Compared to lossless standing-wave structures

where real-valued variables are sufficient to describe the

entire field distribution this is no longer true in a dissi-

pative environment where a resulting net energy transfer

has to be supported. On the other hand, a complex-valued

formulation completely enables to describe the physical

space-dependent phase variation and additionally allows

to characterize the oscillation by simultaneously extract-

ing the corresponding quality factor next to the resonance

frequency. Unfortunately, the solution of complex-valued

eigenvalue systems is much more demanding compared to

the widespread real-valued formulations and special care

has to be put in the implementation of the computer pro-

grams to achieve good performances for large-scale appli-

cations.

∗ Work partially supported by DESY, Hamburg
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MATHEMATICAL MODELING

A proper mathematical model to describe the electro-

magnetic field distribution within highly resonating struc-

tures with an eigenmode analysis in mind is obviously

based on Maxwell’s equations in frequency domain. We

use the differential notation

curl �H = �J + jω �D (1a)

curl �E = −jω �B (1b)

div �B = 0 (1c)

div �D = ̺ (1d)

to point out the interdependence of the applied electromag-

netic field components. In this context, �E and �H represent

the phasors of the electric and magnetic field strength while
�D and �B specify the electric and magnetic flux densities,

respectivly. The symbol ω represents the angular frequency

while �J and ̺ describe the sources of the electromagnetic

fields. In the following we concentrate on linear isotropic

materials which may be inhomogeneous if required. This

limitation simplifies the material relations to �D = ε �E and
�B = µ �H with space-depending scalar proportionality fac-

tors. Finally, the electric conductivity σ give rise to the

electric current density �J = σ �E which is responsible for

the specific bulk-related losses.

Discretization

To transform the continuous formulation into a suitable

matrix equation we discretize (1) with the help of the finite

element method (FEM) [1]. Eliminating either the electric

or the magnetic field combines the two first-order differ-

ential equations into one second-order equation. This pro-

cedure simplifies the overall solution process because only

one type of field either with tangential or normal continu-

ity conditions has to be properly represented on the discrete

level. In the end, the initially eliminated field can be recon-

structed in a postprocessing step if one of the curl relations

in (1) is applied to the selected quantity.

With the well-known Nédélec elements in mind we set

the focus of the formulation on the electric field only and

combine (1a) and (1b) to the double-curl equation

curl

(

1

µ
curl �E

)

+ jω �J − ω2ε �E = 0 (2)

which finally will be discretized following Galerkin’s ap-

proach. The electric field strength �E =
∑

i xi �ω3D
i is ex-

panded in terms of locally defined real-valued vector basis
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functions such that the introduced degrees of freedom x i

have to be of complex type [2].

Collecting the unknown weighting coefficients x i in the

vector variable �x allows to formulate the entire problem in

terms of the eigenvalue problem

A3D�x + jωµ0 C3D�x − ω2µ0ε0 B3D�x = 0 (3)

which has to be solved accurately to fulfill the full set of

Maxwell’s equations also on the discrete level. This is es-

pecially important because the fundamental charge relation

(1d) is not explicitly stated in the problem formulation but

will be implicitly satisfied in the dynamic case once the curl

equations are properly treated. The matrices A3D, B3D and

C3D in (3) are specified according to their components

A3D
ij =

˚

Ω

1

µr

curl �ω3D
i · curl �ω3D

j dΩ (4a)

B3D
ij =

˚

Ω

εr �ω3D
i · �ω3D

j dΩ (4b)

C3D
ij =

˚

Ω

σ �ω3D
i · �ω3D

j dΩ (4c)

and are sparsely populated on principle because of the local

support of the applied basis functions.

If losses are considered in the simulation the result-

ing damping behavior of the oscillation is naturally de-

scribed by an occuring imaginary part of the angular fre-

quency. Conversely, if neither conductive material is avail-

able within the computational domain nor any boundary-

related loss mechanism has to be considered the matrix sys-

tem (3) reduces to a classical generalized eigenvalue prob-

lem which can be solved following standard techniques.

