Modeling of Ultra-cold and Crystalline Ion Beams

H. Okamoto (Hiroshima Univ.) Y.Yuri (JAEA), H. Sugimoto (Hiroshima Univ.), M. Ikegami (Shimadzu Co.), J.Wei (Tsinghua Univ.)

Regular Beam

If strongly cooled ...

Crystalline Beams

Coulomb Crystals in an Ion Trap

Multi-shell crystal

Beam-frame Hamiltonian

• The general relativistic formalism leads to the linearized Hamiltonian

- In our molecular dynamics code (named "CRYSTAL"), it is possible to include the following lattice elements as well:
 - Solenoid
 - Nonlinear magnets
 - Dispersion-free bend
 - RF cavities (regular cavities & coupling cavities)
 - \cdot Wien filter
- The integration is performed in a symplectic manner.

Coulomb Potential Evaluation

- Periodic Boundary Condition: slice the beam in the longitudinal direction and assume that all *supercells* have an identical particle distribution in every integration step.
- Then, the scalar potential is evaluated from

Comparison with Theory

Uniform Focusing Model: $H = \frac{p_x^2 + p_y^2 + p_z^2}{2} + \frac{1}{2}\kappa^2(x^2 + y^2) + \frac{r_p}{\beta^2\gamma^2}\phi$

Compare MD results with the Hasse-Schiffer theory, "Ann. Phys. (N.Y.) 203, 419 (1990)".

Crystalline Structure	H-S Theory	MD code "CRYSTAL"
string	$0 < \lambda < 0.709$	$0 < \lambda < 0.7$
zigzag	$0.709 < \lambda < 0.964$	$0.7 < \lambda < 1.0$
l-shell	$0.964 < \lambda < 3.10$	$1.0 < \lambda < 3.1$
l-shell + string	$3.10 < \lambda < 5.7$	$3.1 < \lambda < 5.7$
2-shell	$5.7 < \lambda < 9.5$	$5.7 < \lambda < 9.5$
2-shell + string	$9.5 < \lambda < 13$	$9.5 < \lambda < 13$
3-shell		$13 < \lambda < 19$
3-shell + string	$\lambda = 19.9$	$19 < \lambda < 26$
4-shell	$\lambda = 26.6$	$26 < \lambda < 31$

Cooling Models

• Linear friction

$$\Delta p_q \equiv p_q^{out} - p_q^{in} = -f \cdot p_q^{in} \quad (q = x, y, z)$$

In the ideal equilibrium ($\Delta p_q = 0$), $p_q = 0$.

Tapered cooling

$$\Delta p_z = -f \cdot (p_z^{in} - C_{xz} x^{in})$$

 C_{xz} : tapering factor (dependent on the lattice design)

In the ideal equilibrium ($\Delta p_z = 0$), $p_z = C_{xz}x$.

Laser cooling

$$F_{\pm} = \pm \frac{1}{2} \hbar k_{L} \Gamma \frac{S_{L}}{1 + S_{L} + (2\delta_{\pm} / \Gamma)^{2}}$$

Saturation parameter: $S_L = S_0 \exp[-2(x^2 + y^2)/w^2]$

Laser detuning :
$$\delta_{\pm} \approx \omega_{\pm} \gamma [1 \mp \beta (1 + p_z / \gamma)] - \omega_0$$

This frictional force operates along the direction of laser propagation.

Doppler Laser Cooling

• Doppler limit

The equilibrium temperature reachable with the Doppler laser cooling is limited by the random nature of photon emission and absorption.

$$\frac{k_B T_D}{2} = \frac{\hbar\Gamma}{4}$$
 (1D case)

 10^{-2}

Test Result (Monte-Carlo simulation)

Conditions for Beam Crystallization

Necessary Conditions

 Any cooler storage ring aiming at beam crystallization has to satisfy the following conditions:

 $\gamma < \gamma_T$ (γ_T : transition energy)

 $\sigma_0 < 90$ [deg.] (σ_0 : bare betatron phase advance per lattice period)

- We need a sufficiently strong 3D cooling force to overcome heating from IBS.
- The cooling force has to be "tapered" to compensate the dispersive heating mechanism.

Collisional Heating

Dispersive Heating

- In a crystalline ground state, all particles have an identical revolution frequency.
- Because of a closed circular orbit, particle "A" must travel slightly faster than particle "B".
- Such a effect never occurs in plasma traps where Coulomb crystallization has been already achieved.

Dispersive Motion

Phase Space

Toward Ultra-cold States of Beams

Past attempts

- In the 1990's, continuous efforts had been made at the Max Planck Institute, Heidelberg (TSR group) and Aarhus University (ASTRID group) to achieve beam crystallization.
- Although both groups succeeded in cooling heavy-ion beams with axial lasers, no crystalline states were reached.

