
Misun Min,
∗

Jing Fu, Azamat Mametjanov

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

We examined hybrid parallel infrastructures in order to

ensure performance and scalability for beam propagation

modeling as we move toward extreme-scale systems. Us-

ing an MPI programming interface for parallel algorithms,

we expanded the capability of our existing electromagnetic

solver to a hybrid (MPI/shared-memory) model that can

potentially use the computer resources on future-generation

computing architecture more efficiently. As a prelimi-

nary step, we discuss a hybrid MPI/OpenMP model and

demonstrate performance and analysis on the leadership-

class computing systems such as the IBM BG/P, BG/Q,

and Cray XK6. Our hybrid MPI/OpenMP model achieves

speedup when the computation amounts are large enough

to compensate the OMP threading overhead.

INTRODUCTION

Multicore architectures are current trends for gaining im-

provement in computing power, instead of increased clock

speed. To achieve scalable performance with minimal par-

allelization overhead on such platforms, we have explored

incorporating multithreading frameworks into our exist-

ing MPI-only code NekCEM for beam propagation mod-

eling. Specifically, we are using hierarchical paralleliza-

tion frameworks based on MPI/OpenMP schemes for in-

tranode operations of MPI programs using OpenMP direc-

tives around time-consuming loops that do not contain data

dependencies, while leaving the source code unchanged.

NekCEM [1, 2, 3] is a freely available, massively par-

allel, scalable high-order code for electromagnetic device

simulations. NekCEM has great potential for meeting the

future computational needs of experimental and theoretical

research at exascale, by using a fast communication kernel

for efficiency and body-fitted hexahedral meshes that al-

low significant gains in accuracy. We previously conducted

wakefield calculations using the spectral-element discon-

tinuous Galerkin (SEDG) scheme [4, 5] with fourth-order

Runge-Kutta time stepping, with favorable results in com-

parison with those from low-order methods.

Future-generation supercomputing systems will be

memory-limited relative to the raw computational perfor-

mance. Currently, per processor memory requirements for

NekCEM scale roughly as 600 8-byte words per allocated

gridpoint. The total memory requirements are n = EN3

points x 600 (words/point) x 8 (bytes/word). For example,

with E=800K and N=16, the total memory requirements

∗mmin@mcs.anl.gov

are 800K × 163 × 600 × 8. Assuming that 200 MB of

memory per core are available to the user, one can run this

simulation with P>786,432 cores by setting the number of

local elements more than 10. In the current parallel context,

however, there will be an increasing memory penalty asso-

ciated with two variables, the maximum number of cores

and the upper bound on the total number of elements, as the

problem size becomes very large at extreme scale. A hybrid

MPI/share-memory framework can reduce the memory de-

pendency on these two parameters.

IMPLEMENTATION

Ultrarelativistic beam propagations are governed by

Maxwell’s equations,

Q
∂q

∂t
+∇ · F(q) = S, (1)

where we define the field vector q = [H,E]T and the

flux F(q) = [FH,FE]
T

with FH = ei × E and FE =

−ei × H, and the source term S = [0,J]T . The elec-

tric, magnetic, and current fields are represented by E =
(Ex, Ey, Ez)

T , H = (Hx, Hy, Hz)
T , and J = (0, 0, Jz)

T ,

respectively. The material properties are defined as Q =
diag(µ, µ, µ, ǫ, ǫ, ǫ) with the free space permittivity ǫ and

free space permeability µ. Initial fields in the presence

of the Gaussian beam are obtained by solving the Poisson

equation in transverse direction at the beam location in the

longitudinal direction.

Numerical Approach

We consider the computational domain Ω with nonover-

lapping hexahedral elements Ωe such that Ω = ∪E
e=1Ω

e,

and we define a weak formulation, introducing the numer-

ical flux F∗ as in [4, 5]:

(

Q
∂q

∂t
+∇ ·F(q) − S, φ

)

Ωe

= (n̂ · [F− F∗], φ)∂Ωe .

(2)

The local solutions of the fields can be written as

qN (x, t) =
N
∑

i,j,k=1

qijkψijk(x), (3)

where qijk is the solution at x=(xi, yj, zk) on Ωe and

ψijk=li(r)lj(s)l)lk(t) using the one-dimensional Legendre

Lagrange interpolation polynomial li of degree N -1 asso-

ciated with the N Gauss-Lobatto-Legendre (GLL) quadra-

HYBRID PROGRAMMING AND PERFORMANCE FOR BEAM
PROPAGATION MODELING

FRSAC1 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

284C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

08 High Performance Computing

ture nodes [6]. Plugging (3) into (2) with a local discontin-

uous test function φ = ψijk and applying the GLL quadra-

ture for the spatial integration, we obtain a semi-discrete

scheme with the mass and stiffness matrices defined as

M = (ψijk , ψîĵk̂
)Ωe ,Dx =

(

∂ψijk

∂x
, ψ

îĵk̂

)

Ωe

, (4)

Dy =

(

∂ψijk

∂y
, ψ

îĵk̂

)

Ωe

,Dz =

(

∂ψijk

∂z
, ψ

îĵk̂

)

Ωe

(5)

and the surface integration on the right-hand side in (2) (we

omit the detailed form in this paper).

