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INTRODUCTION

The acceleration of ions with lasers up to energies of

60 MeV has been successfully demonstrated at different

laser systems worldwide, including our facility: PHELIX

[1]. The undergoing mechanism is understood as Target

Normal Sheath Acceleration (TNSA) [2]. Due to the small

transverse emittance and low installation cost laser-ion ac-

celeration is a promising alternative to RF accelerators with

the possible application in ion cancer therapy [3]. This con-

tribution is devoted to the numerical investigation of the

proton acceleration via the TNSA mechanism using 1D and

2D particle-in-cell electro-magnetic simulations. We em-

ploy the plasma simulation code VORPAL [4] and focus

on the proton and electron phase-space distribution at the

rear side of the target. The lack of knowledge about the

thickness of hydrogen-rich contamination layer requires a

detailed parameter study, which has been done in 1D. In

this work we investigate the expansion and divergence of a

thick proton layer from the rear side of the target using 2D

simulations. In order to make sure that the results are phys-

ically correct and reliable we performed a detailed conver-

gence study over the grid size and macro-particle charge.

NUMERICAL HEATING IN 2D PIC

SIMULATIONS

As we know, in 1D it is really easy to resolve the phys-

ical scale lengths (Debye-length) and we can use many

macro-particles per cell in order to get better statistics and

smoother plasma density. With resolution high enough we

obtain results comparable to the fluid-hybrid codes, but the

PIC code always gives us more data and realistic veloc-

ity phase-space distribution of particles. Therefore the PIC

simulations are used to get insight into the smallest details

of physical processes in plasma physiscs.

Very often in 2D we can not use the same high resolu-

tion. Because of the discretization of space and time we

always have to be aware of the numerical errors which oc-

cur during field calculations and integration of equation of

motion of particles. These errors can lead to increasing

field amplitudes, consequently artificial particle accelera-

tion. The main equations which are solved in the loop of a

PIC code are the Faraday’s and Ampere-Maxwell law:

∂ B

∂ t
= −c∇× E (1)

∂ E

∂ t
= c∇× B − J (2)

These equations are solved in the frequency domain by

calculating the Fourier transform of the fields and then they

are transormed back, because the equation of motion is in-

tegrated in the time domain. This additional step speeds up

the calculations significantly. Due to the granulated repre-

sentation of the density, the Fourier transform of J can con-

tain very high frequencies, which can not be resolved by the

spatial grid. The high frequency noise can be reduced by

increasing the grid resolution or increasing the number of

particle per cell (PPC). However these two options are very

expensive in terms of computing power and CPU time. A

much better method is the implementation of higher order

particle shapes and field interpolation which will smooth

out the fields and current density in the simulation. Thus

the noise disappears and the simulation will be more stable

with correct energy conservation, but it does not mean that

result is closer to the reality or that it is more reliable [5].

Very often the high frequency modulation of the density

has a physical reason and in this case we exclude a part of

the physical processes by applying a smoothing technique.

Interaction of high intensity laser with over-dense

plasma requires a very high number of grid-cells in or-

der to resolve the very small cold electron Debye-length

(λDc). The usual length in both directions is a few tens

of micrometers, while the Debye-length inside of the high

density cold plasma is on the order of nanometers. In this

case it is inevitable to use smoothing interpolations, which

allows us the define grid cells larger than λDc. In order

to check the grid heating we performed several simulations

with dense plasma (n0=1027 m−3) filling up completely

the simulation box, which has periodic boundaries. The

initial electron temperature was 1 keV. In Fig. 1 the si-

multaion results are shown for 4 different grid resolution.

Two simulations were done with linear interpolation and

particle shape, which results in a very strong heating of the

electrons. This numerical effect is not present if we switch

to the cubic (third order) smoothing even if the grid size is

40 times larger than λDc. A weak heating can be observed

only for very small PPC, brown line.

