
THE XAL INFRASTRUCTURE FOR HIGH LEVEL CONTROL ROOM
APPLICATIONS

A. Shishlo#, C. K. Allen, J. Galambos, T. Pelaia , ORNL, Oak Ridge, TN 37831, U.S.A.
C. P. Chu, SLAC, Menlo Park CA.

Abstract
XAL is a Java programming framework for building

high-level control applications related to accelerator
physics. The structure, details of implementation, and
interaction between components, auxiliary XAL
packages, and the latest modifications are discussed. A
general overview of XAL applications created for the
SNS project is presented.

INTRODUCTION
The development of XAL [1] was started in 2001 at the

SNS project as a framework for high level accelerator
physics applications. The Java programming language
was chosen because it addresses the need for a GUI
interface, database services, plotting, and numerical
simulations. When XAL development first began there
was a lack of free mathematical and plotting packages,
but the situation has since improved. EPICS has been
chosen as a communication protocol. Today the XAL
framework consists of the following parts:

• A hardware representation of the machine for
connectivity and control.

• A beam simulation model termed the "online model"
for model reference and comparison to the hardware
operation.

• An application framework to provide a common
“look and feel” and functionality for all XAL
applications.

• Services that run continuously in the background
(24/7), and which can communicate with several
XAL applications simultaneously.

• A set of auxiliary mathematics, graphics, and plotting
packages.

• The channel access communication library.
In this paper we present descriptions of these parts of

XAL and an overview of applications implemented on the
base of this framework for the SNS project.

ACCELERATOR MODEL
An accelerator model represents a structural view of an

accelerator. According to this model the accelerator
consists of ordered accelerator sequences which usually
represent accelerator beam lines, and they can have other
ordered sub-sequences or nodes corresponding to physical
devices. An instance of such a structure is shown on Fig.
1. The lowest level of the accelerator model hierarchy is
represented by such components as magnets, BPMs, wire
scanners, RF gaps, position markers etc. Usually
accelerator nodes correspond to real physical devices, but

it is not necessarily a one-to-one mapping.. For instance,
at SNS there are single devices consisting of a quadrupole
+ dipole windings + BPM strip-lines. We consider these
functionalities as three separate accelerator nodes (quad +
dipole corrector + BPM), all at the same position.

XAL uses an XML file called an “optics_source” as a
natural way to initialize this accelerator hierarchy. This
XML file includes all information about sequences,
components, positions, parameters, and necessary
EPICS’s PV names for device signals.

There are two ways to prepare such files. First, it can be
done manually from scratch or by modification of an
existing file if you are interested in only a relatively small
accelerator model for testing XAL features. Second, you
can prepare an application that will generate the file for
you by using a relational database. Of course, this
application will be specific for each accelerator, because
accelerator database structures are usually different.

Figure 1: An example of the XAL accelerator model
structure.

In the beginning of XAL development, the optics XML

file was the only source for the accelerator model
initialization, but later several new XML files were added
to provide the model with the necessary information.
First, there was an XML file with hardware node status
information. This is a small file describing availability of
certain diagnostics nodes, because they frequently go
from the“online” to the “offline” state, and the model
should know about a validity of the diagnostic signals.
The second new XML file maps an accelerator node type
with a particular implementation of this type in the model.
This file was introduced to generalize XAL and to use it
for different accelerators where the similar devices (i.e.
BPM in SNS or J-PARC) can have different functionality.
The third one includes information about signals from

#shishlo@ornl.gov

Proceedings of ICAP09, San Francisco, CA WE3IODN01

Accelerator/Storage Ring Control Systems

131

systems like a timing system that does not belong to any
particular beam line. Finally, there is a XML file with the
online model parameters. Today the combination of all
these XML files is used to initialize the XAL accelerator
model.

After initialization, the model is ready for usage.
Examples of common tasks for the model and nodes are:

• Creating a new combo-sequence from existing
sequences.

• Getting a position of a node or a sequence inside a
parent sequence.

• Selecting nodes of a certain type and properties from
a sequence.

• Getting a list of possible EPICS signals from a node.
• Getting default values of parameters of a particular

node.
None of the actions listed above need live EPICS

connections and therefore they do not require a real
machine or virtual accelerator. There is another group of
actions which require live EPICS communications. Some
of these actions include getting or setting live hardware
parameters such as magnetic fields or RF cavity phase
and amplitude or reading diagnostic data such as BPM
signals. This group provides live interfacing with the
accelerator. The details of such EPICS connections and
communications are hidden from the user by the simple
interface of the model.