Algorithms

The algorithm can be simplified as

Un+1 = Un + mxm(Un) + comm(F (Un)), (6)

where mxm and comm respectively represent the matrix-

matrix product and communication operation for the sur-

face integration, F (Un). The main operation count in our

algorithm is dominated by the mxm routine: the curl opera-

tor takes 30% of total cost and 15% of total cost for com-

munication. We focus on speedup by additional threading

on the mxm routines.

Within each subdomain, derivatives are evaluated in a

tensor product fashion by using a one-dimensional differ-

entiation matrix on a reference domain [−1, 1]3. A deriva-

tive of ue (e = 1, ..., E) in a subdomain with respect to

(r, s, t) ∈ [−1, 1]3 is expressed by

uer ≡ Dru
e = (It ⊗ Is ⊗ D̂)ue = ΣN

l=1D̂ilu
e
ljk, (7)

ues ≡ Dsu
e = (It ⊗ D̂ ⊗ Ir)u

e = ΣN
l=1D̂jlu

e
ilk, (8)

uet ≡ Dtu
e = (D̂ ⊗ Is ⊗ Ir)u

e = ΣN
l=1D̂klu

e
ijl, (9)

where It, Is, and Ir are the N × N identity matrices and

D̂ is the one-dimensional differentiation matrix of N ×N
defined in [6].

Dx, Dy and Dz in Eq. (4) require three mxm operations

for each. Thus the cost per timestep involving the mxm oper-

ations for a curl operator scales as O(18EN4) for six field

components. For the MPI-only model, we use the mxm rou-

tine, written in Fortran and assembly code, which includes

the inner-product dimension completely unrolled into a sin-

gle statement, allowing a short-nested loop for more work

per iteration and a hardcoded address increments into mem-

ory read instructions by the compiler [6]. We consider the

OMP routine as an alternative for possible speedup.

OpenMP is a set of APIs for writing multithreaded pro-

grams on shared-memory machines. It can help the com-

piler parallize applications at the highest possible level

through explicit compiler directives yet not involve appli-

cation programmers in low-level details.

For our hybrid MPI/OpenMP design, we use the follow-

ing instruction for the mxm routine:

c$OMP PARALLEL DEFAULT(PRIVATE)

SHARED(A,B,C,N1,N2,N3)

c$OMP DO

do j=1,N3

do i=1,N1

c(i,j) = 0

do k=1,N2

c(i,j) = c(i,j) + a(i,k)*b(k,j)

enddo

enddo

enddo

c$OMP END DO

c$OMP END PARALLEL

PERFORMANCE

We performed our tests on the IBM BG/P and BG/Q and

the Cray XK6 for different problem sizes with varying N
on a hexahedral mesh with E=1152 for an undulator. The

features of the systems are described below.

IBM BG/P The Blue Gene/P Intrepid consists of

40,960 compute nodes (40 racks and 1,024 nodes per rack,

including 640 I/O nodes) with 850 MHz quad-core proces-

sor and 2 GB RAM per node, for a total of 163,840 cores,

80 TB of RAM, and a theoretical peak performance of 557

teraflops.

IBM BG/Q The Blue Gene/Q Mira consists of 49,152

compute nodes (48 racks and 1,024 nodes per rack, includ-

ing 384 I/O nodes) with 1.6 GHz 16-core processor and 16

GB RAM per node, for a total of 786,432 cores, 786 TB of

RAM, and a theoretical peak performance of 10 petaflops.

Cray XK6 The Cray XK6 Jaguar consists of 18,688

compute nodes. Each compute node consists of 16-core 2.2

GHz AMD Opteron processors and 32 GB of RAM, for a

total of 299,008 cores, 598 TB of RAM, and a theoretical

peak performance 2.63 petaflops.

We measured the CPU time and wallclock time for 100

timestep runs. For the CPU time measure, we used dclock

and got an average time over the total number of MPI

ranks. For the wallclock time, we used mpi wtime and

omp get wtime for MPI ranks and OMP threads, respec-

tively. Here we demonstrate the CPU time using the aver-

age value over all MPI ranks.

Figure 1 shows the CPU time for a fixed number of MPI

ranks (=1024) with an increasing number of OMP threads

for the granularity per core n/P=576 and 4608. In the top

figure, adding additional threads (i.e., more computing re-

sources) decreases the performance because the overhead

of creating threads offsets the benefit of parallelizing the

loops for such coarse granularity in computation. As the

work amount increases in the bottom figure, we observe

more OMP threads for speedup. Compared with the MPI-

only case, however, we do not gain much speedup.

