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The Simulation of the Electron Cloud
Instability in BEPCII and CSNS/RCS
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(1) Electron cloud build up

» Physical model

» Simulation recipe

» Results for BEPCII

(2) Coupled bunch instability

» turn-by-turn method to calculate the multi-bunch instability
(3) Single bunch instability

» Head tail model for simulation

» Application for BEPCII

(4) Bunch lengthening caused by longitudinal wake field
of electron cloud

(5) Electron cloud instability in CSNS (China Spallation
Neutron Source )
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electron production

 The number of photons emitted from
synchrotron radiation of one positron during

one revolution
N, =2Z gy ~ 244

J3
 Photoelectron number
N,=YN Q+R+R + K +)=—12N =y,

basic yield Y, reflectivity R, quantum efficiency Y’
In the simulation, Y and R are input parameters
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e secondary electron emission

E —-0.35 E 1.35
5(E,6?):5max-1.11-(E ] -{1—exp[—2.3-(E j ]}/0039

Incident angle 8, maximal secondary yield 6,,,,
LIS electron incident energy responding to §__

With TIN coating in the chamber, |5 ~1.06
Without TIN coating, 5. ~18
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chamber structure in the simulation
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angle(rad)

99.5% photons will be produced in the antechamber
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“=2The beam field in the pipe of BEPCI|

* In central region of beam (10s,,100,) the beam field is
presented by Basseti-Erskine formula.

« Qut of the central region, the beam field is the solver of
Poission-Superfish.

00000

OOOOO —

lllllllllllllllllll

11111111
- 2 4
X (cm )

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS



v Present e- with macro-particles(104 e- for a bunch passing)

v" For every bunch, e- will be produced in the pipe and
antechamber

v" e- will be accelerated in the beam field

v" If e- hit the boundary of the pipe, secondary electron
will be produced.

v e- will move between the bunches in the field of the
ecloud space force and clearing electrode field

v" If there is a photon absorber in the antechamber, the
yield Y and reflectivity R will be much smaller.
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Main Parameters of BEPCII

Energy E(GeV) 1.89 Energy spread(104) o, 5.16
Circumference C(m) 237.53 Momentum compact o, 0.0235
Rev. frequency f, (MHz) 1.2621 Bunch length o,(cm) 1.5
Harmonic number h 396 Emittance €,/&€,(hm) 144/2.2
RF frequency f (MH2z) 499.8 B, /B,(m) 10/10
RF Voltage V {(MV) 1.5 o /o’ (Kum) 380/5.7
Energy loss/turn U,(keV) 121 \PAYVAYS 6.57/7.61/0.033
Damping time 25/25/12.5 |V N\ -11.9/-25.4
T,/ /T, (ms)

Total current/beam I(A) 0.91 Crossing angle ¢*(mrad) +11
SR Power P(kW) 110 Piwinski angle d(rad) 0.435
Bunch number N, 93 Bunch spacing S,(m) 2.4
Bunch current I,(mA) 0.8 Beam-beam parameter & 0.04/0.04
Particle number N, 4.84><10'9 | Luminosity(1033cm-s?) L, 1.0
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 Ecloud distribution in the pipe with or without
antechamber
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(the length of the antechamber is 5 times of its height L=5h)
Much of the electrons will be produced in the antechamber.
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« Ecloud density in different length of antechamber
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With the antechamber, the central density can
be reduced about 5 times.
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« Ecloud density with different secondary yield
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After SEY>1.6, ecloud density increased quickly.
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« Ecloud density with clearing electrodes in the pipe
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Much of the electrons will surround the electrodes.
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gummary of the ecloud density in different

restraining-methods

Restraining methods L/h PEY(Y) R SEY P (Mm3)
0]
None 0 0.1 80% 1.8 1.03><10%
0
Antechamber only 5 0.1 80% 1.8 2.22><10"?
0
TiN coating only 0 0.1 80% 1.06 1.85>10%
, : 80% 1
antechamber and TiN coating 5 0.1 1.06 3.26><10
10% 1
antechamber and photon absorber 5 0.02 1.8 7.18><10
antechamber, photon absorber and TiN 5 0.02 1.06 1.35><10
antechamber and clearing electrodes 5 0.1 80% 1.8 3.74>< 104"
antechamber, clearing electrodes and TiN 5 0.1 80% 1.06 3.33<10%

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS



= lectron cloud in different magnetic fields

* the force of the magnetic field
F,=el,xB

In dipole magnetic field region without considering
the fringe field, the magnetic field is only in vertical
direction.

B=B,

the electrons in the cloud are confined to move in tight vertical helices
whose radius is typically a few microns, and whose cyclotron frequency is
f=eB/22m, B=8000Gs, f=22.3GHz. The main consequence of the cyclotron
motion of the electrons is the severe suppression of the horizontal
component of the velocity of the electrons in the cloud.