Boundary C onditions

The important boundary conditions are incorporated into

the system with the help of the surface contribution

−jωµ0

‹

A

(�n ×
�H) · �ω3D

j dA (5)

which originates from a partial integration of the funda-

mental double-curl contribution in combination with Fara-

day’s law (1b) to eliminate the emerging curl of the electric

field strength. There is a large variety of possible boundary

conditions available to encapsulate the computational do-

main from the remaining structure. Regarding cavity sim-

ulations the most important and often idealized boundary

conditions are specified as follows:

• Perfect magnetic conductive material (PMC):

The interface condition to perfect magnetic conduc-

tive material is characterized by vanishing tangen-

tial magnetic field components in the interface plane.

With �n representing the local surface normal vector

an appropriate relation is given by �n ×
�H = 0 which

prevents the boundary integral (5) to contribute to the

overall FEM formulation and is therefore known as

the natural boundary condition of the method. In the

context of eigenmode analysis the magnetic boundary

condition is used to realize symmetry planes.

• Perfect electric conductive material (PEC):

The interface condition to perfect electric conductive

material is characterized by vanishing tangential elec-

tric field components in the interface plane. This

widespread boundary condition is not represented

with the help of the boundary integral (5) but will

be incorporated into the final formulation by explic-

itly forcing the corresponding weighting coefficients

of the applied Nédélec-type vector basis functions to

be zero. The integral (5) finally does not contribute

to the formulation because the adjacent vector basis

functions do not show any tangential component to

the surface. An efficient implementation will elimi-

nate those contributions a priori and therefore has to

distinguish between volume and surface related ba-

sis functions. The electric boundary condition is ap-

plied to realize symmetry planes and to approximate

the metallic surfaces of superconducting cavities.

• Impedance boundary condition:

One of the local acting lossy boundary conditions

which can be used to formulate the necessary en-

ergy exchange in the interface plane is given by the

impedance relation Z (�n×
�H) = �n× (�n ×

�E) where

Z represents the ratio of the tangential electric to the

magnetic field strength. Incorporating this representa-

tion into the boundary formulation (5) results in

jωµ0

‹

A

1

Z
(�n × �ω3D

i )·(�n × �ω3D
j ) dA (6)

while the integral part can be immediately added to

the system matrix (4c) if the specified impedance is

modeled independent of the frequency. If a frequency

dependent representation has to be resolved in the sys-

tem (3) the matrix equation turns from quadratic to

higher-order polynomial or even nonlinear in general

and radically increases the requirements on the un-

derlying eigenvalue solver. With respect to the cav-

ity eigenmode calculation the concept of impedance

boundary condition leads to the most simple approach

to enable wave propagation in either coaxial lines at-

tached to the resonators with the help of carefully de-

signed coupler units or the beam tubes. Unfortunately,

this efficient formulation is restricted to single-mode

propagation only so that the usable frequency range is

limited to the interval of fundamental mode transport

in the particular waveguides. Compared to more gen-

erally applicable boundary conditions the formulation

in (6) advantageously retains the sparsity pattern of

the original system and does not introduce additional

matrix elements. This favorable property is of partic-

ular importance if efficient eigenvalue solvers have to

be implemented where preconditioners are applied to

solve linear systems of equations.
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• Port boundary condition:

Accelerating cavities are necessarily equipped with

fundamental couplers to enable the energy transfer

from the radio-frequency sources to the beam. In the

same way intentionally installed highly-specialized

couplers allow the extraction of parasitic modes to

prevent performance degradation in high-current ap-

plications. While a single-mode wave propagation can

be efficiently modeled with the help of the impedance

boundary condition this is no longer true for the multi-

mode case. The accurate modeling of a true port

interface can be realized with the help of a two-

dimensional (2-D) modal expansion of the resulting

electromagnetic field in the specified boundary plane.