Another important effect which can increase the elec-

tron temperature is the numerical Cherenkov emission. It

is related to the Courant criteria [6], which defines the time

step for a stable simulation. Discretizing the space auto-

matically leads to a dispersion relation which says that the

phase velocity of electro-magnetic waves propagating on

the grid is smaller than the speed of light. If we have high

energy electrons in the system they can have velocity close

to the speed of light which means that they can travel fatser

than maximum phase velocity in the system. This situation

results in the same effect what we observ in the reality: ra-

diation into the medium. The emitted fields accelerate the

electrons, thus their temperature is increasing. This effect
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Figure 1: Normalized RMS momentum of elecrons for dif-

ferent simulation parameters. ωpe =
√

n0q2
e/meǫ0.

we can see in Fig. 2, where the black line shows that for

this high resolution the grid heating is very small even with

linear interpolation. The red line shows the result from the

same simulation, but the electron temperature is relativistic

and the blue line prooves again that the cubic interpolation

suppresses the unvanted effect. In order to understand this

we have to know that the Cherenkov emission is efficient

for high wave numbers. For low frequencies it vanishes,

that is why by eliminating the high frequency noise from

the system we do not observe the heating.
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Figure 2: Total energy of the electrons over time in a sim-

ulation with dx = 4λDc and PPC=50. Legend: black -

Th = 1 keV, linear interp.; red - Th = 500 keV, linear in-

terp. and blue - Th = 500 keV, cubic interp. ωpe=1.78·1015

Hz.

SIMULATIONS INCLUDING THE LASER

PULSE

In Fig. 3 the simulation setup is presented with specific

boundary conditions. The simulation size is 50×50 µm and

the target (red column) is at 7 µm from the left boundary.

For this type of simulation the total energy of the system

should be constant or slightly decreasing (due to the PML

regions) after the laser pulse is off. It makes very easy to

check if the grid heating is significant or not. The laser

pulse duration was 200 fs and the peak intensity 6· 1023

W/m2. The simulations were carried out with third order

field interpolation and particle shape. The average CPU

time of these simulations is 1 day and only 20 nodes were

used.

Figure 3: The simulation setup for a TNSA simulation.

The most important part of the laser ion acceleration via

TNSA is the hot electron production. The electron heat-

ing up to relativistic temperatures happens on the fron side

of the target and the laser skin depth (penetration depth,

δE) becomes a crucial parameter. We found that the re-

sulting hot electron temperature (Th) is very sensitive on

the grid resolution, because if δE is not well resolved then

the energy absorption from the laser is not correct. Un-

fortunatelly this length is approximatelly 10 times λDc,

therefore the grid size should not be larger than this. It

will reduce strongly our freedom in choosing the grid size.

Choosing PPC is more related to the rear side of the target,

where the plasma expansion happens. The simulations and

an isothermal model [7] show that the expanding plasma

has an exponential density profile in longitudinal direction

and the density at the proton front decreases in time as

∼ 1/t2. If we want to resolve the density we have to use

a very high PPC (≈ 100 or more) which makes the simu-

lation very slow. Anyhow we are interested in a very short

time window: 200-300 fs, which is enough to understand

and model the 2D expansion of a thick proton layer. In the

case of the thin layer the grid size should be equal to the

layer thickness, which can be smaller than λDc. Therefore

our 2D study has not been extended yet to this regime.