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS
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 In quadrupole magnetic field, B can be expressed by

Bx = kly
B =k x k1 is gradient of the magnetic field
y M1

 In sextupole magnetic field, B can be expressed by
B =k,xy

By :%kZ(xz _yz)

In uniform solenoid field, the magnetic field is
only in longitudinal direction.

B=B;

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS
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Distribution of electron cloud in various kinds of magnetic field
left: chamber with antechamber; right: elliptic chamber)
(a: free field region; b: dipole field; c: quadrupole field; d: sextupole field; e: solenoid field Bz=10Gs )
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Central density (m-3)

Average density (m-3)
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The distribution of electron cloud in the quadupole and sextupole
magnetic fields can be explained with the magnetic mirror trap in the
plasma physics . The motion of the electron in the magnetic field can
be regarded as the superposition of the gyration motion around the
guiding center and the motion of the guiding center. The gyration
motion of the electron is a rapid rotation around the magnetic field line.
The motion of the guiding center is the average motion over the
gyration motion.

~._ - _  Field lines

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS
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In magnetic fields, the total energy of the electrons
will be a constant. That is expressed by

% V,,2+,uB=const ,u=%mVL2/B

u is the magnetic moment, V is the gyration motion of electrons
V), is the parallel or longitudinal velocity, which is parallel to the magnetic field

The magnetic field is a mirror field in the  Field lines , |
. I ; i
quadrupole and sextupole magnets, in m

which the magnetic field is weaker at the ' ; '
center and is stronger at both ends of M

the field lines. Thus, the same trap effect # By B,
|

will happen in quadrupole and sextupole
magnetic fields.

e —————————— e —— = S ——
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Coupled bunch instabllity

e The turn by turn method was used to track the
motion of 93 bunches In a train.

* In every circle the positions of 93 bunches will
be recorded.

e The oscillation can be transferred to the
spectrum by FFT.

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS



e The tracking results
Elcoud density 1.03><1013m-3

Jy
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1.35><101m-3

%10

amplitude

Growth time t =4.3ms
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= ale bunch instabil

v" e- are accumulated near the beam center during
bunch passage

v if there is a displacement between head and talil
particles, the tail experiences a ‘wake’ force

v effective short-range wake field in region of the
bunch length

v" Strong head tail theory can be use to estimate the
threshold of the blow up

v Positive chromaticity can restrain the bunch blow up

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS



v Concentrate e— cloud at one location of the ring
v Represent bunch and e- with macro-particles

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS



v compute electric force between bunch macro-
particles and ecloud macro-particles

v For bunch macro-particles, there is a change
In X’ and y’

v For ecloud macro-particles, their position (X,,Y,)
will change between two slices

v Between turns, beam macro-particles can
change longitudinal position Z due to synchro-
motion

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS



* The force between positron and electron

d*X . 2r ) &
dszp' +K(s)X =( ;j-z;lz(xp,i - Xe;)
=

dzxei &
o L=-2rc’ -;F(xp,i - Xq;)
F = — X2 o (s)

X ]

cos(2zv,,) psin(2zv, )

M(s) = _Sin(27_sz) cos(2zv_ )

M(s) Is transfer matrix of the ring

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS
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Simulation results

 Ecloud short-wake field
Head particles distance Ay =o,

the short wake expressed as: w(z,,z,) =

pr éj/;%j
Nbre Ayp,i
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,\2.50x106 - .‘A
E oo00l .
g L
-2.50x10°
I —=—1.0el2
-5.00x10°F ---=--- 2.0e12
3.0el12
-7.50x10° - ecloud region(10,10)
r dy=sigy
-1.00x10" . . :
-6 -4 -2

v%\

\.
L]

o 2 a4
Z(cm)
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«Strong head-tail instability threshold

p_ N \WOIE

16yv,

According the formula, the wake field threshold is
1.47>=10%m" corresponding to the ecloud density
9.2><10m-3. So there will be a single bunch instability
threshold in 9.2><10%ms,

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS



* Increase of bunch size in different ecloud density
(without considering the synchrotron motion )
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* Increase of bunch size in different ecloud density
(considering the synchrotron motion ,chromaticity (0,0) )
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o Effect of chromaticity on the beam size

Considering the Energy error, the tune will change
In different particles.
AP

Vx,y — VOx,Oy + gx,y (?)x,y

a)Oé:x,y AP
wx,y :§00x,0y + c i( J2 )x,de

The betatron and synchrotron motions are coupled

by chromaticity. Positive chromaticity can restrain
the bunch blow up.
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« Results for different chromaticity

—-— clhro;natEcityl (D,IO) —— ch'rorrllan'(:‘ity 62,25
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e Blow up in bunch train

According to the ecloud density, the bunches size change In
the train can be simulated.