This procedure enables the correct treatment of any

kind of wave propagation in the attached line includ-

ing even the excitation below cut-off. This ability is

especially interesting even for the simple mono-mode

case because the port-interface plane can then be lo-

cated near to the cavity where higher-order modes

still have to be considered. Following this approach

a large amount of degrees of freedom can be saved

because otherwise the interface plane has to be moved

far away from the cavity to guarantee that all higher-

order modes are sufficiently decayed. The modeling

of the coaxial lines is particularly expensive because it

naturally requires a fine grid resolution to resolve the

small geometric details. The numerical treatment of

the port boundary condition is established again with

the help of the boundary integral representation (5) in

combination with Faraday’s law (1b) because the pre-

sented three-dimensional (3-D) formulation is based

on the electric field strength only. A full modal ap-

proach has to consider all modes traveling in both di-

rections of the attached waveguide

�E =
∑

ν

(

A(−)

ν
�E(−)

ν + A(+)

ν
�E(+)

ν

)

(7)

with the incoming waves representing the desired ex-

citation. Keeping the aspired eigenvalue formulation

in mind we do not explicitly excite the resonators at

the port interfaces and concentrate the modeling on

the outgoing waves. The electric field strength can

then be composed of individual mode contributions

according to

�E =
∑

ν

Aν

(

�Et,ν + �ez Ez,ν

)

e−jkνz (8)

where the full field is decomposed in terms of the

transverse (t) and longitudinal (z) components. A lo-

cal coordinate system is introduced such that �n = �ez

represents the orientation of the outward normal vec-

tor of the relevant port plane. Following this ap-

proach the TEM, TE and TM modes in homogeneous

waveguides can be described with only one formula-

tion which is in addition even applicable for inhomo-

geneous port planes [3].

To evaluate the resulting boundary integral represen-

tation
¨

Aport

1

µr

(�n × curl �E ) · �ω3D
j dA (9)

the curl of the electric field can be rephrased analyt-

ically while special care has to be put in the analysis

because of the fundamental differences in the handling

of the transverse and longitudinal coordinates. The re-

sulting expression

�n × curl �E =
∑

ν

Aν

(

gradEz,ν + jkν
�Et,ν

)

(10)

has already been evaluated in the port plane to sim-

plify the notation. According to the orthogonality re-

lation of the waveguide modes the missing scaling fac-

tors are specified according to the expression

Aν =

¨

Aport

εr
�E ·

�E∗
t,ν dA (11)

which finally enables to set up the entire port bound-

ary condition once the desired two-dimensional mode

patterns are available for the specified port interfaces.

Port Description

Setting up a 3-D eigenvalue formulation where elec-

tromagnetic energy can dissipate through matched wave-

guides necessitates the calculation of the modal field pat-

tern in the boundary plane together with the corresponding

propagation constants. The desired modal data can be de-

rived from a two-dimensional eigenvalue formulation once

the evaluation frequency is fixed. In an iterative solution

process the ultimate resonance frequency is then obtained

by successive evaluation steps where the overall conver-

gence rate depends on the coupling strength of the 2-D and

3-D fields. For practical applications regarding cavity sim-

ulations a few fixed-point iterations already lead to accurate

results up to solver-precision.

The required field pattern �Eν =
∑

i xi,ν �ω2D
i in the port

plane can be calculated with the help of a 2-D eigenvalue

formulation which is derived from the 3-D problem (3)

with a necessary restriction to the port plane. Concentrat-

ing on the lossless case results in the notation

A2D�xν = ω2

νµ0ε0 B2D�xν (12)

with matrices A2D and B2D defined by the elements

A2D
ij =

¨

Aport

1

µr

curl �ω2D
i · curl �ω2D

j dΩ (13a)

