
Hairong Shang† , Yusong Wang, Robert Soliday, Michael Borland, Louis Emery,
Argonne National Laboratory, Argonne, IL 60439, USA

Abstract

Use of SDDS, the Self-Describing Data Sets file proto-
col and toolkit, has been a great benefit to development of
several accelerator simulation codes. However, the serial
nature of SDDS was found to be a bottleneck for SDDS-
compliant simulation programs such as parallel elegant. A
parallel version of SDDS would be expected to yield signif-
icant dividends for runs involving large numbers of simula-
tion particles. In this paper, we present a parallel interface
for reading and writing SDDS files. This interface is de-
rived from serial SDDS with minimal changes, but defines
semantics for parallel access and is tailored for high per-
formance. The underlying parallel I/O is built on MPI-I/O.
The performance of parallel SDDS and parallel HDF5 are
studied and compared. Our tests indicate better scalability
of parallel SDDS compared to HDF5. We see significant
I/O performance improvement with this parallel SDDS in-
terface.

INTRODUCTION

SDDS [1] is a self-describing data file protocol devel-
oped at Argonne National Laboratory’s Advanced Photon
Source (APS). It is a standardized way to store and ac-
cess data, and is the basis of a toolkit [2] of interopera-
ble accelerator physics programs. Over the years, several
SDDS-compliant accelerator programs (e.g,clinchor [3],
elegant [4], and shower [5]) have been developed at
the APS. Also, many existing accelerator design tools for
which the source code is available have been converted to
read and write SDDS files. This allows physicists to read-
ily use several codes in combination, with greater speed,
flexibility, and accuracy than otherwise possible. In addi-
tion to requiring accelerator codes to read and write SDDS
files, we created a suite of generic data processing and dis-
play tools that work with SDDS files. In effect, we created
a common pre- and postprocssing toolkit that is used by
our codes and codes we have modified. This set of approx-
imately 80 generic programs is referred to as the SDDS
Toolkit [2].

A major advantage of using SDDS files is that data from
one code can more readily be used by another. The self-
describing nature of the files makes this robust, meaning
that one code can be upgraded without requiring a change
in the other code. The SDDS Toolkit also provides the
ability to make transformations of data, which is useful
when codes have different conventions (e.g., for phase-

∗Work supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357.

† shang@aps.anl.gov

space quantities). Finally, using SDDS means that adding
capabilities to a simulation code is faster and easier. The
new data is simply placed in SDDS files where it can be
accessed with the existing suite of tools [2].

In addition to the SDDS Toolkit, users can import SDDS
data directly into programming environments like C/C++,
FORTRAN, IDL, Java, MATLAB, and Tcl/Tk, using li-
braries created and supported by APS. These libraries, like
the rest of the SDDS software and our simulation codes,
are covered by an Open Source license and are available
for download from our web site. The codes discussed are
all available for UNIX environments, including LINUX,
Solaris, and MAC OS-X, and (usually) for Microsoft Win-
dows. The programelegant [4] was the first of the SDDS-
compliant accelerator codes, and it is widely used for ac-
celerator design and simulation, and is at the center of the
SDDS-compliant accelerator simulation codes. The com-
puting power ofelegant has been enhanced significantly
through recent parallelizations and optimizations [6]. How-
ever, the SDDS tools with sequential execution are a bot-
tleneck for both memory and I/O operations. Therefore,
parallel SDDS is required for large simulations, as well as
for analysis and visualizations of the resulting large data
sets. This paper introduces the design, implementation, and
performance study on parallel SDDS. Since HDF5 [7] is
another popular scientific data format, the performance of
parallel HDF5 is also studied on Jazz [8] for comparison.
Although HDF5 already supports parallel I/O, it is not nec-
essarily beneficial to switch from SDDS to HDF5, given
the large number of programs and applications that already
use SDDS. Only if HDF5 offers a significant performance
advantage over parallel SDDS would such a conversion be
considered.

SDDS File Format and Data Storage

An SDDS file is referred to as a “data set”. Each data
set consists of an ASCII header describing the data that is
stored in the file, followed by zero or more “data pages”.
The data may be in ASCII or unformatted (i.e., “binary”).
Each data page is an instance of the structure defined by
the header. That is, while the specific data may vary from
page to page, the structure of the data may not. Three types
of entities may be present in each page: parameters, ar-
rays, and columns. Each of these may contain data of a
single data type, with the choices being long and short inte-
ger, single-/double-precision floating point, single charac-
ter, and character string. The names, units, data types, and
other descriptions of these entities are defined in the header.
Parameters are scalar entities. That is, each parameter de-
fined in the header has a single value for each page. Ar-

PARALLEL SDDS: A SCIENTIFIC HIGH-PERFORMANCE
I/O INTERFACE*

Proceedings of ICAP09, San Francisco, CA THPSC050

Computer Codes (Design, Simulation, Field Calculation)

347

rays are multidimensional entities with potentially varying
numbers of elements. While there is no restriction on the
number of dimensions an array may contain, this quantity
is fixed throughout the file for each array. However, the size
of the array may vary from page to page. All columns in a
data set are organized into a single table, called the “tabu-
lar data section.” Thus, all columns must contain the same
number of entries, that number being the number of rows
in the table. There is no restriction on how many rows the
tabular data may contain, nor on the mixing of data types
in the tabular data. The tabular data is stored in the file by
row-major order, which is partly a legacy of SDDS’s ori-
gins in the APS control system, where it is used to collect
time-series data.

