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String crystals (40Ca+) 

Multi-shell crystal 

Paul ion trap 



  The general relativistic formalism leads to the linearized Hamiltonian 

  In our molecular dynamics code (named “CRYSTAL”), it is possible to 
include the following lattice elements as well: 

  The integration is performed in a symplectic manner. 
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Dipole Quadrupole Coulomb potential 

・Solenoid 
・Nonlinear magnets 
・Dispersion-free bend 
・RF cavities (regular cavities & coupling cavities) 
・Wien filter 



  Periodic Boundary Condition: slice the beam in the longitudinal direction and 
assume that all supercells have an identical particle distribution in every 
integration step. 

  Then, the scalar potential is evaluated from 
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Ewald integral 



Crystalline Structure H-S Theory MD code “CRYSTAL” 

string 0 <    < 0.709 0 <    < 0.7 

zigzag 0.709 <    < 0.964 0.7 <    < 1.0 

1-shell 0.964 <    < 3.10 1.0 <    < 3.1 

1-shell + string 3.10 <    < 5.7 3.1 <    < 5.7 

2-shell 5.7 <    < 9.5 5.7 <    < 9.5 

2-shell + string 9.5 <    < 13 9.5 <    < 13 

3-shell 13 <    < 19 

3-shell + string      = 19.9 19 <    < 26 

4-shell      = 26.6 26 <    < 31 
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Uniform Focusing Model : 
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Compare MD results with the Hasse-Schiffer theory, “Ann. Phys. (N.Y.) 203, 419 (1990)”. 



  Linear friction 

  Tapered cooling 

  Laser cooling  
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Δpq ≡ pq
out − pq

in = − f ⋅ pq
in (q = x, y, z)
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Δpz = − f ⋅ ( pz
in −Cxz x

in)

In the ideal equilibrium (              ),      
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Δpq = 0     

� 

pq = 0.

In the ideal equilibrium (              ),      
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Δpz = 0     
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pz = Cxz x.

Cxz : tapering factor 
        (dependent on the lattice design) 
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F± = ±
1
2
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SL

1 + SL + (2δ ± /Γ)2

This frictional force operates along the direction of laser propagation. 

Saturation parameter : 

Laser detuning : 
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SL = S0 exp[−2(x2 + y2) / w2 ]
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δ ± ≈ω ±γ [1 β(1 + pz / γ )]−ω 0



  Doppler limit 

The equilibrium temperature reachable 
with the Doppler laser cooling is limited 
by the random nature of photon emission 
and absorption.    

Test Result (Monte-Carlo simulation) 
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( 1D case) 





  Any cooler storage ring aiming at beam crystallization has to 
satisfy the following conditions: 

  We need a sufficiently strong 3D cooling force to overcome 
heating from IBS. 

  The cooling force has to be “tapered” to compensate the 
dispersive heating mechanism. 
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γ < γ T (γ T : transition energy)
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σ 0 < 90 [deg.] (σ 0 : bare betatron phase advance per lattice period)





PIC simulation Vlasov prediction 

Cooling is interrupted 
by collective resonance. 

Linear stopband 

TARN II (      = 108 deg. )   

� 

σ 0



  In a crystalline ground state, all 
particles have an identical revolution 
frequency. 

  Because of a closed circular orbit, 
particle “A” must travel slightly faster 
than particle “B”. 

  Such a effect never occurs in plasma 
traps where Coulomb crystallization 
has been already achieved. 
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This term causes a serious trouble ! 

Tapered cooling is necessary ! 









  In the 1990’s, continuous efforts had been made at the Max Planck 
Institute, Heidelberg (TSR group) and Aarhus University (ASTRID group) 
to achieve beam crystallization.  

  Although both groups succeeded in cooling heavy-ion beams with axial 
lasers, no crystalline states were reached. 

ASTRID 

Betatron phase advance Too large ✖ 

Beam energy OK

3D cooling efficiency
Tapering

Too low
NO

✖ 

✖ 

 

Lattice requirements 

Cooling requirements 



Laser 

Circumference 22.557 m 

Superperiodicity 6 

Ion Species 24Mg+,   p 

Kinetic Energy ~ 40 keV (Mg),  7 MeV (p) 

Transition Gamma 1.67 

Bending Curvature 1.05 m 

Small Laser-equipped Storage Ring 



  When three degrees of freedom are independent of each other (             ), nothing 
takes place in x and y directions even if we strongly cool the z direction. 