The XAL accelerator model is a very useful and
convenient control system tool, but by itself it is has
nothing to do with accelerator physics. To perform
meaningful operations with the accelerator or beam lines
we need a physical model. We call this model the “online
model”.

XAL ONLINE MODEL
The XAL online accelerator model [2] performs on-the

fly calculations of beam parameters based on machine
settings. These settings can be extracted from a live
accelerator, from design values, from a combination of
these two sources, or they can be modified by the user.

The three main components of the model are an
accelerator lattice which is constructed from the
accelerator nodes, a probe which describes the beam and
how it is to be modeled, and a set of algorithms for probe
tracking through different elements of the lattice. The
online model implements the Element-Algorithm-Probe
design pattern introduced by Malitsky and Talman [3].
This design strategy separates the machine representation
from the beam model and the dynamics calculations.

A lattice can be generated for any sequence of the
accelerator model described in the previous section. In
the transformation to the online model lattice view,
devices may be split into more than one piece, and drift
spaces are added (note – the XAL initialization database
does not have drifts as accelerator nodes, only actual
device information).

The different probes in the online model represent
different physics aspects of charged particles beam. There
are three probe types commonly used:

• The envelope probe: This is a correlation matrix of
moments in a 6D phase space up to second order. By
using this probe we can simulate the beam emittance
transformation along the lattice.

• The transfer map probe: This represents the
transformation matrix of 6D coordinates from the
beginning of the sequence to a particular point at the
lattice. This probe is usually used for ring modeling.

• The particle probe: This represents the center of the
beam. It is frequently used for phase scan analysis
and orbit predictions.

Each probe has one or several corresponding algorithms
describing the tracking of the probe through the lattice.

The XAL online model went through a series of
verifications and benchmarks [2]. The most important
feature of the online model is the speed of calculations.
The simulation time for SNS sequences is usually much
less then one second, and that enables use of the online
model in the control room even if a problem includes
multiple runs of the model (optimization procedures).

XAL APPLICATIONS FRAMEWORK
In the early days of XAL development, each application

was created with its own JFrame menus, toolbars, and
standard functionalities like open, save etc. This approach
meant duplicated efforts, a different look and feel for each
application, and maintenance difficulties. To avoid this
the XAL Application Framework was created [4].

An application framework is a set of classes that actual
applications extend, and it is used as a common starting
point for all XAL applications. There are several
advantages of using this framework.

The framework provides all applications with the same
look and feel, which helps operators and users to more
easily get acquainted with new applications. An example
of the application framework template is shown in Fig. 2.
A standard “windows application” menu bar, tool bar and
empty panel is provided as a starting point, modeled after
the familiar windows application format. All menu and
toolbar items and actions within them can be customized
by changing a simple configuration file which is unique
for each application.

The framework uses a document-view architecture, i.e.

a single application can have multiple documents

Figure 2: The accelerator application framework template.

Common menu bar Toolbar for common actions

WE3IODN01 Proceedings of ICAP09, San Francisco, CA

Accelerator/Storage Ring Control Systems

132

associated with it, and each with its own window view.
The application document can be stored (restored) in
(from) a file. Of course, this functionality should be
provided by the document.

An Accelerator extension of the XAL application
framework document class provides an accelerator model
with a specific set of menu items. This extension enables
the application to read an accelerator file, and to choose
and create accelerator sequences.

The application framework usage is not mandatory for
XAL applications, but it speeds up and facilitates their
development and modifications.

XAL SERVICES
XAL services are a special type of XAL applications.

They run 24/7 in the background; they can communicate
with any number of standard XAL applications; and they
do not have a GUI interface. A Service-Application
communication uses XML-RPC for inter-process data
exchange and uses multicast DNS for discovering
subscribers and publishers. Knowledge of the details of
multicast DNS and XML-RPC are hidden from the user.

There are several advantages of using the services.
First, users need not worry about starting or restarting
them. They will restart automatically in the case of
shutdown or crash. Second, they reduce the amount of
network traffic by avoiding duplicated EPICS and
database requests from different XAL applications
running simultaneously. And finally, they are prototypes
of a future XAL distributed agent systems that is currently
under development.

In this paper we present as examples two services that
are useful for each accelerator facility.

Figure 3: An example of the XAL MPS client application.

MPS Service
MPS service is our Machine Protection System (MPS)

post-mortem application. Originally it was a standalone
client application. Later it was migrated to the service
framework. This service is always running in the
background monitoring MPS events – capturing the

stream of signals that emanate from each trip and sorting
them to determine the root cause of the trip. It also
provides statistics and views of the MPS trip history. Any
number of client applications can view this data. Figure 3
shows a client view of the MPS trip.

