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1D crystal 
(String) 

2D crystal 
(Zigzag) 

3D crystal 
(Shell) 



String crystals (40Ca+) 

Multi-shell crystal 

Paul ion trap 



  The general relativistic formalism leads to the linearized Hamiltonian 

  In our molecular dynamics code (named “CRYSTAL”), it is possible to 
include the following lattice elements as well: 

  The integration is performed in a symplectic manner. 
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Dipole Quadrupole Coulomb potential 

・Solenoid 
・Nonlinear magnets 
・Dispersion-free bend 
・RF cavities (regular cavities & coupling cavities) 
・Wien filter 



  Periodic Boundary Condition: slice the beam in the longitudinal direction and 
assume that all supercells have an identical particle distribution in every 
integration step. 

  Then, the scalar potential is evaluated from 
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Crystalline Structure H-S Theory MD code “CRYSTAL” 

string 0 <    < 0.709 0 <    < 0.7 

zigzag 0.709 <    < 0.964 0.7 <    < 1.0 

1-shell 0.964 <    < 3.10 1.0 <    < 3.1 

1-shell + string 3.10 <    < 5.7 3.1 <    < 5.7 

2-shell 5.7 <    < 9.5 5.7 <    < 9.5 

2-shell + string 9.5 <    < 13 9.5 <    < 13 

3-shell 13 <    < 19 

3-shell + string      = 19.9 19 <    < 26 

4-shell      = 26.6 26 <    < 31 
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Uniform Focusing Model : 
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Compare MD results with the Hasse-Schiffer theory, “Ann. Phys. (N.Y.) 203, 419 (1990)”. 



  Linear friction 

  Tapered cooling 

  Laser cooling  
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Δpq ≡ pq
out − pq

in = − f ⋅ pq
in (q = x, y, z)

    

� 

Δpz = − f ⋅ ( pz
in −Cxz x

in)

In the ideal equilibrium (              ),      
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Δpq = 0     
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pq = 0.

In the ideal equilibrium (              ),      
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Δpz = 0     

� 

pz = Cxz x.

Cxz : tapering factor 
        (dependent on the lattice design) 

      

� 

F± = ±
1
2
kLΓ

SL

1 + SL + (2δ ± /Γ)2

This frictional force operates along the direction of laser propagation. 

Saturation parameter : 

Laser detuning : 
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SL = S0 exp[−2(x2 + y2) / w2 ]
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δ ± ≈ω ±γ [1 β(1 + pz / γ )]−ω 0



  Doppler limit 

The equilibrium temperature reachable 
with the Doppler laser cooling is limited 
by the random nature of photon emission 
and absorption.    

Test Result (Monte-Carlo simulation) 
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( 1D case) 





  Any cooler storage ring aiming at beam crystallization has to 
satisfy the following conditions: 

  We need a sufficiently strong 3D cooling force to overcome 
heating from IBS. 

  The cooling force has to be “tapered” to compensate the 
dispersive heating mechanism. 
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γ < γ T (γ T : transition energy)
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σ 0 < 90 [deg.] (σ 0 : bare betatron phase advance per lattice period)





PIC simulation Vlasov prediction 

Cooling is interrupted 
by collective resonance. 

Linear stopband 

TARN II (      = 108 deg. )   

� 

σ 0



  In a crystalline ground state, all 
particles have an identical revolution 
frequency. 

  Because of a closed circular orbit, 
particle “A” must travel slightly faster 
than particle “B”. 

  Such a effect never occurs in plasma 
traps where Coulomb crystallization 
has been already achieved. 
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This term causes a serious trouble ! 

Tapered cooling is necessary ! 









  In the 1990’s, continuous efforts had been made at the Max Planck 
Institute, Heidelberg (TSR group) and Aarhus University (ASTRID group) 
to achieve beam crystallization.  

  Although both groups succeeded in cooling heavy-ion beams with axial 
lasers, no crystalline states were reached. 

ASTRID 

Betatron phase advance
 Too large ✖ 

Beam energy
 OK


3D cooling efficiency

Tapering


Too low

NO


✖ 

✖ 

 

Lattice requirements 

Cooling requirements 



Laser 

Circumference 22.557 m 

Superperiodicity 6 

Ion Species 24Mg+,   p 

Kinetic Energy ~ 40 keV (Mg),  7 MeV (p) 

Transition Gamma 1.67 

Bending Curvature 1.05 m 

Small Laser-equipped Storage Ring 



  When three degrees of freedom are independent of each other (             ), nothing 
takes place in x and y directions even if we strongly cool the z direction. 

