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1. Motivation for fast, large-period maps

2. A challenging example: electron ring with strong nonlinearity
near dynamic aperture. Look for map valid at the short term
dynamic aperture.

3. Failure of Taylor map in this example

4. Success of interpolative map (non-symplectic) when Taylor
map fails

5. Two routes to interpolative symplectic maps:

a) Make generator from a line integral of its gradient on a mesh
b) Make generator from action integral on a mesh or quasi-random

sequence

6. Numerical implementation of (a) in 2D phase space

7. Technical problems at large amplitude and how to deal with
them

8. Proposal for further progress; meshless interpolation;
quasi-random sequences.
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MOTIVATION FOR FAST, LARGE-PERIOD
SYMPLECTIC MAPS

Possible applications:

I Fast full-turn map to study long-term stability in hadron rings,
say 107 − 108 turns in LHC.

I Fast maps to aid in studies of beam-beam interaction:

a) Nonlinear full-turn lattice map for electron ring, used to study
lifetime with b-b interaction (Y. Cai)

b) Map to describe parasitic interactions near crossing point (T.
Sen)

I To summarize evolution in systems where fields are
complicated and integration in small time steps is difficult and
costly. Examples:

a) Very long wigglers for damping in advanced electron rings
b) Insertion devices, helical or planar undulators, end fields
c) FFAG accelerator, wavelength shifter for SR (G. Wüstefeld)
d) Cases with important fringe fields, solenoidal field imposed on

quadrupoles, etc.
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COMPUTATIONAL FRAMEWORK

LEGO - A Class Library for Accelerator Design and Simulation
(Y. Cai, SLAC-PUB-8011)

Single particle dynamics defined by Hamiltonian in the local frame
of each lattice component.

LEGO is called for 1-turn tracking by a Fortran subroutine.

Interpolative map constructed from 1-turn tracking data alone.

CPU times quoted for a single 2.66 GHz processor.



EXAMPLE FOR THIS TALK
Electron ring, part of a study for ILC damping ring (Y. Cai,
SLAC-PUB-11084 (2005)).

Racetrack form, 64 cells, primarily 90-degree FODO cells,
E = 5(GeV ), L = 960m, εx = 47nm. A scaling to more cells gives
lower emittance, and a candidate for ILC damping ring.

Figure: Phase plot from element-by-element tracking, 1000 turns,
νx = 16.23. Short term dynamic aperture just beyond outer curve.



FAILURE OF TAYLOR MAP IN THIS EXAMPLE
Spurious stochasticity, islands seen only vaguely.

Figure: Phase plot from 10th order Taylor Map, 1000 turns, νx = 16.23.

Does not help to go to 13th order, nor to make it symplectic by a
generating function. Symplectified map not stochastic, and has
islands, but at the wrong place.



SUCCESS OF SPLINE MAP IN THIS EXAMPLE
Tensor product cubic B-spline interpolation of 1-turn tracking data
on 50× 50 mesh.

(q, p) = M(q0, p0) =
∑
i ,j

(m1,m2)ijB
(1)
i (q0)B

(2)
j (p0) . (1)

Agrees with tracking to graphical accuracy. Uses more
large-amplitude information than is encoded in Taylor coefficients
(i.e., in information at the origin).

Figure: Phase plot from Spline Map, 1000 turns, νx = 16.23.



PLOT OF B-SPLINE BASIS

B-splines with given knots form a basis for all splines with those
knots. At any point only k = (degree +1) B-splines are non-zero.

Figure: Cubic B-spline basis, 11 point interpolation, 8 distinct knots.



NATURAL DOMAIN OF THE MAP
The tensor product B-spline requires data on a rectangular grid,
but the stable domain of the map is hardly rectangular. To make a
spline we padded the data array by rough continuation of edge
values. A more local interpolation instead of a spline tensor
product is needed, and is under study.

Figure: Initial conditions for which |q| < 0.075m after 40 turns.



SPLINE MAP AT 105 TURNS
Spline map fairly good to 105 turns, in spite of substantial
violation of symplecticity.

| detM− 1| ∼ 10−3 at largest amplitudes, M =Jacobian matrix.

CPU time for 105 turns: 0.14 seconds. Scaled up to 6D: 38
seconds.

Figure: Phase plot from Spline Map, 105 turns, νx = 16.23.



LONG-TERM BEHAVIOR OF NON-SYMPLECTIC MAP:
SPLINE MAP AT 106 TURNS

Typical behavior of non-symplectic map after many iterations:
I Fuzziness instead of sharply defined invariant curves.
I Spurious damping (seen less at islands than for invariant curve

circling origin).

Figure: Spline Map at 106 turns, two initial conditions, νx = 16.23.



CANONICAL TRANSFORM AND SYMPLECTIC
CONDITION

Change of phase space variable z0 = (q0, p0) 7−→ z = (q, p).
Define map M, Jacobian dM, matrix J:

z = M(z0, t) , dM =

(
∂q/∂q0 ∂q/∂p0

∂p/∂q0 ∂p/∂p0

)
, J =

(
0 −1
1 0

)
.

