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Abstract

Efficient and accurate computation of eigenvalues and

eigenvectors is of fundamental importance in the accelera-

tor physics community. Moreover, the eigensystem analy-

sis is generally used for the identifications of many physi-

cal phenomena connected to vibrations. Therefore, various

types of algorithms such that Arnoldi, Lanczos, Krylov-

Schur, Jacobi-Davidson etc. were implemented to solve

the eigenvalue problem efficiently. In this direction, we

investigate the performance of selected commercial and

freely available software tools for the solution of a gen-

eralized eigenvalue problem. We choose characteristic set-

ups by considering spherical and billiard resonators next to

a TESLA nine-cell cavity in order to test the robustness,

accuracy, and computational speed as well as memory con-

sumption issues of the recent versions of CST, Matlab, Pys-

parse, SLEPc and CEM3D. Simulations were performed on

a standard personal computer and on a cluster computer to

enable the handling of large sparse matrices in the order

of hundreds of thousands up to several millions degrees of

freedom (DOF). We obtain interesting comparison results

with the examined solvers which is useful for choosing the

appropriate solvers for a given practical application.

INTRODUCTION

In this paper, we consider the numerical solution of the

generalized eigenvalue problem

Ax = λB x for B > 0 (1)

for a given symmetric, real valued, large and diagonally

dominant sparse matrix pencils A and B. The problem

can be derived from Maxwell’s equations for a source

free bounded domain having perfectly conducting bound-

ary condition on its surface. In principle, such a mathemat-

ical model coincides with a superconducting cavity which

enclosures excited electromagnetic fields. Therefore, ac-

curate calculation of eigenvalues λ has a critical impor-

tance and it leads to find the eigenfrequencies of several

modes which are of fundamental importance for the accel-

eration of charged particles. In this context, performance

of eigensolvers are always of interest in industry and scien-

tific communities which constitutes the main motivation of

our study.

Jacobi-Davidson method [1] which is based on iterative

expansions of subspaces is recommended to solve eigen-

value problems dealing with diagonally dominant large
∗Work supported by the DFG through SFB 634
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matrices in the literature [2, 3, 4]. Therefore, we se-

lect CEM3D, Pysparse and SLEPc solvers which all can

employ Jacobi-Davidson implementation in their simula-

tions. Here, we just mention the idea behind of the method

shortly. Let Vk = span{v1, · · · , vk} be a subspace where

vTk Bvj = δkj . Then a Ritz pair (θj , uj) in Vk, can be ob-

tained from the projected eigenvalue problem choosing the

closest value to a given target τ . In the next step, a conver-

gence criteria

‖ r ‖2 := ‖ (A− θB)u ‖2 < ǫ . (2)

is checked for θ if it could be an eigenvalue for a selected

ǫ. Afterwards, the so-called correction equation

(I −BuuT )(A − θB)(I − uuTB)z = −r (3)

is solved iteratively with tfqmrs in CEM3D, with bcgsl in

SLEPc and with qmrs in Pysparse for the unknown z where

z ⊥ u and uT is the transpose of u. Then we expand the

subspace Vk+1 = span{v1, · · · , vk+1} for the next iteration

which starts finding approximate Ritz pairs for the updated

subspace [5].

NUMERICAL EXPERIMENTS

In the numerical tests, spherical and billiard resonators

and a 9-cell TESLA cavity are considered. Structures are

drawn and meshed with tetrahedrons having planar ele-

ments. Corresponding meshes are imported to CEM3D [6]

in order to generate input sparse matrices for the eigenvalue

solvers Pysparse [4], SLEPc [7] and Matlab [8]. Here,

CEM3D is a parallel and a higher order FEM code which

was implemented in our institute for the accurate calcula-

tions of eigenfrequencies for a given structure. Furthermore

the same structures are used for the eigenvalue simulations

in CST [9]. It is also noted that among these solvers only

CEM3D and SLEPc have the capability to run on a dis-

tributed memory machine with multiprocessors in parallel.

For the comparison of different solver results, we first

compute the eigenvalues of a spherical resonator from an-

alytical expressions given in [10] by employing a root-

finding algorithm which is simply explained in [11].

Eigenvalues are also calculated with SLEPc for different

DOF and a relative error is calculated as,

relative error = max
i∈DOF

|λanalytical − λnumerical
i |

λanalytical
(4)

by considering the worst computed degenerated mode

eigenfrequency, see Figure 1.
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Figure 1: Convergence rate of SLEPc eigencomputations.