  Switch on the coupling potential to correlate the harmonic motions in the three 
directions. Linear coupling potentials should be employed for this purpose: 

  Move the operating point onto coupling resonance: 
ν x −ν y = integer, ν x −ν z = integer
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Betatron oscillation Synchrotron oscillation 
(laser cooled) 

Controllable 
coupling potential 



  Betatron-betatron coupling 

  Synchro-betatron coupling 

Skew quadrupole magnets;  Solenoid magnets, etc. 

Regular RF cavities placed at dispersive positions; 
Coupling RF cavities;  Wien filters, etc. 

Rectangular cavity operating 
in a deflective mode (TM210). 
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A = 0, 0, gc ⋅ x ⋅sinωt( )
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The longitudinal linear friction can naturally be 
tapered by a Wien filter if momentum dispersion 
is finite in the cooling section.  
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(c)
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0

V0 2

V0 2

Direct vertical-longitudinal coupling 
can readily be generated by rotating 
this cavity around the axis by 90 deg. 



  A regular RF cavity sitting in a dispersive position is 
employed to activate longitudinal-horizontal coupling. 

  A weak solenoid field is turned on to achieve 
horizontal-vertical coupling. 

  The fractional parts of the two betatron tunes are set 
close to each other (in this example, 0.07). 

  Switch on the RF cavity and a cooling laser. 

Ion Species 24Mg+ 

Kinetic Energy 35 keV 

Bare Betatron Tunes ( 2.067,  1.073 ) 

RF Harmonic Number 100 

Axial Length of Solenoid 0.8 m 

Laser Saturation Parameter 1.0 

Minimum Laser Spot Size 5 mm 

Laser wavelength 280 nm 

3D laser cooling mode 

The ideal synchrotron tune for 3D laser cooling 
in the above operating mode is 0.07. 



Ideal case 



Ideal case 
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n : electric-field index 
          : dipole electric-field strength      
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The cross term disappears when 
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  A coupling RF cavity operating in a deflective mode is introduced to extend the longitudinal 
cooling force to the horizontal direction. (Note that regular RF cavities cannot generate the 
synchro-betatron coupling potential in the dispersion-free mode.) 

  As long as an “un-tapered” longitudinal cooling force is employed, it is generally impossible 
in a dispersive storage ring to reach such a 3D ordered state as shown here. 
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Normalized rms emittance :   

� 

~ 4× 10−12 m ⋅ rad

Lattice S-LSR 

Ion Species 24Mg+ 

Kinetic Energy 35 keV 

Bare Betatron Tunes ( 2.07,  2.07 ) 

Bare Synchrotron Tune 0.07 

RF Harmonic Number 100 

Coupling RF Field 200 V/m 

Axial Length of Solenoid 0.8 m 

Solenoid Field Strength 40 G 

Magnetic Dipole Field 0.252 T 

Electric Dipole Field 66.7 kV/m 

Longitudinal Cooling Linear Friction (untapered) 

Transverse Cooling None 



  A test storage ring with 10-fold symmetry has been 
assumed here. 

  All lattice periods contain a single regular RF cavity. 
  It is possible to form large multi-shell crystals without 

the tapered force when the ring is operated in the 
dispersion-free mode. 

  To improve the stability of crystalline structures, all ten 
cavities must be excited which minimizes the lattice 
symmetry breakdown. Normalized rms emittance :   
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< 1× 10−13 m ⋅ rad

Lattice Test Ring (FDBFD) 

Superperiodicity 10 

Circumference 18.5 m 

Transition Gamma       (dispersion-free mode) 

Ion Species 24Mg+ 

Kinetic Energy 35 keV 

Bare Betatron Tunes ( 1.46,  2.46 ) 

Bare Synchrotron Tune 0.23 

Number of Regular Cavities 1  or  10 

Longitudinal Cooling Linear Friction (untapered) 

Transverse Cooling Linear Friction 
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  An MD simulation code (CRYSTAL) is developed to perform systematic 
studies of ultra-cold and crystalline ion beams. 

  To reach a crystalline ground state, we need the following: 

  1D (string) and 2D (zigzag) crystalline beams can probably be generated 
even if the above three conditions are weakly broken. In contrast, the 
production of a large 3D (shell) crystal requires all conditions to be 
satisfied rather strictly. 

  By cleverly combining state-of-the-art accelerator technologies, we can 
make an ultra-cold ion beam whose normalized rms emittance should be 
less than the order of           m or even lower. 

1.  High-periodicity ring ( low betatron tune per period ) 
2.  Compensation for dispersive heating ( tapered cooling ; dispersion-free bend ) 
3.  Strong 3D cooling ( longitudinal laser cooling + resonant coupling method ) 

  

� 

10−10