In order to check the effect of the grid resolution on

the results we performed several simulations with different

grid size and PPC. In Fig. 4 the results from simulations

with the same PPC are shown. As we can see by chang-

ing the grid size the Th is affected significantly and it does

not converges yet. It is important to mention that the grid

heating does not appear in any of the simulations, because

the total energy is constant after the laser pulse, see fig.

right. In Fig. 5 we keep the grid size constant and increase

the PPC. Here a more clear convergence can be observed

in the proton fron velocity and the Th starts from the same

value. An interesting feature is noticeable in the time evo-

lution of energy: the remaining field energy (total minus

particle energy) is larger if the PPC is smaller. The reason

is that for large macro-charge the charge separation results
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in a higher field at the proton front. With other words the

energy goes into the electric field, it is not transfered to the

protons.
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Figure 4: Left: Hot electron temperature (full line) and pro-

ton front velocity (dashed line). Right: Total energy in the

system (full line) and total energy of all particles (dashed

line). The color legend for both: dx = 5λDc (black),

dx = 10λDc (blue) and dx = 20λDc (red). PPC=50.
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Figure 5: The same physiscal quantites as in Fig. 4. The

color legend for both: PPC=20 (black), PPC=50 (blue) and

PPC=100 (red). dx = 10λDc.

After making sure that our simulations are correct we

can study the physics of the two-dimensional plasma ex-

pansion. The used simulation parameters: dx = 10λDc

and PPC=50. The only remaining issue is the hot electron

temperature, which does not have its correct value at this

resolution. This we do not consider a problem because by

modelling the plasma expansion we take the hot electron

parameters (measured temperature and density) from the

simulation. Before we present the model we have to men-

tion that in the next section non-periodic boundaries were

used in the transverse direction. For the fields we used

PML regions, just like in the longitudinal direction, and

for the particles the so-called diffuse boundaries, which re-

flects back the electrons with a given thermal velocity dis-

tribution. For the thermal speed of the reflected electrons

we take the initial one (cold). In this way we can mimic

an infinite long transverse extension of the simulation box.

With this trick we are closer to the reality, where the hot

electrons spread out on the target surface and are replaced

by cold electrons (return current), while the fields also dis-

appear propagating in each direction.

ENVELOPE ANGLE OF THE PROTON

BEAM

Our 2D simulations show that the hot electron density in

transverse direction can be approximated with a Gaussian,

which has a sigma (σ) comparable to sigma of the laser

pulse and it increases slowly in time. Although the inten-

sity profile is also Gaussian the hot electron temperature

becomes isotrop in a few electron plasma periods, which is

a very short time compared to the time scales of the expan-

sion. Therefore we can assume a uniform temperature and

just for sake of simpliciy we assume that it is contstant dur-

ing the laser pulse. The peak value of the density (nh0) is at

the laser axis and it is measured from the simulation. One

can calculate from the energy absorption, if it is known. We

rely on the simulation and do not use other semi-empirical

estimations to obtain the hot electron parameters. In the

following x denotes the longitudinal and y the transverse

direction.

After laying down the initial conditions and assumptions

we can derive a transversal acceleration by using the results

of P. Mora [7]. The model is based on the fact that electric

field vector (Ey) which points into the transverse direction

is proportional to the tangent of the surface angle which is

determined by the proton front surface. As a simplification

we calculate Ey just by multiplying Ex with the surface

angle, because it is a small value and the electric field is

always perpendicular to the surface. All we need to know

is the time-dependent derivative of the proron front as a

function of y. The starting equation gives the position of

the ion front:

xf (y, t) = 2η(y)t[ln(η(y)t +
√

(η(y)t)2 + 2)−

ln(
√

2)] − 2(
√

(η(y)t)2 + 2 −
√

2)
(3)

where η=
√

nh(y)/nh0 and nh(y)=nh0 exp(−y2/2).
Here y is normalized to σ, the time t is normalized to 1/ωp0

and the longitudinal coordinate x is measured in the units of

λD0, where ωp0 =
√

nh0q2
e/mpǫ0, λD0 =

√

Th/mp/ωp0.