B2D
ij =

¨

Aport

εr �ω2D
i · �ω2D

j dΩ (13b)

where the important propagation constants kν are hidden

in the longitudinal dependence of the basis functions. Ex-

plicitly expanding the separated variables and simultane-

ously applying a partitioning of the weighting coefficients
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according to the transverse and longitudinal components

results in a block-oriented quadratic eigenvalue problem

which can be also stated using the two equations

A2D
11 �xt − jkzB

2D
12 �xz + k2

zB2D
11 �xt = 0 (14a)

B2D
22 �xz + jkzB

2D
21 �xt = 0 (14b)

and allows to determine the propagation constants once the

evaluation frequency is fixed. The necessary submatrices

are defined according to the expressions

A2D
11,ij =

¨

Aport

1

µr

curlt �ω2D
t,i · curlt �ω2D

t,j dΩ +

− ω2

port µ0ε0

¨

Aport

εr �ω2D
t,i · �ω

2D
t,j dΩ (15a)

B2D
11,ij =

¨

Aport

1

µr

�ω2D
t,i · �ω

2D
t,j dΩ (15b)

B2D
12,ij =

¨

Aport

1

µr

gradt ω2D
z,i · �ω

2D
t,j dΩ (15c)

B2D
21,ij =

¨

Aport

1

µr

�ω2D
t,i · gradt ω2D

z,j dΩ (15d)

B2D
22,ij =

¨

Aport

1

µr

gradt ω2D
z,i · gradt ω2D

z,j dΩ +

− ω2

port µ0ε0

¨

Aport

εr ω2D
z,i ω2D

z,j dΩ (15e)

and have to be evaluated with the help of the 2-D basis

functions in the specified port planes. The unfavorable

quadratic formulation can be rephrased into the classical

generalized eigenvalue problem

(

A11 0
0 0

) (

�yt

�yz

)

= −k2

z

(

B11 B12

B21 B22

) (

�yt

�yz

)

(16)

using the substitutions �yt = kz �xt and �yz = −j �xz [4]. The

last equation in (16) is responsible for the source-free con-

dition of the port modes although the derived formulation

originates from Maxwell’s curl equations only. The formu-

lation is of particular interest because all eigenvalues and

eigenvectors can be calculated using real-valued arithmetic

even for the evanescent fields.

Once the 2-D eigenvalue problem (16) is solved for the

lowest eigenvalues the extracted eigensolutions have to be

incorporated into the originally stated 3-D formulation us-

ing the boundary representation (9). Because of the tangen-

tial nature of the vector expression �n× curl �E the essential

equation can also be written in the form

¨

Aport

1

µr

(�n × curl �E ) · �ω2D
j dA (17)

where the 3-D basis functions have been interchanged with

the corresponding 2-D variants without any approximation.

Consequently, if the port-mode calculation has been per-

formed on a 2-D subset of the 3-D discretization the spec-

ified integration does not have to be completed again but

can be copied instead from the 2-D calculations, where

they have been carried out anyhow. This favorable feature

is readily available if the applied 2-D basis functions are

originating from the 3-D counterparts by projection on the

specified port plane. All necessary basis functions auto-

matically meet this fundamental requirement if the same

construction scheme is used to set up the initially unknown

vector functions from the known scalar counterparts.

Supplementary to the propagation constants the know-

ledge of the cut-off frequencies of the considered modes

is advantageous to characterize the wave propagation. The

necessary values do not have to be calculated from scratch

but can be extracted from (16) with the help of a Rayleigh

quotient simply by setting kz to zero.

Splitting the submatrix in (15a) according to the defini-

tion A2D
11 = A′

11 − ω2
port µ0ε0 A′′

11 into the specified parts

A′
11 and A′′

11 finally enables a simple incorporation of the

boundary contribution (17) into the original eigenvalue for-

mulation (3). Special care has been put in the conversions

to demonstrate the symmetry of the resulting matrix block

so that the entire formulation retains the favorable property.

