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Optimizations in Accelerator Physics are Used / Needed for …

Accelerator Design: Optimizations are heavily used in the design phase
- Element design optimization: RF cavities, magnets, …
- Lattice optimization: Sequence of elements, drift spaces, …
- Beam dynamics optimization: matching, beam quality, …

Commissioning: More effort is being devoted to support commissioning
- Help better understand the machine’s behavior Deliver the 1st beam
- Fits to reproduce the data using a model
- Improve the predictability of the model to hopefully use for operations

Operations: Often simplified models (1D, single particle) are used for speed
- Fits to support machine tuning / retuning 
- Detailed 3D codes are used off-line
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Elements / Ingredients of an Optimization Problem

Objective (s): Important quantities/qualities, characteristics of the problem
- Functions you would like to optimize

Parameters: Variables affecting the outcome of the problem (objectives).
- If too many parameters, choose the parameters to which the problem is 

more sensitive.

Parameters constraints and correlations: Define the parameter space
- The simplest: Independent parameters with lower and upper bounds
- If correlated: Try reduce to an independent set of parameters

Optimization algorithm: Local, Global, Standard, Evolutionary …

Proper definition of the problem is an important first step …
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Local versus Global Optimizations

It is not very hard to find a local minimum of an objective function,
What is hard is to prove that it is the best minimum,
It is even harder to prove that a minimum is a global one.

A Local Optimizer
- Starts with a first guess
- Finds a direction that minimizes the objective and moves one step
- The procedure is repeated iteratively until no progress could be made

Fast

A Global Optimizer
- Should explore the full parameter space
- Eventually finds all local minima before finding a global one
- Prove that the minimum found is a global one

Slower



ICAP-09 Conference               Optimization Algorithms for Accelerator … B. Mustapha 6

Local versus Global Optimizations (2)

Luckily not all problems / applications require global optimizations

A global optimizer is more appropriate for design optimization to map the 
whole parameter space.
- You don’t want to miss the best set of design parameters
- Find all feasible solutions and make compromises if needed

A local optimizer with a shorter path to solution is more adequate for 
accelerator operations.
- Start from a good starting point
- Find the next best operating point by retuning few elements

Time to solution is a very important parameter: A good optimizer should 
also optimize the path to the best solution …
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Standard versus Evolutionary Algorithms

Standard Algorithms
- Most common, widely used
- A single objective function to optimize (could be a weighted sum)
- Usually require objective function derivatives w.r.t. the parameters
- A single trial solution is evaluated at every iteration (local)

Evolutionary Algorithms
- Based on the theory of evolution and natural selection, only the best survive
- Multiple objective functions could be included in the optimization
- Do Not require objective function derivatives
- Multiple trial solutions are evaluated at every iteration (global)
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Examples of Standard Algorithms

Simplex method (s): Does not require derivatives
- Build a simplex: First guess + base of feasible solutions in parameter space
- Iteratively: Replace the worst solution by a better one using the base
- Stop: No progress or cut-off error

Gradient descent method (s): Uses first derivatives (Gradient)
- Search direction at iteration i: 
- is the objective and     is a symmetric non singular matrix
- : Identity matrix in the steepest descent method

Newton method (s): Uses first and second derivatives (Gradient & Hessian)
- : Hessian, matrix of second derivatives

Quasi-Newton method (s): Uses first derivatives but updates second derivatives 
after every iteration.
- : Approximation to the Hessian matrix
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Example of Evolutionary Algorithm: Genetic Optimizer

1) Starts with a set of solutions randomly generated inside the parameter space 

2) The solutions are evaluated and ranked based on the objectives and 
constraints of the problem to select a subset of  best solutions.

3) The selected solutions are used to generate the next population by crossover, 
mutation or other using predefined rates (adjustable).

4) Start over from (2)

5) Stop when no progress could be made (stable set of best solutions).

For a given solution, the array of parameter values plays the role of a gene
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Genetic Optimization: Generating the next population

Cross-Over                               Mutation                     New 

The probability or rate of every channel could be adjusted …



ICAP-09 Conference               Optimization Algorithms for Accelerator … B. Mustapha 11

Parallel Standard Algorithms

Standard algorithms are serial in nature: The direction of the next iteration is 
decided based on the outcome of the current one.

Single solution evaluated per iteration: Parallelizable at the level of function 
and derivatives evaluation.

Example 1: Least square minimization:
Parallelize the sum for large N

Example 2: Optimization with a multi-particle tracking code Parallel 
particle tracking, Poisson solver and statistics (Large number of particles).

Example 3: A global optimizer may be parallelized by sub-dividing the 
parameter space and assigning the different sub-spaces to different processors.

∑
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Parallel Evolutionary Algorithms

Multiple solutions are evaluated independently at every iteration: Well suited 
for parallel processing with minimal communication.

It is however Not easy to parallelize the ranking, selection and offsprings
generation: Usually assigned to the master process.

More appropriate for optimization using multi-particle codes with realistic 3D 
external and space charge fields. 

No parallel particle tracking is required unless a very large number of particles 
is needed for the optimization problem. 

Any particle tracking code with SC could be used: A higher level parallel layer 
is often used to manage the generation, ranking and selection of trial solutions 
and calls the code when needed.