- When three degrees of freedom are independent of each other ($\psi_c = 0$), nothing takes place in x and y directions even if we strongly cool the z direction.
- Switch on the coupling potential to correlate the harmonic motions in the three directions. Linear coupling potentials should be employed for this purpose:

$$\boldsymbol{\psi}_{c} = \boldsymbol{g}_{1}\boldsymbol{x}\boldsymbol{y}\cdot\boldsymbol{\delta}_{p}(\boldsymbol{s}-\boldsymbol{s}_{1}) + \boldsymbol{g}_{2}\boldsymbol{x}\boldsymbol{z}\cdot\boldsymbol{\delta}_{p}(\boldsymbol{s}-\boldsymbol{s}_{2})$$

Move the operating point onto coupling resonance:

 $v_x - v_y$ = integer, $v_x - v_z$ = integer

Coupling Sources

Betatron-betatron coupling

Skew quadrupole magnets; Solenoid magnets, etc.

Synchro-betatron coupling

Regular RF cavities placed at dispersive positions; Coupling RF cavities; Wien filters, etc.

Rectangular cavity operating in a deflective mode (TM_{210}) .

 $\mathbf{A} = \begin{pmatrix} 0, & 0, & g_c \cdot x \cdot \sin \omega t \end{pmatrix}$

Direct vertical-longitudinal coupling can readily be generated by rotating this cavity around the axis by 90 deg.

$$H_{\text{Wien}} = \frac{p_x^2 + p_y^2 + p_z^2}{2} + \frac{1}{2}\mu_x^2 x^2 - \mu_x x p_z$$

The longitudinal linear friction can naturally be tapered by a Wien filter if momentum dispersion is finite in the cooling section.

Laser Cooling @ S-LSR

3D laser cooling mode

Ion Species	$^{24}Mg^+$
Kinetic Energy	35 keV
Bare Betatron Tunes	(2.067, 1.073)
RF Harmonic Number	100
Axial Length of Solenoid	0.8 m
Laser Saturation Parameter	1.0
Minimum Laser Spot Size	5 mm
Laser wavelength	280 nm

- A regular RF cavity sitting in a dispersive position is employed to activate longitudinal-horizontal coupling.
- A weak solenoid field is turned on to achieve horizontal-vertical coupling.
- The fractional parts of the two betatron tunes are set close to each other (in this example, 0.07).
- Switch on the RF cavity and a cooling laser.

The ideal synchrotron tune for 3D laser cooling in the above operating mode is 0.07.

Final State

Final State (cont.)

Dispersion-free Bending Element

MD Example (Dispersion-free Mode)

- A coupling RF cavity operating in a deflective mode is introduced to extend the longitudinal cooling force to the horizontal direction. (Note that regular RF cavities cannot generate the synchro-betatron coupling potential in the dispersion-free mode.)
- As long as an "un-tapered" longitudinal cooling force is employed, it is generally impossible in a *dispersive* storage ring to reach such a 3D ordered state as shown here.

Another Example

Lattice	Test Ring (FDBFD)	
Superperiodicity	10	
Circumference	18.5 m	
Transition Gamma	∞ (dispersion-free mode)	
Ion Species	$^{24}Mg^+$	
Kinetic Energy	35 keV	
Bare Betatron Tunes	(1.46, 2.46)	
Bare Synchrotron Tune	0.23	
Number of Regular Cavities	1 or 10	
Longitudinal Cooling	Linear Friction (untapered)	
Transverse Cooling	Linear Friction	

- A test storage ring with 10-fold symmetry has been assumed here.
- All lattice periods contain a single regular RF cavity.
- It is possible to form large multi-shell crystals without the tapered force when the ring is operated in the dispersion-free mode.
- To improve the stability of crystalline structures, all ten cavities must be excited which minimizes the lattice symmetry breakdown.

Conclusions

- An MD simulation code (CRYSTAL) is developed to perform systematic studies of ultra-cold and crystalline ion beams.
- To reach a crystalline ground state, we need the following:
 - 1. High-periodicity ring (low betatron tune per period)
 - 2. Compensation for dispersive heating (tapered cooling; dispersion-free bend)
 - 3. Strong 3D cooling (longitudinal laser cooling + resonant coupling method)
- ID (string) and 2D (zigzag) crystalline beams can probably be generated even if the above three conditions are *weakly* broken. In contrast, the production of a large 3D (shell) crystal requires all conditions to be satisfied rather strictly.
- By cleverly combining state-of-the-art accelerator technologies, we can make an ultra-cold ion beam whose normalized rms emittance should be less than the order of 10^{-10} m or even lower.