PV Logger
Another service application is the XAL “PV Logger”.
This application logs predefined sets of control system
signal values to a database, at specified intervals and upon
requests from any XAL application. One example of use
is to grab machine settings directly used by accelerator
physics such as magnet, RF and BPM values. This
provides complete sets of information needed to configure
the online model, taken by a background process. At SNS
we have several PV Loggers covering the needs of
different systems like accelerator physics, SNS cooling
system, beam loss monitors, etc.

XAL AUXILARY PACKAGES
XAL has numerous general purpose packages. They

were developed at different times, and the list is still
growing. Usually these packages are independent from
the rest of XAL, and they can be easily ripped off and
used elsewhere.. Below we discuss a few of the most
interesting and useful of these packages .

XAL Plotting Package
Development of the XAL plotting package [5] started at

the early stages of development as a research project to
study how fast data plotting can be updated. Later,
interactive features of the package were found useful in
several applications. This package is not intended to
completely replace existing and freely available powerful
plotting packages, but it is sufficient for instances where
simple charts and color surface plotting is required.

Figure 4: A color surface plot with XAL plotting package.

In terms of the Model-view-controller (MVC) pattern,
the XAL internal plotting package is simplified, and it has
only two components. The view and controller are
combined, and they are implemented in the
FunctionGraphsJPanel Java class, which does not have
any subclasses. There are four major types of data (Model
components). Two are related to 2D chart plotting. The
third can be used for bar-charts, and the last one for color

Proceedings of ICAP09, San Francisco, CA WE3IODN01

Accelerator/Storage Ring Control Systems

133

surface 3D plotting. An example of the color surface data
plotting with 100x100 point graphics area resolution is
shown in Fig. 4.

XAL Channel Access Package
To communicate with accelerator hardware XAL uses

the EPICS Channel Access protocol. EPICS
communication uses a single “Process Variable” (PV) as
the fundamental unit for communication via an EPICS
protocol called Channel Access. XAL has a Channel class
that encapsulates the communication with a process
variable.

The Channel class is an abstract class that has the same
interfaces that most control system would provide. This
abstract layer insulates the rest of XAL from possible
changes in the existing implementation of the EPICS
protocol. For EPICS PV communication, we extend it to a
concrete class that wraps Java Channel Access (JCA) [6]
or Channel Access for Java (CAJ) [7] packages. JCA has
interfaces to native C routines, and until recently it was
the only non-Java library we used. Now there is CAJ - a
100% pure Java implementation of the EPICS Channel
Access library.

The Channel class conveniently hides from users the
underlying actions required to make connections to PVs.
It also has member functions to provide Process Variable
parameters other than the value (e.g. times stamps, units,
display limits, etc.). Additionally, it has the capability to
switch between synchronous and asynchronous
communication and PV monitoring. Another useful
feature of the Channel class is the ability to apply a
specified “transform” to a Channel value. For example,
one may apply a scaling transformation on a power
supply current, in order to get a magnetic field level.

Typically applications dealing with the accelerator
classes never actually use Channel objects directly, but
rather they use methods that provide the information of
interest. For example, with a magnet the user may call a
getField() or setField() method to get or set the magnetic
field. The actual Channel and control system connection
details are hidden.

BRICS Package
XAL Bricks package (gov.sns.tools.bricks) is a tool to

facilitate writing of GUI interfaces. The main idea of
Bricks is to keep information about the GUI window
elements and their appearances in a XML file which can
be used later to restore the GUI window. The developer
can get the reference to the GUI window simply by
specifying the name of this XML file. Then, all effort can
be concentrated on the functionality of an application
instead of its appearance.

The Bricks package also has been integrated with the
XAL application framework. During the runtime the
bricks definition file can be loaded to create the main
XAL application window. After that, all child views are
available for usage inside the XAL application document.

To create XML Bricks files XAL includes a GUI
builder based on the Bricks package. This builder is a

XAL application and works like others GUI builders for
many existing Integrated Development Environments
(IDEs). The key difference between existing GUI builders
and XAL Bricks is that Bricks does not create any Java
code. This design for Bricks is inspired by OpenStep’s™
Interface Builder™ [8]. The snapshot of the Bricks GUI
builder application is shown in Fig. 5.

Figure 5: XAL Bricks GUI builder.

The main window for the Bricks document shown in
Fig. 5 displays a hierarchy of windows and their views for
a future GUI interface. A palette of views shows possible
views such as buttons, tables, text fields etc. so the
developer can simply select and drop views into the main
window. A preview window reveals how the GUI window
will look. An inspector is used for editing the properties
of a selected view. Copy, Cut and Paste support along
with drag and drop support make it easy to rearrange
views. The built in code assistant helps developers avoid
errors by generating references to views to pass directly
into their code.