In our simulation studies, we experienced that it is suf-

ficient to use a single personal computer e.g. 2.27 GHz (2

processors) having 24 GB memory to compute 20 eigenval-

ues with the same accuracy for all solvers up to 105 degrees

of freedoms but for the larger amount of DOF it is neces-

sary to run solvers in parallel. Along this line results pre-

sented in this paper for approximately DOF ≥ 2.5 × 105

are obtained using parallel run on a cluster with SLEPc /

CEM3D and this issue is indicated in time consumption il-

lustrations in Figures 2, 4, 6 with two seperated regions by

disconnected line plots.

In all simulations, we first mesh related geometries in

CST with tetrahedrons and extract first 20 eigenvalues of

the spectrum choosing accuracy 10−9 for different DOF

with different solvers. Basically, structures have different

eigenvalue spectrum’s depending on their geometries and

this phenomena may effect the performance of the solvers.

Therefore we also test solvers with a chaotic billiard res-

onator which has a clustered eigenvalue distribution [12].

Spherical Resonator

As a first experiment, we consider a spherical resonator

with a radius 1m. We run several simulations to obtain

time and memory consumption results which are shown in

Figure 2 and Figure 3, respectively. It can be concluded

from the simulation results that iterative solvers needs long

time but less memory as to be expected. Therefore, CST

or Matlab can be recommended for the applications hav-

ing DOF up to 105 in the case of providing enough com-

putation sources. However, it should be noted that Matlab

requires more memory as compared to the other solvers,

so that SLEPc and Pysparse can also be considered a very

good option in this DOF region. Especially, SLEPc has a

very good characteristic from memory usage point of view

for the very large DOF. On the other hand, a desired portion

of the eigenvalues in the spectrum or the electromagnetic

field distribution can be computed with CEM3D or CST

straightforwardly. It should be noted that these tools are

robust in nature even to unproperly chosen target values.
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Figure 2: Time Consumption for a Spherical Resonator.
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Figure 3: Memory Consumption for a Spherical Resonator.

Nine-cell TESLA Cavity

For the second experiment, a 9-cell TESLA cavity with

approximately 1m length is chosen. Here, Matlab and CST

are clearly separated from the other solvers in time consum-

ing, see Figure 4. On the other hand, as an important dif-

ference from the previous experiment now except SLEPc,

all solvers memory consumption plots are more close to

each other which actually emphasizes Matlab’s good perfo-

mance for this case. Furthermore, a linear O(DOF) behav-

ior is observed for DOF ≥ 106 in the memory consumption

of SLEPc, see Figure 5.
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Figure 4: Time Consumption for a Tesla Cavity.
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Figure 5: Memory Consumption for a Tesla Cavity.

Billiard Resonator

In the billiard resonator experiment, it is initially ob-

served that the time and memory consumption behaviors

of solvers for billiard resonator is more close to spherical

resonator than a TESLA cavity. This may be a consequence

of the similarity of the shapes. On the other hand, it should

be emphasized that the nature of the solvers change only

slightly even for a very different eigenvalue spectrum. It

is shown in Figure 6 that time consumption of Matlab and

CST are very similar in a region 105 ≤ DOF ≤ 2.5× 105.

However, curve of best fit of Matlab is more steep than CST

for larger DOF. Moreover Pysparse and SLEPc have a sim-

ilar time consumption characteristics but as it is similar in

the previous simulations SLEPc requires the least memory

source for billiard resonator calculations.
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Figure 6: Time Consumption for a Billiard Resonator.

CONCLUSIONS

As a result of all experiments, we immediately conclude

that solvers change their behavior only slightly depending

on the geometry of the problem or the type of the eigen-

value spectrum. From time consuming point of view, Mat-

lab and CST can be considered as one group and SLEPc,

Pysparse, CEM3D can be considered as a second group ac-

cording to their similar values. The flexibility of choosing

target value in CST and CEM3D increases the applicabil-

ity of these solvers. In the case of knowing the target value
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Figure 7: Memory Consumption for a Billiard Resonator.

for single personal computer applications Matlab has an

impressive performance in time. Free tools Pysparse and

SLEPc has similar characteristics in time consuming but

SLEPc uses the least memory in all three experiments and

it can be used either on a single computer or on a cluster

for very large amount of DOF.
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