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Electron Build Up in the chamber
electron production

• The number of photons emitted from 
synchrotron radiation of one positron during 
one revolution

• Photoelectron number

basic yield Y, reflectivity R, quantum efficiency Y’
In the simulation, Y and R are input parameters
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• secondary electron emission

Incident angle   , maximal secondary yield      ,  
is electron incident energy responding to   

With TiN coating in the chamber, 
Without TiN coating, 
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chamber in the Dipoles of BEPCII

chamber structure in the simulation
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• Photon in the antechamber
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99.5% photons will be produced in the antechamber 
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The beam field in the pipe of BEPCII
• In central region of beam                 ,the beam field is 

presented by Basseti-Erskine formula.

• Out of the central region, the beam field is the solver of 
Poission-Superfish.
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Simulation recipe for the ecloud build up
Present e- with macro-particles(104 e- for a bunch passing)
For every bunch, e- will be produced in the pipe and 
antechamber
e- will be accelerated in the beam field
If e- hit the boundary of the pipe, secondary electron 
will be produced.
e- will move between the bunches in the field of the 
ecloud space force and clearing electrode field 
If there is a photon absorber in the antechamber, the 
yield Y and reflectivity R will be much smaller. 
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Main Parameters of BEPCII

Energy E(GeV) 1.89 Energy spread(10-4) σe 5.16
Circumference C(m) 237.53 Momentum compact αp 0.0235
Rev. frequency f0 (MHz) 1.2621 Bunch length σz(cm) 1.5
Harmonic number h 396 Emittanceεx/εy(nm) 144/2.2
RF frequency frf(MHz) 499.8 βx /βy(m) 10/10
RF Voltage Vrf(MV) 1.5 σ *

x/σ *
y(μm) 380/5.7

Energy loss/turn U0(keV) 121 νx/νy/νz 6.57/7.61/0.033
Damping time 
τx/τy/τz(ms) 

25/25/12.5 ν’
x/ν’

y -11.9/-25.4

Total current/beam I(A) 0.91 Crossing angle φ*(mrad) ±11
SR Power P(kW) 110 Piwinski angle Φ(rad) 0.435
Bunch number Nb 93 Bunch spacing Sb(m) 2.4
Bunch current Ib(mA) 9.8 Beam-beam parameter ξ 0.04/0.04
Particle number Nt 4.84×1010 Luminosity(1033cm-2s-1) L0 1.0
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Simulation for the ecloud density
• Ecloud distribution in the pipe with or without 

antechamber 

(the length of the antechamber is 5 times of its height   L=5h)
Much of the electrons will be produced in the antechamber.
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• Ecloud density in different length of antechamber
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With the antechamber, the central density can 
be reduced about 5 times.
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• Ecloud density with different secondary yield
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After SEY>1.6, ecloud density increased quickly.



ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS

• Ecloud density with clearing electrodes in the pipe
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• Ecloud density with a bunch train in many turns
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Summary of the ecloud density in different 
restraining methods

Restraining methods L/h PEY(Y) R SEY ρ (m-3)

None 0 0.1 80% 1.8 1.03×1013

Antechamber only 5 0.1 80% 1.8 2.22×1012

TiN coating only 0 0.1 80% 1.06 1.85×1012

antechamber and TiN coating 5 0.1 80% 1.06 3.26×1011

antechamber and photon absorber 5 0.02 10% 1.8 7.18×1011

antechamber, photon absorber and TiN 5 0.02 10% 1.06 1.35×1011

antechamber and clearing electrodes 5 0.1 80% 1.8 3.74×1011

antechamber, clearing electrodes and TiN 5 0.1 80% 1.06 3.33×1010
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Electron cloud in different magnetic fields

• the force of the magnetic field

BVF eB ×= e

In dipole magnetic field region without considering 
the fringe field, the magnetic field is only in vertical 
direction. 