Obviously a column-major ordered data file would be
read and written faster since the data is stored as column-
major order in the memory. We will soon release in [9] a
column-ordered serial SDDS library, which has much bet-
ter performance over row-ordered serial SDDS library. For
parallel I/O, the relative advantage of column-major order-
ing in data files is not a given since the MPI-I/O can be ex-
ecuted in two modes: independent and collective [10]. In
collective mode, all processors pause until they are ready to
execute the I/O together. We expect that independent MPI
I/O benefits the row-major ordered SDDS files, while col-
lective MPI I/O benefits the column-major ordered SDDS
files.

We built parallel SDDS libraries in the four mode combi-
nations of independent I/O or collective I/O and row-major
ordered files or column-major ordered files for study and
comparison with other implementations of parallel I/O, say,
that of HDF5 [7]. In this reference collective I/O has been
found to be much more effective than independent I/O for
non-contiguous storage, though the authors didn’t specify
whether HDF files were column- or row-major ordered.

PARALLEL SDDS IMPLEMENTATION

Parallel SDDS is built on top of MPI-I/O in either in-
dependent I/O or collective I/O modes, and derived from
serial SDDS with minimal changes. In parallel SDDS, a
file is opened, operated on, and closed by the participat-
ing processors in a communication group defined by the
user interface. Other memory access functions are retained
from serial SDDS.

In parallel SDDS, each processor holds the SDDS header
data and the column data for only part of the rows, the total
number of rows being the sum of the row numbers of all
processors.

Similar to serial SDDS, parallel SDDS reads or writes a
file page by page. For parallel SDDS page reading, we first
read the header using the serial SDDS functions and then
close the file. Depending on the input request, either all
processors read the header or the master processor reads the
header and then broadcasts it to the other processors, which
reduces the file I/O load. Next, we use MPI-I/O to open the
file and to read the page title information, which are the pa-

rameters (if any), arrays (if any), and the total number of
rows (nt) in the current page. Again, either all processors
(np in number) read the title information or the master pro-
cessor reads it and then broadcasts it to other processors if
requested. Finally, each processor readsnt/np + r, where
r is 1 if the processor ID is less than or equal tont mod np,
otherwise, 0.

For parallel SDDS page writing, all processors hold the
layout information that is defined by the existing serial
SDDS functions, and part of the tabular data partitioned
by row. The file is opened for write with MPI-I/O. Only
the master processor writes the ASCII layout, parameters
(if any), arrays (if any), and the number of total rows, and
then its own part of tabular data into the file. Other proces-
sors write their own part of the tabular data into the file at
the same time.

PERFORMANCE COMPARISON

In this section we look primarily at row-major order
SDDS library performance compared with row-major or-
der HDF5, thus for clarity the term row-major order for
HDF and SDDS is dropped.

In the SDDS test code all processors read the header,
number of rows, parameters, and arrays in each page. Par-
allel SDDS was compiled with MPICH1 on ANL Jazz and
the performance was studied with PVFS version 1 file sys-
tem. There are 8 PVFS parallel file systems on Jazz run-
ning over 10/100 Ethernet. The theoretical peak I/O rate is
10 MB/sec per node.

In order to fairly compare parallel SDDS with HDF5,
the parallel HDF5 write/read code (ph5example.c), which
comes along with the parallel HDF5 package, was com-
piled with the same compiler used for parallel SDDS.

Reading Performance

Two HDF5 row-major-ordered data files were generated
using ph5example, with sizes of 1.2GB (1245710336B)
and 600MB (622856192B). Each file has one two-
dimensional dataset, with dimension 811008x384 for the
1.2GB file and 811008x192 for the 600MB file. The di-
mensions are chosen by the requirement of ph5example
that all dimensions must be a multiple of the number of
processors. Here, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64 pro-
cessors are used for performance study. However, SDDS
does not have any limitations on the dimension sizes. The
two HDF5 files were converted into two SDDS files us-
ing our hdf2sdds toolkit program. The SDDS file sizes
were 1245722085B and 622861029B respectively, which
are slightly bigger than the HDF5 files because the SDDS
header is written in ASCII, and there are many columns in
both files (making the header large). But in actual appli-
cations such as Pelegant [6], the SDDS files have only 8
columns, which produces less overhead than a HDF5 file
would. The read performance of both parallel SDDS and
parallel HDF5 was studied with the PVFS version 1 file

THPSC050 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

348

system on Jazz. The results of reading the two files are
shown in Figure 1.