Figure 2 demonstrates the CPU time for a fixed num-

ber of total threads (=1024) with varying numbers of MPI

Proceedings of ICAP2012, Rostock-Warnemünde, Germany FRSAC1

08 High Performance Computing

ISBN 978-3-95450-116-8

285 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

IBM BG/P IBM BG/Q Cray XK6
0

5

10

15

20

25

30

35

40

45

50

C
P

U
ti
m

e
/p

o
in

t/
s
te

p
 (

µ
 s

e
c
)

Time measure: n=N
3
E, (N=8, E=1152)

MPI=1024 assembly
MPI=1024
MPI=1024, threads=1
MPI=1024, threads=2
MPI=1024, threads=4
MPI=1024, threads=8

IBM BG/P IBM BG/Q Cray XK6
0

5

10

15

20

25

30

35

40

45

50

C
P

U
ti
m

e
/p

o
in

t/
s
te

p
 (

µ
 s

e
c
)

Time measure: n=N
3
E, (N=16, E=1152)

MPI=1024 assembly
MPI=1024
MPI=1024, threads=1
MPI=1024, threads=2
MPI=1024, threads=4
MPI=1024, threads=8

Figure 1: Scaling on MPI/multithreading algorithms on

BG/P, BG/Q, and Cray XK6.

ranks and OMP threads. The granularity per core changes

as n/P=576, 1152, 2304, 4608 with P =1024, 512, 256,

128, respectively, for n=0.58M (top) and n/P=4608, 9216,

18432, 36864 with P =1024, 512, 256, 128, respectively,

for n=4.7M (bottom). By increasing the number of OMP

threads but reducing communication with a smaller num-

ber of MPI ranks, the results show increased speedup con-

sistently. However, superior performance compared with

the MPI-only case is possible when there is enough work

for the OMP loops, as shown in the bottom figure.

CONCLUSION

We have conducted performance studies on leadership-

class computing systems and have demonstrated the

speedup for a hybrid MPI/OpenMP model in comparison

with the MPI only case when the computation amounts are

large enough to hide the OMP threading overhead. Fu-

ture work includes expansion to MPI/GPU threading and

comparison with further optimized MPI/OpenMP model at

larger scale.

ACKNOWLEDGMENT

This work was supported by the Office of Ad-

vanced Scientific Computing Research, Office of Science,

IBM BG/P IBM BG/Q Cray XK6
0

5

10

15

20

25

30

35

40

45

50

C
P

U
ti
m

e
/p

o
in

t/
s
te

p
 (

µ
 s

e
c
)

Time measure: n=N
3
E, (N=8, E=1152)

MPI=1024 assembly
MPI=1024
MPI=1024, threads=1
MPI= 512, threads=2
MPI= 256, threads=4
MPI= 128, threads=8

IBM BG/P IBM BG/Q Cray XK6
0

5

10

15

20

25

30

35

40

45

50

C
P

U
ti
m

e
/p

o
in

t/
s
te

p
 (

µ
 s

e
c
)

Time measure: n=N
3
E, (N=16, E=1152)

MPI=1024 assembly
MPI=1024
MPI=1024, threads=1
MPI= 512, threads=2
MPI= 256, threads=4
MPI= 128, threads=8

Figure 2: Scaling on MPI/multithreading algorithms on

BG/P, BG/Q, and Cray XK6.

U.S. Department of Energy, under Contract DE-AC02-

06CH11357.

REFERENCES

[1] “NekCEM,” http://wiki.mcs.anl.gov/nekcem.

[2] M. S. Min, J. Fu, P. F. Fischer, “Performance analysis of

the spectral-element discontinuous Galerkin method for elec-

tromagnetic modeling on the IBM BG/P and Cray XK6,”

Preprint ANL/MCS-P1802-0111.

[3] J. Fu, M. S. Min, R. Latham, C. D. Carothers, “I/O threads

to reduce checkpoint blocking for an electromagnetics solver

on Blue Gene/P and Cray XK6,” in International Work-

shop on Runtime and Operating Systems for Supercomput-

ers (ROSS), in conjunction with International Conference on

Supercomputing (ICS), June 2012.

[4] M. S. Min, P. F. Fischer, “Spectral-element discontinuous

Galerkin simulations with a moving window algorithm for

wakefield calculations,” in Proc. of PAC09, TH5PFP03,

2009.

[5] M. S. Min, P. F. Fischer, Y. C. Chae, “Wake fields for TESLA

cavity structures: Spectral element discontinuous Galerkin

simulations,” in Proc. of SRF07, TUP34, 2007.

[6] M. O. Deville, P. F. Fischer, E. H. Mund, High Order Methods

for Incompressible Fluid Flow, Cambridge University Press

(2002).

FRSAC1 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

286C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

08 High Performance Computing