  Switch on the coupling potential to correlate the harmonic motions in the three 
directions. Linear coupling potentials should be employed for this purpose: 

  Move the operating point onto coupling resonance: 
ν x −ν y = integer, ν x −ν z = integer
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Betatron oscillation Synchrotron oscillation 
(laser cooled) 

Controllable 
coupling potential 



  Betatron-betatron coupling 

  Synchro-betatron coupling 

Skew quadrupole magnets;  Solenoid magnets, etc. 

Regular RF cavities placed at dispersive positions; 
Coupling RF cavities;  Wien filters, etc. 

Rectangular cavity operating 
in a deflective mode (TM210). 
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The longitudinal linear friction can naturally be 
tapered by a Wien filter if momentum dispersion 
is finite in the cooling section.  
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Direct vertical-longitudinal coupling 
can readily be generated by rotating 
this cavity around the axis by 90 deg. 



  A regular RF cavity sitting in a dispersive position is 
employed to activate longitudinal-horizontal coupling. 

  A weak solenoid field is turned on to achieve 
horizontal-vertical coupling. 

  The fractional parts of the two betatron tunes are set 
close to each other (in this example, 0.07). 

  Switch on the RF cavity and a cooling laser. 

Ion Species 24Mg+ 

Kinetic Energy 35 keV 

Bare Betatron Tunes ( 2.067,  1.073 ) 

RF Harmonic Number 100 

Axial Length of Solenoid 0.8 m 

Laser Saturation Parameter 1.0 

Minimum Laser Spot Size 5 mm 

Laser wavelength 280 nm 

3D laser cooling mode 

The ideal synchrotron tune for 3D laser cooling 
in the above operating mode is 0.07. 



Ideal case 



Ideal case 
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n : electric-field index 
          : dipole electric-field strength      
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The cross term disappears when 
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  A coupling RF cavity operating in a deflective mode is introduced to extend the longitudinal 
cooling force to the horizontal direction. (Note that regular RF cavities cannot generate the 
synchro-betatron coupling potential in the dispersion-free mode.) 

  As long as an “un-tapered” longitudinal cooling force is employed, it is generally impossible 
in a dispersive storage ring to reach such a 3D ordered state as shown here. 
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Normalized rms emittance :   

� 

~ 4× 10−12 m ⋅ rad

Lattice S-LSR 

Ion Species 24Mg+ 

Kinetic Energy 35 keV 

Bare Betatron Tunes ( 2.07,  2.07 ) 

Bare Synchrotron Tune 0.07 

RF Harmonic Number 100 

Coupling RF Field 200 V/m 

Axial Length of Solenoid 0.8 m 

Solenoid Field Strength 40 G 

Magnetic Dipole Field 0.252 T 

Electric Dipole Field 66.7 kV/m 

Longitudinal Cooling Linear Friction (untapered) 

Transverse Cooling None 



  A test storage ring with 10-fold symmetry has been 
assumed here. 

  All lattice periods contain a single regular RF cavity. 
  It is possible to form large multi-shell crystals without 

the tapered force when the ring is operated in the 
dispersion-free mode. 

  To improve the stability of crystalline structures, all ten 
cavities must be excited which minimizes the lattice 
symmetry breakdown. Normalized rms emittance :   
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< 1× 10−13 m ⋅ rad

Lattice Test Ring (FDBFD) 

Superperiodicity 10 

Circumference 18.5 m 

Transition Gamma       (dispersion-free mode) 

Ion Species 24Mg+ 

Kinetic Energy 35 keV 

Bare Betatron Tunes ( 1.46,  2.46 ) 

Bare Synchrotron Tune 0.23 

Number of Regular Cavities 1  or  10 

Longitudinal Cooling Linear Friction (untapered) 

Transverse Cooling Linear Friction 
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(a) 10 cavities
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  An MD simulation code (CRYSTAL) is developed to perform systematic 
studies of ultra-cold and crystalline ion beams. 

  To reach a crystalline ground state, we need the following: 

  1D (string) and 2D (zigzag) crystalline beams can probably be generated 
even if the above three conditions are weakly broken. In contrast, the 
production of a large 3D (shell) crystal requires all conditions to be 
satisfied rather strictly. 

  By cleverly combining state-of-the-art accelerator technologies, we can 
make an ultra-cold ion beam whose normalized rms emittance should be 
less than the order of           m or even lower. 

1.  High-periodicity ring ( low betatron tune per period ) 
2.  Compensation for dispersive heating ( tapered cooling ; dispersion-free bend ) 
3.  Strong 3D cooling ( longitudinal laser cooling + resonant coupling method ) 
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