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Abstract

Demanding applications such as heavy ion fusion, high
energy colliders and free electron lasers require the study
of beam phenomena like space-charge induced instabili-
ties, emittance growth and halo formation. Numerical sim-
ulations for instance with GPT (General Particle Tracer,
Pulsar Physics) calculate the mutual Coulomb interactions
of the tracked particles [5]. The direct summation of the
forces is rather costly and scales with O(N2). In this pa-
per we investigate a new approach for the efficient calcu-
lation of particle-particle interactions: the fast summation
by Nonequispaced Fast Fourier Transform (NFFT) [3, 4],
whereas the NFFT is a generalization of the well known
Fast Fourier Transformation (FFT). We describe the algo-
rithm and discuss the performance and accuracy of this
method for several particle distributions.

INTRODUCTION

The design of particle accelerators requires a sophisti-
cated understanding of the dynamic behaviour of the par-
ticle bunch. Therefore several algorithms have been de-
veloped to determine the trajectories of the particles in the
six-dimensional phase space.

Assuming the energy spread of the charged particles to
be small, the space-charge forces may be computed in the
bunch’s rest frame by superposing the electrostatic field of
each particle. The electric field at the position of the j-th
particle rj ∈ R

3 in the rest frame is given by

E(rj) =
1

4πε0

N∑

�=1
j �=�

q�
rj − r�

‖rj − r�‖3
, j = 1, . . . , N , (1)

where N denotes the number of particles, q� the charge of
the �-th particle, ε0 the permittivity of vacuum and ‖ · ‖
the Euclidean norm. Since (N − 1) interactions have to be
taken into account for each of the N particles, the direct
evaluation of the sum in Eq. (1) reaches a disadvantageous
numerical complexity of O(N2). Note that the evaluation
of the electric field strength has to be performed in each
discrete time step of the tracking to determine the forces
acting on the particles.

FAST SUMMATION USING THE NFFT

The presented method calculates the electric fields of
the bunch approximately using the Nonequispaced Fast

∗ thomas.flisgen@uni-rostock.de

Fourier Transform [3, 4]. The algorithm overcomes the
quadratic runtime behaviour of the direct field evaluation
and scales with O(N log N).

Splitting of Potential Function

To describe the NFFT-based fast field calculation, the
potential of a charged particle is separated into a short-
range and a long-range effect:

φ(r) =
1

4πε0

q

r
= φsr(r) + φlr(r). (2)

Note that r ∈ R
3 denotes the point in the space, where

the potential is evaluated and r = ‖r‖ ∈ R≥0 the distance
between the charged particle (here located at the origin)
and the point of field estimation.

We demand the short-range effect φsr(r) to have com-
pact support, such that φsr(r) = 0 ∀ r ≥ εI and the long-
range effect φlr(r) to be bounded and (p− 1) times differ-
entiable. The variable εI denotes the near field radius.

To cope with the singularity at r = 0 and to ensure the
smoothness of the long-range effect, we regularize the po-
tential at r = εI using an ansatz function (see the dashed,
the crossed and the dotted curves in Fig. 1).
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Figure 1: Potential φ(r) (solid) and long-range effect
φlr(r) with p = 1 (dashed), p = 2 (crossed), p = 3 (dot-
ted), where εI = 1/20 and r = (x 0 0)T .

Notice that the potential function is regularized at the
boundary r = lB = 9/20 as well to obtain a periodic
smooth long-range contribution φlr(r). The deviation be-
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tween φ(r) and φlr(r) for r < εI (see Fig. 1) is corrected
by the near field potential φsr(r).

In summary the far field is given by the case differentia-
tion

φlr(r) =

⎧
⎪⎨

⎪⎩

TI(r) if r < εI ,

φ(r) if εI ≤ r ≤ lB,

TB(r) else

(3)

and the near field is defined by

φsr(r) =

{
φ(r) − TI(r) if r < εI ,

0 else,
(4)

where TI(r) and TB(r) denote the ansatz functions for the
inner and outer regularization. It has to be mentioned that
the sum of both effects (see Eq. (2)) yields the potential
φ(r) only for r ≤ lB . Thus we have to guarantee by a
scaling strategy, which is specified in [1], that the potentials
will not be evaluated for particle distances r > lB .