B=By
the electrons in the cloud are confined to move in tight vertical helices 
whose radius is typically a few microns, and whose cyclotron frequency is 
f=eB/2πm, B=8000Gs, f=22.3GHz. The main consequence of the cyclotron 
motion of the electrons is the severe suppression of the horizontal 
component of the velocity of the electrons in the cloud. 
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• in quadrupole magnetic field, B can be expressed by
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• In uniform solenoid field, the magnetic field is 
only in longitudinal direction.
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Electron cloud distribution in  magnetic fields

Distribution of electron cloud in various kinds of magnetic field
left: chamber with antechamber; right: elliptic chamber)

(a: free field region; b: dipole field; c: quadrupole field; d: sextupole field; e: solenoid field Bz=10Gs ) 



ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS

Electron cloud density in elliptic and antechamber vacuum chamber
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The distribution of electron cloud in the quadupole and sextupole
magnetic fields can be explained with the magnetic mirror trap in the 
plasma physics . The motion of the electron in the magnetic field can 
be regarded as the superposition of the gyration motion around the 
guiding center and the motion of the guiding center. The gyration 
motion of the electron is a rapid rotation around the magnetic field line. 
The motion of the guiding center is the average motion over the 
gyration motion. 
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In magnetic fields, the total energy of the electrons 
will be a constant. That is expressed by

constBmV =+ µ2
//2

1

.

BmV /2
1 2

⊥=µ

µ is the magnetic moment, V⊥ is the gyration motion of electrons
V// is the parallel or longitudinal velocity, which is parallel to the magnetic field

The magnetic field is a mirror field in the 
quadrupole and sextupole magnets, in 
which the magnetic field is weaker at the 
center and is stronger at both ends of 
the field lines. Thus, the same trap effect 
will happen in quadrupole and sextupole
magnetic fields. 
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Coupled bunch instability

• The turn by turn method was used to track the 
motion of 93 bunches in a train. 

• In every circle the positions of 93 bunches will 
be recorded.

• The oscillation can be transferred to the 
spectrum by FFT.



ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS

• The tracking results
Elcoud density 1.03×1013m-3

Growth time τ ≈0.08ms
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电子云密度1.35×1011m-3

Growth time τ ≈4.3ms
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Single bunch instability
e- are accumulated near the beam center during 
bunch passage
if there is a displacement between head  and tail 
particles, the tail experiences a ‘wake’ force
effective short-range wake field in region of the 
bunch length 
Strong head tail theory can be use to estimate the 
threshold of the blow up
Positive chromaticity  can restrain the bunch blow up
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Simulation approach for single bunch instability

Ecloud position

Bunch slices

Concentrate e− cloud at one location of the ring
Represent bunch and e- with macro-particles
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compute electric force between bunch macro-
particles and ecloud macro-particles
For bunch macro-particles, there is a change 
in x’ and y’
For ecloud macro-particles, their position (xe,ye) 
will change between two slices
Between turns, beam macro-particles can 
change longitudinal position Z due to synchro-
motion



ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS

• The force between positron and electron
∑

=

−⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+

en

j

ersK
ds
d

1
2

2

)(2)( je,p,ip,i
p,i XXFX

X
γ

∑
=

−⋅−=
bn

i
ecrdt

d

1

2
2

2

)(2 je,ip,
ie, XXF

X

)(2 sδ
X
XF −=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

)2cos(
)2sin(

)2sin()2cos(
)(

,
,

,,

yx
yx

yxyx

sM
πν

β
πν

πνβπν

M(s)  is transfer matrix of the ring



ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS

Simulation results
• Ecloud short-wake field

Head particles distance            , 
the short wake expressed as:   
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•Strong head-tail instability threshold

According the formula, the wake field threshold is 
1.47×106m-2 corresponding to the ecloud density 
9.2×1011m-3. So there will be a single bunch instability 
threshold in 9.2×1011m-3.
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• Increase of bunch size in different ecloud density 
(without considering the synchrotron motion )
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• Increase of bunch size in different ecloud density 
(considering the synchrotron motion ,chromaticity (0,0) )
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• Effect of chromaticity on the beam size
Considering the Energy error, the tune will change 
in different particles.

The betatron and synchrotron motions are coupled 
by chromaticity. Positive chromaticity can restrain 
the bunch blow up.
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• Results for different chromaticity
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• Blow up in bunch train
According to the ecloud density, the bunches size change in 
the train can be simulated.
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Bunch lengthening caused by longitudinal wake field of electron cloud

Physical model for the longitudinal wake field of electron

During the passage of a bunch through the 
electron cloud, the electrons are attracted by 
the beam electric field and accumulate around 
the positron beam. The positron bunches have 
to lose some mount of their kinetic energy to 
build the electron cloud during the interaction 
with the electrons. The energy variation inside 
the bunch can be seen as a longitudinal wake. 
The bunch particles have an additional energy 
spread due to the longitudinal wake from the 
electron cloud. the longitudinal electric field of 
the electron cloud is expressed as,