Two ways to characterize a Canonical Transform M:

1. Preserves the form of Hamiltonian equations of motion

2. Satisfies Symplectic Condition: (dM)J(dM)T = J, all z0. For
2D phase space, det(dM) = 1

In particular, time evolution map is canonical. For 2D, note that
vector field of Hamilton’s equations ż = J∂H/∂z is divergenceless,
hence evolution is volume preserving, hence det(dM) = 1.



ENFORCING SYMPLECTIC CONDITION BY
GENERATING FUNCTION

Explicit time evolution map, fixed period T :

q = Q(q0, p0) , p = P(q0, p0) . (2)

Implicit map, defined by Generating Function F (q, q0):

p = F1(q, q0) , p0 = −F2(q, q0) , (3)

where det F12(q, q0) 6= 0 in region of interest. Solve (3b) for
q = Q(q0, p0), substitute in (3a) to get p = P(q0, p0) as well.

If F ∈ C 2 then (Q,P) : z0 7→ z is symplectic!

Goal of this work: Determine F so that (Q,P) = (Q,P) = time
evolution map.



EARLIER WORK ON INTERPOLATED MAPS

Make symplectic map by relating a Mixed Variable Generating
Function for period T to tracking information on period T .

I R.W., J.S. Berg, É. Forest, R.D. Ruth (1989 - 1997). Used
polar coordinates; excluded small region of phase space due to
a coordinate singularity. Fourier-spline representation of
generator. Application to early LHC lattice. 107 turns (4D
with energy modulation) in 3.6 hours (1995). Could study
broad resonances at large amplitudes.

I R.W., J.A. Ellison (1997-1999) Proved convergence of
Fourier-spline series. Proposed convergent method in
Cartesian coordinates using splines, first implemented
June-August, 2009. Similar to idea of Berz (1991) using
Taylor series.
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EARLIER WORK ON INTERPOLATED MAPS - CONT’D

I G. Wüstefeld, P. Meads, H. Lustfeld, M. Scheer at BESSY
(1984-1992, Scheer’s Ph.D. (2008)) Fitted Taylor series for
generator to tracking data for FFAG, wavelength shifter for
SR.

COMPETING NON-INTERPOLATIVE APPROACHES TO
SYMPLECTIC MAPS:

I Make a mixed variable generator as a Taylor series (Dragt,
Douglas, Yan, Berz, et al.)

I Irwin-Abell-Dragt “Jolt Factorization” (1991-2003) Lumped
momentum kicks interleaved with linear symplectic maps.

I Both of these methods start with the Taylor map, and may not
succeed if Taylor coefficients contain insufficient information.
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APPLICATION OF MAPS TO COMPLEX FIELDS -
EXAMPLE

Figure: Wavelength shifter for SR, studied by symplectic map
(Wüstefeld, Scheer)



CONSTRUCTION OF GENERATOR FROM TRACKING
DATA - I

Map from element-by-element tracking z = M(z0) written as

(q, p) = (Q(q0, p0),P(q0, p0)) . (4)

The gradient of the generator F (q, q0), when it exists, gives the
same map in “mixed variables” (Hamilton-Jacobi theory):

(p, p0) = (Fq(q, q0),−Fq0(q, q0)) . (5)

To relate the two descriptions, do a “partial inversion”,

q = Q(q0, p0) → p0 = Π(q, q0) , (6)

supposing det Qp0 6= 0. In practice, use Newton’s method with
guess from linear map.



CONSTRUCTION OF GENERATOR FROM TRACKING
DATA - II

In this way we relate ∇F to the tracking map:

∇F = (Fq(q, q0),Fq0(q, q0)) = (P(q0,Π(q, q0)),−Π(q, q0)) . (7)

We evaluate this on a mesh, interpolate by splines, and integrate
the splines analytically along some convenient path to obtain

F (ζ) =

∫ ζ

ζ0

∇F (ζ ′) · dζ ′ , ζ = (q, q0) . (8)

The integral is evaluated on a mesh, then interpolated by a spline
of at least cubic degree, to give F as a C 2 function. Any F ∈ C 2

such that det Fqq0 6= 0 defines a symplectic transformation.



APPLICATION OF LINE INTEGRAL METHOD - I

Choose a tune, νx = 15.81, for which the dynamic aperture is
large, but phase curves highly distorted at large amplitudes.

Figure: Phase plot from tracking, νx = 15.81. Dynamic aperture (2000
turns) just beyond outer curve.



APPLICATION OF LINE INTEGRAL METHOD - II
Time for map construction including necessary tracking: 2.4 sec.
The method works up to fairly large amplitudes, giving a phase
plot that agrees with tracking to graphical accuracy.

Very stable for at least 109 turns, even for outer curve.

Figure: Phase plot from symplectic map, 107 turns. Iteration time
20− 25 sec. for 107 turns, per orbit.