General Optimization Package
The XAL optimization package (gov.sns.tools.solver) is

a “home grown” product of a long evolution of such
packages during the XAL development. Currently it is the
third generation of optimization packages in XAL. The
base components of the package are:

• The Solver component: This is a primary class for
setting up and running an optimization process. To
create an instance of the Solver we need instances of
the Algorithm Market, Stopper, and Solution Judge
classes. The Problem class is needed to start the
optimization process in the Solver.

• The Algorithm Market: This is a collection of
algorithms that will compete during the optimization
process. The user can choose arbitrary combination
of algorithms from the existing ones in the package.

• The Stopper Class and Subclasses: This decides if
the process should stop. The decision is made on the
basis of time, number of iterations, a level of

WE3IODN01 Proceedings of ICAP09, San Francisco, CA

Accelerator/Storage Ring Control Systems

134

satisfaction, etc. Users can choose which criterion or
which combination of criteria will be used.

• The Solution Judge component: The implementation
of the Solution Judge interface compares the new
solution and the best known one at a particular
moment.

• The Problem Class: This class consists of the list of
variables, restriction rules, possible hints for
different algorithms, and a scorer that estimates the
model function.

At the moment there are four available algorithms: a
random search, a random search with a shrinking rage of
search, a direct gradient method, and a simplex algorithm.

The XAL optimization package has no upward
connection to other XAL classes except the XAL message
center, and it can be freely used outside of XAL.

Least Square Method Package
There is a special linear squares method (LSM) package

(gov.sns.tools.fit.lsm) in XAL to solve optimization
problems that can be reduced locally to a linear problem.
Usually, we want to find an approximation of measured
points (x,y) by a known function with unknown
parameters. This type of problems has exact solutions, so
there is no need to use the general XAL optimization. The
XAL LSM package implements two algorithms: a classic
LSM and a Levenberg-Marquardt Method (LMM) [9].
Both methods assume that the user will provide methods
to calculate partial derivatives of the model function with
respect to the model parameters.

The two types of functions most frequently used in
XAL applications are a Gaussian distribution and a
damped sinusoidal oscillation,

{ }2
3210)(exp)(axaxaaxygauss −+⋅+= ,

))(sin()exp()(43210 axaxaaaxydump −⋅⋅+= ,

where ia are the unknown parameters. The Gaussian

distribution function is used in wire scanner data analysis,
and the damped oscillations are used in SNS ring tune
calculations. To provide initial values for the model
parameters, both fitting classes have a “guess” method
which analyzes the initial data and suggests reasonable
values. There is also a polynomial class that calculates
coefficients of arbitrary power series.

Another advantage of the LSM package with respect to
the general XAL optimization is that errors for model
parameters can be estimated if the user specifies the errors
in the measured data.

Formulas Evaluation Package
The formulas evaluation package

(gov.sns.tools.formula) is used to evaluate a formula with
a given set of variables provided by the user. The
formulas are presented as text. A Formula Interpreter class
compiles the text and evaluates the formula. The
compilation process is performed only once, so the
efficiency of following evaluations is very high. This
allows use of the package for fitting problems inside the

optimization package. The formulas evaluating package
has a variety of operators including arithmetic operators,
function operators, and logical operators. The set of
internal functions can be extended.

XAL APPLICATIONS
At this moment, only the SNS project has more than 50

XAL applications. They were developed at different times
by different developers, and many of them do not comply
completely with all standards for correctly implementing
XAL applications. In this paper we consider only few of
them which could be useful everywhere.

To write a correctly implemented general XAL
application the developer should follow several rules:

• The application cannot use java classes from another
application. If a Java class is useful for more than
one application, it should be moved into the core
XAL packages.

• The source code of the application should not
contain any specific information related to a
particular accelerator.

• The application should use the accelerator model for
hardware interaction. The model should be
initialized from the default XML accelerator model
file.

• The number of external packages should be
minimized.

Virtual Accelerator
A virtual accelerator (VA) is a simulation program

running permanently and generating sensible diagnostics
signals in response to changing parameters of the model.
From the point of view of a client that communicates
(through EPICS or another protocol) with this VA there is
no difference between the VA and a real machine. The VA
is a very useful tool for developing and testing control
room applications, especially during the early stages
when the real accelerator is not functioning yet.

In the beginning of XAL development, the virtual
accelerator was based on PARMILA or TRACE3D codes
and an EPICS Portable Channel Access Server (PCAS)
[10]. The structure of this VA is shown in Fig. 6. Later,
the XAL online model was used as a simulation program.