In our beam dynamics code TRACK, it was built-in.
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Applications: Beam Dynamics Optimization
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Multiple Charge State Ion Beam: Longitudinal tuning before a stripper
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Purpose: Tune a linac section to minimize the 
longitudinal emittance of a multiple charge state 
beam right before stripping.
Method: Match the longitudinal beam centers and 
Twiss parameters of the different charge state 
beams:

Fit Function:

where           is the desired beam energy and      is 
the corresponding error.                     

are the allowed errors on the relative 
energy, phase and     shifts of the individual charge 
state beams from the central beam.
Fit Parameters: RF cavities field amplitudes and 
phases.
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Measuring the energy and phase of 
individual charge states, we should be able 
to match their beam centers, …

Reduced beam loss in the high-energy section
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B. Mustapha and P. Ostroumov, 
Phys. Rev. ST Accel. Beams 8, 090101 (2005)
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Realistic Corrective Steering: Front-end of the FNAL-PD

In TRACK instead of solving the matrix 
equation A*C+B = 0 for the correctors 
strength C, we perform a least square 
minimization of the equivalent function: 
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Beam centeroids before and after corrections

To have the beam centered on all monitors M=0
Solve the equation A*C + B = 0 for C

Consider an accelerator section with Nm monitors and Nc correctors

Apply the values of C to correct the beam

Determine the response function of monitors to correctors

M: array of monitors readings
C: array of correctors strengths
A: response function matrix
B: monitors readings for C=0

In the matrix form:            M = F(C) = A*C+B

Algorithm
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In this way, we can include the monitors 
precision σim and the maximum correctors 
strength Cmax in the solution. Monitors with 
different precisions will have different weights.
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Genetic Optimization: A Chicane in ultra-low emittance e-Injector

Minimize the transverse emittance growth by fitting the quads and solenoids strengths.

Manually optimized case    : ε(x, 80%) = 0.090 µm, ε(y, 80%) = 0.092 µm
Genetic optimization result: ε(x, 80%) = 0.078 µm, ε(y, 80%) = 0.081 µm ~ 10% less
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Potential Application: Model Driven Accelerator
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Model Driven Accelerator:  Concept & Motivations

The Concept: Use a computer model to fully support real-time accelerator 
operations.

Present Situation: No accelerator in the world could fully rely on a                       
computer model for its operations.

Possible Reasons: Discontinuity between the design and operations phases
- Design and simulations assume almost perfect conditions.
- Elements specs are usually different from their original design.
- Not enough diagnostics to characterize the machine.

Consequences: Delay in commissioning and low machine availability.
- Simulations cannot reproduce the measured data.
- A lot of work to deliver the first beam during commissioning.
- A lot of time spent on beam tuning/retuning during operations.
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Model Driven Accelerator: Concept & Motivations

For Example: RIA / FRIB Cannot afford “manual” operations …
- Primary beams: p to U, from 200 MeV/u to 600 MeV/u
- Secondary beams: all over the map …

Need a realistic computer model for the machine to support commissioning 
and operations

The Benefits: 
- Fast tuning for the desired beam conditions.
- Fast retuning to restore the beam after a failure. 
- Increase the availability of the machine.
- Reduce the operating budget.

The Means:
- A realistic 3D model of the actual machine.
- Fast turn-around optimizations to support decision making.
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Realization of the Model Driven Accelerator: What we need ?

Need a realistic 3D beam dynamics code with the appropriate set of  
optimization tools and large scale parallel computing capability.

Why a beam dynamics code ?
- More realistic: 3D fields including fringe fields  and SC calculations
- More detailed: Beam halo, beam loss, …
- Produce detector-like data: Profiles, distributions, …

Why more optimization tools ?
- Optimization tools are needed not only in the design phase but also to tailor 
the model to the actual machine to be used for real-time operations.

Why large scale computing ?
- Optimizations of large number of parameters with a large number of particles 
for large number of iterations require large scale computing.

The beam dynamics code TRACK is being developed at Argonne to meet 
these requirements.
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Small Scale Realization of MDA: Operations of a Multi-Q Injector
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Measured beam profiles at the end 
of LEBT: left: horizontal, right: vertical.

Pepper-Pot images: Bi-209 beams
left: 20+&21+
right: 20+: blue, 21+:red.
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TRACK fit of measured profiles to extract 
the initial beam parameters at the source.

TRACK fit to find the quads setting to 
recombine the two charge state Bi-209 beams 
at the end of the LEBT.

Such a perfect recombination was not 
possible without a realistic simulation.

P. Ostroumov, S. Kondrashev, B. Mustapha, R. Scott and N. Vinogradov, Phys. Rev. ST-AB 12, 010101 (2009)
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Further Developments towards MDA

To use a realistic 3D model for real-time machine operations we should be 
able to perform large scale optimizations on large number of processors.

The parallel version of TRACK is now ready, parallel optimization tools are 
being developed: Different algorithms are being implemented.

Develop more tools for the commissioning phase to tailor the computer 
model to the actual machine by fitting the measured data.

Develop interfaces between the beam diagnostic devices and the beam 
dynamics code Calibrate and analyze the data to input to the code.

Numerical experiments may be used to test the tools before implementation 
into the real machine Produce detector-like data from the code.

Application to existing facilities …
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Summary

Optimization tools and methods are needed in every phase of an accelerator 
project, namely the design, commissioning and operations.

No single algorithm could satisfy all the optimization needs.

Different algorithms are being used: local, global, standard, evolutionary, ..

We briefly reviewed and compared different classes of algorithms and presented 
few applications in beam dynamics optimization.

The ultimate goal of realizing the concept of “Model Driven Accelerator” will 
require a realistic 3D beam dynamics code with the appropriate set of 
optimization tools and large scale parallel computing capabilities.

For a new machine we should take advantage of the commissioning phase to 
bridge the gap between the original design and the actual machine by tailoring the 
computer model to the machine.

A significant development effort is still needed …
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