∫=
a

r rz drjZE 0

Z0 the impedance in free space and  jr is 
transverse current density of electron cloud.
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During the passage of a positron bunch the transverse distribution of the electron 
cloud also has some significant change as displayed in the following figure.
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A normal method to simulate the process of bunch lengthening is to track the 
motions of many macro-particles presenting the bunch. The motion of macro-
particles is described in the longitudinal phase by
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Synchrotron Tune shift caused by electron cloud

0.03 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04
0
2
4
6
8

νs

A
m

pl
itu

de
 (

 x
10

7  a
rb

.u
ni

t)

0.03 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04 
0

2

4

νs

A
m

pl
itu

de
 (

 x
10

7  a
rb

.u
ni

t)

0.03 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04
0

2

4

νs

A
m

pl
itu

de
 (

 x
10

7  a
rb

.u
ni

t)

0.03 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04
0

2

4

νs

A
m

pl
itu

de
 (

 x
10

7  a
rb

.u
ni

t)

0.03 0.031 0.032 0.033 0.034 0.035 0.036 0.037 0.038 0.039 0.04
0

2

4

ν
s

A
m

pl
itu

de
 (

 x
10

7  a
rb

.u
ni

t)

The synchron tune when the electron 
cloud density is 1.0x1011m−3    

The synchron tune when the electron 
cloud density is 1.0x1012m−3    

The synchron tune when the electron
 cloud density is 1.0x1013m−3  

The synchron tune when the electron 
cloud density is 5.0x1013m−3    

The synchron tune when the electron 
cloud density is 1.0x1014m−3    

the synchrotron 
tune shift is only 5% 
of the undisturbed 
tune



ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS

Source of the electrons

(1)Proton losses incident the vacuum chamber

(2)Residual gas ionization

(3)Secondary electron emission

Elastically back-scattered electrons

Re-diffused electrons

True-secondary electrons
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Electron – proton instability in China Spallation Neutron Source

Electron multiplication mechanism in long proton bunches [1]

[1] M.T.F. Pivi and M.A. Furman, Phys. Rev. ST Accel. Beams 6, 034201 (2003)
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Simulation on Electron-Proton instability

Bunch slicing

particle exchange between adjacent slices

take into account bunch size variation

Energy ramping

one RF acceleration node

dichotomic method)sin( rfrfVE φφ +=∆
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Benchmark
• Electron development simulation of the SNS

(b) ORBIT code (A. Shishlo et al, 
in Proc. of the EPAC’06, p2832)

(a) Simulation result (Red: bunch density, 
Blue: ploss=1×10−7, Pink: ploss=1 ×10−8)

Both of the results show maximum electron density at the bunch tail, and 
the electron density keep almost unchanged at the bunch head. 
The peak density for ploss=1 ×10−8 of (a) is a little higher.
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Simulation result for the CSNS/RCS
Simulation parameters

Electron line density for different 
proton lossParameters Symbol, unit Value

Inj./Ext. Energy Ein/Eext, GeV 0.08/1.6

Circumference C, m 248

Repetition freq. f0, Hz 25

Proton e− yield Yp, e−/p/loss 100

Betatron tune νx/νy 5.86/5.78

Bunch population Np,  ×1012 9.4

Harmonic number H 2

Beam pipe radii a/b, cm 10

Proton loss rate Ploss, turn−1 1.33×10 −4

Ionization e− Yi, e−/p/loss 1.31×10 −5
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Simulation result
Electron distribution in transverse section

(a) (b)

(c) (d)

(a) bunch head     (b) bunch center     (c) Electron density peak     (d) bunch tail
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E-P instability
• with RF acceleration

• without RF acceleration
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Simulation summary
Antechamber and TiN coating can reduce the ecloud
density dramatically.
It will be dangerous for single bunch instability in BEPCII 
when the ecloud density exceed 1.0×1012m-3.
The  coupled bunch instability may occur without ecloud
density restraining method.
The solenoid field is the most effective way to restrict the 
central density
The electrons may be trapped in the quadrupole and 
sextupole magnetic fields
The bunch lengthening due to electron cloud can be 
neglect in positron ring.
Electron cloud is not a serious problem in CSNS/RCS 
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Thank you for attention
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