1.2x10%

1.0x10" F
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Physical model for the longitudinal wake field of electron

During the passage of a bunch through the
electron cloud, the electrons are attracted by

the beam electric field and accumulate around
the positron beam. The positron bunches have

to lose some mount of their kinetic energy to

build the electron cloud during the interaction

with the electrons. The energy variation inside
the bunch can be seen as a longitudinal wake.
The bunch particles have an additional energy

spread due to the longitudinal wake from the

electron cloud. the longitudinal electric field of

the electron cloud is expressed as,
Ez - ZO J.a jrdr

Z,the impedance in free space and |, is

Ez(V/m)

transverse current density of electron cloud.

ICAP’09, San Francisco, California, Aug 31 - Sept 4

600

400

200

O x % O +

>

5.0x10%%m3
1.0x10"m
5.0x10Mm
1.0x10?m™
5.0x102m™
1.0x108m
5.0x10%m™2
1.0x10%m™3

-200

-400 -

1

-600
-0.08

-0.06

-0.04 -0.02 0 0.02 0.04 0.06

0.08

Institute of High Energy Physics, CAS



During the passage of a positron bunch the transverse distribution of the electron

cloud also has some significant change as displayed in the following figure.
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Electron cloud distribution during the passage time of a bunch
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A normal method to simulate the process of bunch lengthening is to track the
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Synchrotron Tune shift caused by electron cloud
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Source of the electrons

(1)Proton losses incident the vacuum chamber
(2)Residual gas ionization
(3)Secondary electron emission
Elastically back-scattered electrons
Re-diffused electrons

True-secondary electrons

ICAP’09, San Francisco, California, Aug 31 - Sept 4 Institute of High Energy Physics, CAS



Electron — proton instability in China Spallation Neutron Source

Electron multiplication mechanism in long proton bunches [1]

ﬁ. Tg\.ﬂ“ ""FV generated by proton
\u‘ﬂ losses dunng
punch passage e O

Secundawelectro/
\ baforabunch S s

passage

PSR pml:un beam i~ 64 m, InS0 mﬁjnﬂl]
SNE proton beam (~ 200 m, Ih 248 m Ringh

[11 M.T.F. Pivi and M.A. Furman, Phys. Rev. ST Accel. Beams 6, 034201 (2003)
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== Simulation on Electron-Proton instability

Bunch slicing
particle exchange between adjacent slices

take into account bunch size variation
Energy ramping

one RF acceleration node

AE =V, sin(¢+¢, ) «=m dichotomic method
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Benchmark

 Electron development simulation of the SNS
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(a) Simulation result (Red: bunch density, (b) ORBIT code (A. Shishlo et al,
Blue: p,,=1x10-7, Pink: p, =1 x10-%)  in Proc. of the EPAC’06, p2832)

Both of the results show maximum electron density at the bunch tail, and
the electron density keep almost unchanged at the bunch head.

The peak density for p,,.=1 x10-8 of (a) is a little higher.
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’Simulation result for the CSNS/RCS

Simulation parameters

Electron line density for different

Parameters Symbol, unit | Value proton loss

Inj./Ext. Energy | E, /E,,, GeV | 0.08/1.6

Circumference C,m 248 10

Bunch population | N,, x10%2 9.4 S -

Harmonic number | H 2 ?

Repetition freq. Jo Hz 25 % y

Betatron tune wlv, 5.86/5.78 E a — ploss=1.33x10"" |
Beam pipe radii | a/b, cm 10 § ol _IO|05321-33><10:4
Proton loss rate | P, turn-t | 1.33x104 —ploss=1.33x10"
Proton e-yield | Y, e/p/loss | 100 0 500 1008 nse%SOO 2000 2500
lonization e~ Y, e/plloss | 1.31x10
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Simulation result

Electron distribution in transverse section
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(a) bunch head (b) bunch center (c) Electron density peak (d) bunch tail
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E-P Instability

e with RF acceleration
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v Antechamber and TiN coating can reduce the ecloud
density dramatically.

v It will be dangerous for single bunch instability in BEPCII
when the ecloud density exceed 1.0><101°m-3,

v The coupled bunch instability may occur without ecloud
density restraining method.

v The solenoid field is the most effective way to restrict the
central density

v The electrons may be trapped in the quadrupole and
sextupole magnetic fields

v The bunch lengthening due to electron cloud can be
neglect in positron ring.

v Electron cloud is not a serious problem in CSNS/RCS
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Thank you for attention
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