We have to mention that the Euler number is missing from

the expression, because Mora derived the model for one-

temperature model, but in the two-temperature case ϕ0 ap-

pears in the exponent. It depends on the hot-to cold elec-

tron pressure ratio [8], also on y, which would make the

equations way more complicated. Assuming that the cold

electron density is much higher than the hot one, we can

use the approximation ϕ0 ≈ 0 and eϕ0 = 1. If we calcu-

late ∂ xf/∂ y, we get the following envelope angle:

α(y, t) = −yt

Σ

(√

1

k(y, t)
−

√

1 +
1

k(y, t)

)

(4)

where k(y, t)=exp(−y2/2)t2/2 and Σ=σ/λD0. Now we

can simply say that Ey(y, t) = α(y, t)· Ex(y, t), where [7]

Ex(y, t) =
2η(y)

√

2 + η(y)2t2
(5)

The vy of the protons at the front can be calculated if we

integrate Ey(y, t) over time, but it can not be done analyt-

ically. A very rough approximation gives us an analytical
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expression: vy(y, t) = vx(y, t)α(y, t), where vx is the time

derivative of Eq. 3. However we found that the exact solu-

tion is always roughly 3.3 times smaller than the analytical

expression. Thanks to this interesting observation we have

a very simple function which predicts the transverse veloc-

ity of the protons:

vy(y, t) = vx(y, t)α(y, t)/3.3 (6)

The next step is the validation of our simple model with

correct PIC simulations. For this we compare the result

of one simulation with the analytical predicitions. The pa-

rameters of the laser: τ =500 fs, IL=0.8·1023 W/m2 and

σL=8.5 µm. The hot electron density and temperature were

measured at the peak intensity of the laser and the corre-

sponding normalization quantities: λD0 = 6.51 · 10−8 m

and ωp0 = 8.09 · 1013s−1.
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Figure 6: Longitudinal (left column) and transversal (right

column) velocities of the proton front at the time moments:

80 fs (ωp0t = 6.4, top row), 200 fs (ωp0t = 16, middle

row) and 320 fs (ωp0t = 25.6, bottom row).

In Fig. 6 the comparison is presented for different time

moments. As we can see the longitudinal velocity does not

match with the model at the beginning because the Th and

nh0 did not reach yet their saturation value. The sigma used

in the model was σ = 8µm. The transverse velocity fits

quite well, but only close to the top of protons front. Far-

ther from the center the hot electron density does not follow

the gaussian shape, it is hagher than the one assumed in the

model. The reason is that in 2D the particles can move

only in two transversal directions, but in the reality they

spread out in each direction and the density is proportional

to 1/r, where r is the radius (distance from the center). It

means that the plasma expansion has a cylindrical simme-

try, which can not be handled in our 2D planar simmetry.

The consequence is that the electric field is trong also far

from the axis of simmetry of the laser pulse and the pro-

ton front surface will be different from the one predicted

by the model. Therefore the surface angle becomes smaller

and the transverse field weaker. This is why we see smaller

vy in the simullation at the distances larger than 2σ. This

effect can be seen in Fig. 7, where we compare the electric

fields from 2D and 3D simulations. Other simulations show

that the distortion of the front surface becomes stronger if

the Σ is smaller, but our model is deduced for large laser

spots, where the surface angle is still small.
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Figure 7: Contour plots of the longitudinal electric field in

a 2D (left) and 3D (right) simulation. E0 = 1 TV.

CONCLUSIONS

We could find the optimal numerical parameters for a

2D TNSA simulation, which ensures that the results are

correct if the simulation is not too long. This type of simu-

lations can be preformed with limited computing resources

as well. The hot electron temeprature does not converege

yet for our parameters, because the laser-plasma interaction

has very small scale length and it is a complicated stochas-

tic process which is difficult to resolve spatially. We have

to rely on our measured values from the simulation and use

them as input parameters in the plasma expasnion model.

The model, derived in this contribution, is valid for large

hot spots and for relatively short time (200-300 fs), but in

principle it can be used as initial condition for other sim-

ulations where the grid size is much larger and the inves-

tigation of proton and electron velocity phase-space on a

longer time scale is possible. The full description of the

proton distribution is currently ongoing work, but it seems

to be possible by using the presented model.
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