Figure 1: Parallel SDDS (psdds) and parallel HDF5 (phdf)
I/O performance of reading 600MB and 1.2GB files on
Jazz.

The figure includes a comparison of collective and in-
dependent I/O for HDF5. We didn’t have the collective-
I/O SDDS library run available for comparison. Figure 1
shows that independent HDF5 I/O has better performance
than collective HDF5 for reading the 600MB file. In addi-
tion, independent HDF5 has better performance than par-
allel SDDS when the number of processors is less than 32.
However, the speed of HDF5 starts drop after 32, and its
performance is similar to parallel SDDS after that. The
speed of independent-I/O SDDS continues increasing un-
til the number of processors reaches 48 and then starts to
drop. This may indicates that independent-I/O SDDS has
better scalability than collective-I/O HDF5. Apparently,
collective-I/O HDF5 is not a good choice for reading such
a 600MB row-major ordered file.

However, the performance of independent-I/O HDF5 in
reading a 1.2G file is so poor that our performance study
could not be completed with available sources. It is much
worse than collective-I/O HDF5, which is consistent with
the results of parallel HDF5 [7]. The performance of
collective-I/O HDF5 is slightly better than independent-I/O
SDDS when the number of processors is less than 20. How-
ever, the performance of this SDDS library is consistently
better than collective-I/O HDF5 when the number of pro-
cessors is greater than 20.

Data access performance is affected by many factors,
including caching, network bandwidth, and latency. Jazz
has two kinds of nodes, large memory nodes, which have
2.4GB memory, and smaller memory node which have
1.2GB memory. The network bandwidth is 10 MB/s. The
bandwidth per processor achieved by collective-I/O HDF5
is close to 10 MB/s with a small number of processors.
However, it drops quickly to 3 MB/s as the number of
processors increases. The bandwidth of parallel SDDS is
about 6 MB/s from 1 processors to 56 processors, and drops

at 64 processors. The relatively low efficiency of SDDS at a
low number of processors compared to parallel HDF5 may
have two causes: First, reading SDDS data requires at least
two times as much memory as the data size because of the
way SDDS encapsulates the data. Therefore the nodes may
not have enough memory to hold the data and swap space
may be needed when the number of processors is small.
Second, all processors read the SDDS layout at the same
time using serial code. Therefore, the time spent in layout
reading increases as the number of processors increases,
which reduces the speed when the file header is big (as in
our test files) and the number of processors is large. For
example, the time to read the 1.2GB file header with one
processor is 0.01 seconds, but increases to 2 seconds with
64 processors, while the data access time is only 3 seconds.
The layout reading could be improved in the future.

Still, the results indicate that independent-I/O SDDS has
better scalability than HDF of either I/O mode, and has bet-
ter performance with large files. This may be due to the rel-
atively simpler structure of SDDS data compared to HDF5.

Writing Performance

The writing performance of parallel HDF5 and SDDS
was studied when writing 811008x192 and 811008x384
two-dimensional datasets into HDF5 files or SDDS files.
Both collective-I/O and independent-I/O HDF5 writing
were tested. Again results for collective-I/O SDDS was
not available. The performance of parallel SDDS writing
was studied by reading a previously generated SDDS file of
811008x192 data or 11008x384 data into an SDDS dataset,
copying it into a new dataset in memory, and then writing
the new dataset into an SDDS file. This doubles the mem-
ory size for storing two SDDS datasets in memory, so that
memory requirements are more than four times the size of
the data file. The purpose of copying in testing parallel
SDDS writing is to verify that the write operation produces
a file that is identical to the original (which was the case in
all tests). The performance of parallel SDDS writing may
be improved when writing data that is generated internally.

The results of writing files are shown in Figure 2. Un-
like what we found for reading, independent-I/O HDF has
better performance that collective-I/O HDF for writing the
row-major ordered HDF5 file. Independent-I/O SDDS is
also better than collective-I/O HDF. Similar to reading,
independent-I/O HDF5 performs better than independent-
I/O SDDS with a small number of processors, but as the
number of processors increases, independent-I/O SDDS
starts to perform better than independent-I/O HDF5 for
writing both 600MB and 1.2GB files. The results again in-
dicate that parallel SDDS has better scalability than HDF5
and better performance with large files in our tests.

