Author: Marsching, S.
Paper Title Page
TUABC2 Global Optimization of the ANKA Lattice Using Multiobjective Genetic Algorithms (MOGA) 72
 
  • M. Streichert, N. Hiller, E. Huttel, V. Judin, B. Kehrer, M. Klein, S. Marsching, C.A.J. Meuter, A.-S. Müller, M.J. Nasse, M. Schuh, N.J. Smale
    KIT, Karlsruhe, Germany
 
  Funding: This work has been supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320.
The optimization of a storage ring lattice is a multiobjective problem, since the parameter space of possible solutions can be very large and a high number of constraints have to be taken into account during the optimization process. In this paper we used Genetic Algorithms (GA) and MultiObjective Genetic Algorithms (MOGA), which can solve such problems very efficiently and rapidly, to find the optimized settings for the ANKA storage ring lattice.
 
 
THP09 Global Scan of All Stable Settings (GLASS) for the ANKA Storage Ring 239
 
  • M. Streichert, N. Hiller, E. Huttel, V. Judin, B. Kehrer, M. Klein, S. Marsching, C.A.J. Meuter, A.-S. Müller, M.J. Nasse, M. Schuh, N.J. Smale
    KIT, Karlsruhe, Germany
 
  Funding: This work has been supported by the Initiative and Networking Fund of the Helmholtz Association under contract number VH-NG-320.
The design of an optimal magnetic optics for a storage ring is not a simple optimization problem, since numerous objectives have to be considered. For instance, figures of merit could be tune values, optical functions, momentum compaction factor, emittance, etc. There is a technique called “GLobal scan of All Stable Settings” (GLASS), which provides a systematic analysis of the magnetic optics and gives a global overview of the capabilities of the storage ring. We developed a parallel version of GLASS, which can run on multi-core processors, decreasing significantly the computational time. In this paper we present our GLASS implementation and show results for the ANKA lattice.