APPLICATION OF LINE INTEGRAL METHOD - III
Why does it suddenly fail at still larger amplitudes? Inspect the
locus of points (q, q0) along orbits of the map, and compare to
points at which solution p0 = Π(q, q0) was achieved. Orbits
approach forbidden region (Bermuda Triangle B) in lower right
corner. Also, we are forced to pad the spline data to fill in region B.

Figure: Green: Locus of (q, q0) on orbits of previous figure. Blue: Points
at which Π(q, q0) exists. Red: Path of integration.



APPLICATION OF LINE INTEGRAL METHOD - IV
Plot (q, q0) curves of larger and larger amplitude until two curves
cross ! Here we meet the limit of the region in which F (q, q0)
exists. We might build F in the whole interior, but there are two
technical annoyances: (1) Integration path hits the boundary
(reason for sudden failure) (2) Spline requires even more padding
and becomes less accurate.

Figure: Two (q, q0) curves that cross. Thus Π(q, q0) is not a single
valued function.



APPLICATION OF LINE INTEGRAL METHOD - V

Enlargement showing crossing of (q, q0) curves, near limit of
existence of the generator.

Figure: Two (q, q0) curves that cross. Enlargement of previous figure.



PROPOSED SOLUTION TO TECHNICAL PROBLEMS
NEAR DYNAMIC APERTURE

I Use a better path or avoid the line integral by calculating F as
Action Integral.

I Use a local interpolation method rather than tensor product
B-spline, for instance a generalized Shepard method:

F (ζ) =
∑

i

Pi (ζ)
wi (ζ)∑
j wj(ζ)

, wi (ζ) = c(ζ − ζi )‖ζ − ζi‖−n ,

(9)
where n is a positive integer such as 4 or 6. Here Pi (ζ) is a
polynomial that interpolates or approximates values of F at ζi
and a few nearby sites. The factor c(ζ − ζi ) is a smooth
cutoff that restricts the sum at any evaluation.
This formula interpolates Pi and its derivatives, and is globally
smooth if c(ζ) is smooth. Works as well with scattered data !



GENERATOR AS ACTION INTEGRAL – HAMILTON’S
PRINCIPAL FUNCTION

Integral of Lagrangian on orbit with initial value z0 = (q0, p0):

S(q0, p0, t) =

∫ t

0

[
p(τ, z0) · q̇(τ, z0)− H(z(τ, z0), τ)

]
dτ . (10)

Hamilton’s brilliant idea (1830-1832): regard this as a function of
initial and final q. Then

F (q, q0, t) = S(q0,Π(q, q0, t), t) . (11)

is the generator discussed heretofore, when t = T . See R.W.,
“Hamilton-Jacobi Equation” at Scholarpedia.com.

I Avoids line integral, for a big advantage in high-dimensions.

I Requires a modified tracking code to calculate action integral.



INTERPOLATION ON QUASI-RANDOM (LOW
DISCREPANCY) SEQUENCE)

A possibly more efficient scheme in high dimensions is to
interpolate data on scattered sites rather than on a mesh. In
particular, interpolation on a quasi-random sequence (Sobol,
Halton,· · · ) may enjoy the advantages of quasi - Monte Carlo
quadrature over mesh based quadrature.

1. G. Fasshauer, “Meshless Approximation Methods with
MatLab” (World Scientific,2007)

2. H. Niederreiter, “Random Number Generation and Quasi-
Monte Carlo Methods (SIAM, 1992)

3. R.W., J. Ellison, K. Heinemann, G. Q. Zhang, EPAC08,
TUPP109

We found in (3) that the number of interpolation sites could be
reduced by a factor of 8 compared to a mesh, in a 2D example (re.
Vlasov equation solution).

Expect a much bigger advantage in higher dimensions.



MANAGING LARGE SETS OF DATA AT SCATTERED
SITES

One needs to locate points and their neighbors; i.e., do a “range
search”. To date, we define a grid and make lists of points in each
cell. Can locate the cell to which any point belongs by taking
integer parts of scaled coordinates of the point. Maybe awkward in
high dimensions.

New technique: compressed bit map index FastBit (developed at
LBNL). See crd.lbl.gov/ kewu/fastbit/. Set of vectors of bits, each
vector corresponding to an attribute of data. Do bitwise logic on
these vectors, at compressed level. Time is linear in the number of
hits.

Used for searching for features in geologic data and various
simulations.



OUTLOOK FOR FURTHER WORK

I Cases in which rectangular interpolation domains are sufficient
(short of dynamic aperture, LHC, wigglers, etc.) can be
handled by the line integral method and B-splines. Requires
no modification of tracking code.

I Cases with strong nonlinearity, resulting in non-rectangular
domains, may require action integral and local interpolation.
Requires modified tracking code.

I Local interpolation on quasi-random sets may be
advantageous in any case, and such interpolation could have
wide applications outside this problem.