Figure 6: The structure of a virtual accelerator.

Proceedings of ICAP09, San Francisco, CA WE3IODN01

Accelerator/Storage Ring Control Systems

135

Until recently, PCAS was the only option to provide
communications between an application and the
simulation program. It was inconvenient because each
time the user had to generate a special initialization file
with a list of EPICS PV names that will be used in the
VA. After replacing the JCA wrapper around the native
EPICS C-library by the CAJ (pure Java EPICS
communication package [7]), the PCAS was dropped
from XAL. Now the XAL Virtual Accelerator Application
does not need any external executables and produces all
necessary EPICS signals by itself. The user needs only
the XML Accelerator Model file to start VA.

Orbit Correction Application
An orbit correction application was developed to

correct transverse orbit errors with dipole correctors and
bend magnets in the linac and the ring. Among the
features of this application, there is the ability to save and
restore the existing orbit, to correct orbit errors to zero or
a reference orbit, to switch on and off any particular
dipole correctors from the process, and to initialize from
the XML accelerator model file. This application utilizes
the XAL optimization package by specifying a goal of
optimization as a combination of zeroing orbit errors, by
providing a smooth orbit, and by keeping the currents in
the correctors within their control limits. The satisfaction
function of this optimization is a nonlinear combination
of all goals. The use of nonlinearity eliminates the need to
introduce artificial weights, as is often necessary with
many linear optimization approaches.

Figure 7: Orbit correction for the MEBT-DTL-CCL1
SNS’s linac sections.

When correcting an orbit, the user can choose whether
to correct the orbit based on the XAL online model or
through empirical measurement. For the first case, the
orbit response coefficients of the dipole correctors for the
downstream beam position monitors (BPMs) come from
the online model. If the model is incorrect the orbit
correction will fail. In this situation the empirically
measured coefficients can be used. The empirical
approach will work even in a case where there are dipole
correctors and BPM polarity errors. The disadvantage of

this method is the long period of time needed to measure
the orbit response to each dipole corrector.

The result of the orbit correction for part of the SNS
linac is shown in Fig. 7. The four trajectories are the
initial horizontal and vertical trajectories (purple and
pink, respectively), and the horizontal and vertical
trajectories after correction (blue and light blue,
respectively). The initial trajectory excursion is about 4
mm horizontally and 2 mm vertically. After correction,
trajectory oscillation in both planes is within 1 mm.

The XAL orbit correction application can also serve as
a live orbit display.

CONCLUSION
The XAL framework has three basic interconnected

components: the hierarchical accelerator model, the
online model, and the XAL application framework.
Additionally, XAL includes a collection of independent
Java packages that can be used anywhere.

Correctly implemented XAL applications can be easily
ported to other accelerators, and there are persistent
efforts to make the XAL more portable.

ORNL/SNS is managed by UT-Battelle, LLC, for the
U. S. Department of Energy under Contract No. DE-
AC05-00OR22725.

REFERENCES
[1] J Galambos et al. “XAL Application Programming

Framework”, ICALEPCS’03, Gyeongju, Korea,
October 2003, WE204 , http://www.JACoW.org.

[2] C.K. Allen et al. “A novel online simulator for
applications requiring a model reference”,
ICALEPCS’03, Gyeongju, Korea, October 2003,
WE116, http://www.JACoW.org.

[3] N. Malitsky and R. Talman, “The Framework of the
Unified Accelerator Libraries”, Monterey, CA, USA,
September, 1998, ICAP 1998.

[4] T. Pelaia “XAL Application Framework and Bricks
GUI Builder”, ICALEPCS’07, Knoxville, TN USA,
October 15-19, 2007, TPPA09,
http://www.JACoW.org.

[5] A. Shishlo et al. “Java Swing-Based Plotting Package
Residing Within XAL”, ICALEPCS’07, Knoxville,
TN USA, October 15-19, 2007, TPPA08,
http://www.JACoW.org.

[6] http://www.aps.anl.gov/xfd/SoftDist/swBCDA/
jca2/index.html.

[7] http://caj.cosylab.com.
[8] Nancy Craighill, OpenStep for Enterprises, John

Wiley & Sons, Inc., New York, NY, 1997.
[9] Numerical recipes in C: The art of scientific

computing. Cambridge University Press., 1992.
[10] A. Shishlo et al. “The EPICS Based Virtual

Accelerator - Concept and Implementation”,
PAC’03, May 12-16, Portland, OR, 2003, WPPE017,
http://www.JACoW.org.

WE3IODN01 Proceedings of ICAP09, San Francisco, CA

Accelerator/Storage Ring Control Systems

136