Since only one processor writes the layout, the time
spent in writing layout does not increase as the number of
processors increases. However, the layout writing can be
improved by buffered I/O, since right now each definition
uses a separate write operation, and the I/O times are the

Proceedings of ICAP09, San Francisco, CA THPSC050

Computer Codes (Design, Simulation, Field Calculation)

349

Figure 2: Parallel SDDS and parallel HDF5 I/O perfor-
mance of writing 600MB and 1.2GB files on Jazz.

sum of number of parameters, arrays and columns, plus the
time required to write other (generally small) parts of the
SDDS header. Buffering could reduce this by a significant
factor.

IMPROVEMENTS

We made further improvements in parallel SDDS that
include 1) changing the header reading strategy so that
only one processor reads the layout information, param-
eters, and total number of rows, and then broadcasts this
information; 2) using buffered I/O for writing the layout,
parameters, arrays, and the number of rows, and for read-
ing parameters, arrays, and the total number of rows; and
3) parallel reading and writing of SDDS in column-major
order.

Since the collective I/O seems to have better perfor-
mance on the GPFS file system, we also implemented
collective-I/O row-major SDDS. The performance was
studied on the Intrepid (IBM Blue Gene/P) GPFS file sys-
tem [11] with reading/writing a 2.4GB file. We have no
performance of HDF5 on Intrepid due to lack of time. The
results are as follows.

As expected, collective I/O does not benefit row-major
SDDS data. But it does benefit the column-major SDDS
data, especially in writing. The writing performance of
column-major SDDS data is 1GB/s with 350 processors,
which is close to the theoretical throughput (1GB/s for 320
processors).

Similar to the Jazz PVFS system, independent I/O row-
major SDDS shows good performance on GPFS in both
reading and writing. The maximum reading throughput is
600MB/s and the writing throughput is 370MB/s.

CONCLUSION

In this work, we implemented a parallel SDDS inter-
face with independent I/O and completed a performance
study of parallel SDDS and parallel HDF5 on Jazz with

PVFS version 1 file system based MPICH1 MPI-I/O. Par-
allel SDDS (for row-major ordered files) was found to have
better scalability than HDF5 on a PVFS file system and
better performance with large files. We also implemented
parallel SDDS with independent I/O and collective I/O for
row-major and column-major SDDS data, and studied the
performance on the Intrepid (Blue Gene P) GPFS file sys-
tem. The results show that collective writing of column-
major ordered SDDS data reaches the theoretical through-
put of the I/O nodes. Independent-I/O SDDS, which is cur-
rently being used in parallel applications such as Pelegant
[12], shows good performance for both reading and writing
row-major-ordered SDDS data.

ACKNOWLEDGMENTS

The ComPASS project is supported under the SciDAC
program by the U.S. Department of Energy Office of High
Energy Physics, Office of Nuclear Physics, Office of Basic
Energy Sciences, and Office of Advanced Scientific Com-
puting Research.

REFERENCES

[1] M. Borland, “A Self-Describing File Protocol for Sim-
ulation Integration and Shared Postprocessors,” Proc. of
PAC95, Dallas, Texas, 2184 (1996); www.jacow.org.

[2] M. Borland et al., “SDDS-Based Software Tools for Ac-
celerator Design”, Proc. of PAC03, Portland, Oregon, 3461
(2003); www.jacow.org.

[3] L. Emery, “Required Cavity HOM deQing Calculated from
Probability Estimates of Coupled Bunch Instabilities in the
APS Ring,” Proc. of PAC93, Dallas, Texas, 3360 (1993),
www.jacow.org.

[4] M. Borland, “elegant: A Flexible SDDS-Compliant Code
for Accelerator Simulation,” Advanced Photon Source Note
LS-287, September 2000.

[5] L. Emery, “Beam Simulation and Radiation Dose Calcula-
tion at the Advanced Photon Source withshower, an Inter-
face Program to the EGS4 Code System,” Proc. of PAC96,
Vancouver BC, 2309 (1996); www.jacow.org.

[6] Y. Wang, M.Borland, Proc. of PAC07, Albuquerque, New
Mexico, 3444 (2007); www.jacow.org.

[7] C. Chilan et al., “Parallel I/O Performance Study with
HDF5, A Scientific Data Package,” www.spscicomp.org/-
ScicomP12/Presentations/User/Yang.pdf

[8] http://www.lcrc.anl.gov/jazz/Documentation/index.php

[9] http://www.aps.anl.gov/AcceleratorSystemsDivision/Op-
erationsAnalysis/oagSoftware.shtml

[10] W. Gropp, E. Lusk, and R. Thakur, “Using MPI-2: Ad-
vanced Features of the Mesaage-Passing Interface,” MIT
press, Cambridge, MA, 199.

[11] https://wiki.alcf.anl.gov/index.php/FileSystems/

[12] Y. Wang et al., these proceedings.

THPSC050 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

350