IMPLEMENTATION

Based on the presented eigenvalue formulation a reliable

computer program to enable high precision cavity simula-

tions has been set up. The inherently high computational

demands welcomes a parallel implementation utilizing dis-

tributed memory machines. The geometrical modeling of

the structures is performed with the CST Studio Suite R© [5].

A flexible tetrahedral mesh is used to perform the under-

lying FEM calculations. The electric field strength is de-

scribed with the help of Nédélec-type basis functions up to

the second order which are formulated on curved elements

to retain the high approximation order even for non-flat ma-

terial interfaces.

Figure 1: Partitioning of the computational domain among

32 processes. A unique color is assigned to each of the

extracted sub domains to model e.g. a TESLA 9-cell cavity.

Because of the immanent coupling of excited modes to

any kind of carefully designed loads the applied computer

program explicitly has to enable a suitable handling of

local loss mechanisms. The underlying algebraic eigen-

value solver naturally has to cope with a complex formu-

lation which is not straightforwardly applicable to avail-

able solver packages. A robust realization of a Jacobi-

Davidson-type eigenvalue solver has been implemented to

extract the complex-valued eigenvectors and correspond-

ing eigenvalues for the large 3-D problem while the 2-D

port modes are determined as a comparable small problem

with the help of standard LAPACK routines [6].
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APPLICATION

The available algorithms have been applied to the com-

putational model of a TESLA 1.3 GHz accelerating cavity

to determine the complex resonance frequency of various

configurations next to the corresponding field distributions

for all modes e.g. in the first monopole passband and in

the mixed first and second dipole passband [7]. The com-

putational model consists of the nine-cell cavity, the fun-

damental input coupler as well as the up- and downstream

higher-order modes couplers. Port boundary conditions are

placed at the coaxial lines of the three couplers as well as

on the two beam tubes.
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Figure 2: Quality factors for the monopole modes for var-

ious penetration depth of the main input coupler. The col-

ored data points are obtained on a mesh using 1.3 million

tetrahedrons (8.1 million complex DOF) while the black

circles are included for comparison reasons and correspond

to 283 thousand tetrahedrons (1.7 million complex DOF).

The implemented formulation can cover a wide range

of dynamical systems reaching from strongly coupled con-

figurations to nearly isolated resonators. A distinct fea-

ture of the complex formulation is given by the possibil-

ity to simultaneously determine the real part as well as the

imaginary part of the angular resonance frequency. While

the real part immediately characterizes the oscillation the

imaginary part is used to describe the damping. Instead of

directly specifying the damping coefficient the widespread

quality factor Q = ωreal/(2 ωimag) is preferably used in-

stead. Because the coupling to the external devices is the

only loss mechanism considered in this work the quality

factor is specified by the external quality factor only. In

Figs. 2 and 3 selected simulation results are summarized to

demonstrate a proper handling of the notoriously difficult

large-scale numerical problem.

CONCLUSION

A robust FEM implementation of a dissipative eigen-

value formulation has been set up which enables to sim-

ulate lossy structures based on complex-valued variables

without the necessity to precalculate real-valued systems

in a preprocessing step. The available parallel computer

program utilizes hierarchical Nédélec-type basis functions
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Figure 3: Quality factors for the 36 modes in the 1 st and 2nd

dipole band considering both polarizations. The calcula-

tions are performed on meshes with 0.354, 0.991 and 2.090
million tetrahedrons indicated by squared, circled and col-

ored data points which translates to 2.1, 6.1 and 12.9 mil-

lion complex degrees of freedom (DOF).

up to the second order on curved tetrahedral elements and

can handle besides losses in bulk materials in particular an

impedance boundary condition and a port mode represen-

tation for arbitrary number of ports. The practical appli-

cability of the combined 2-D and 3-D formulation to real-

life problems has been successfully demonstrated with the

precise electromagnetic modeling of a TESLA-type accel-

erating cavity where the influence of the attached coupling

units has been incorporated consistently in the formulation.
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