Fourier Construction

Since the long-range potential is (p − 1) times contin-
uous differentiable, it can be expressed approximately by
the multivariate Fourier sum

φlr(r) ≈ q
∑

k∈In

b̂k e2πikr , (5)

where b̂k ∈ C
n×n×n are the Fourier coefficients of the

long-range effect. These coefficients are obtained by equi-
spaced sampling of φlr(r) and Fast Fourier Transform of
the resulting sample values [1, 3, 4]. It is worth to mention
that the multi-index k = (kx ky kz) runs over the finite set

In := {−n/2, . . . , n/2 − 1}3 , (6)

where n3 is the total number of Fourier coefficients.

Superposition of Field Contributions

Due to the fact that we have to compute potentials of
charges located at different positions r� in the bunch, we
generalize Eq. (2) by replacing r with r − r�. This yields

φ(r − r�) =
1

4πε0

q�

‖r − r�‖ (7)

= φsr(r − r�) + φlr(r − r�). (8)

The equation determines the potential of the �-th particle at
the position r. To compute the potential at the position of
the j-th particle in the bunch, we need to sum up the field
contributions of the remaining (N − 1) particles:

φbu(rj) =
1

4πε0

N∑

�=1
j �=�

qj

‖rj − r�‖ (9)

=
N∑

�=1
j �=�

φsr(rj − r�) +
N∑

�=1
j �=�

φlr(rj − r�). (10)

As a result of the compact support of φsr(r) it has a contri-
bution to the left sum of Eq. (10) only for small distances
‖rj − r�‖ < εI . Thus we do not need to sum over all �
(except � = j), which would lead to an O(N2) runtime be-
haviour of the algorithm. Instead we need to sum up over
the index set

INE
εI

(j) = {� ∈ {1, . . . , N} : 0 < ‖rj − r�‖ < εI} , (11)

where only the cases φsr(rj − r�) �= 0 are considered.
It is worth to mention that a sorting algorithm has to be
implemented, which determines the near field particles for
all of the N particles.

According to the previous considerations the long-range
effect in the right sum of Eq. (10) can be replaced by the
Fourier sum Eq. (5):

φbu(rj) =
∑

�∈INE
εI

(j)

φsr(rj − r�)

+
N∑

�=1
j �=�

q�

∑

k∈In

b̂k e2πik(rj−r�).
(12)

The difference in the exponent of the e-function will be
separated and written as a product of two exponential func-
tions. This yields

φbu(rj) =
∑

�∈INE
εI

(j)

φsr(rj − r�) − qj

∑

k∈In

b̂k

+
N∑

�=1

q�

∑

k∈In

b̂k e2πikrj e−2πikr� .

(13)

It is highlighted that the summation
∑N

�=1 . . . in (13) does
not exclude the case j = � anymore. For the sake of equal-
ity we have to preclude this case manually by subtracting
the contribution qj

∑
k∈In

b̂k.
Now we rewrite our formula such that it can be ex-

pressed by two multivariate Nonequispaced Fast Fourier
Transforms:

φbu(rj) =
∑

�∈INE
εI

(j)

φsr(rj − r�) − qj

∑

k∈In

b̂k

+
∑

k∈In

b̂k

(
N∑

�=1

q� e−2πikr�

)

︸ ︷︷ ︸
NFFTT

e2πikrj

︸ ︷︷ ︸
NFFT

. (14)

The summation in the inner brackets denotes a transposed
version of the NFFT. The outer summation denotes a
NFFT. These transforms can be calculated very efficiently
by using the software library of Kunis and Potts [2].

Determination of Electric Field Strength

Since the electric field strength of the bunch at the po-
sition rj is needed for the tracking procedure, we have to
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evaluate the gradient of our potential:

E(rj) = −∇φbu(rj). (15)

Exemplarily only the x-component Ex(rj) of the electric
field is discussed. Therefore we have to estimate the partial
derivation ∂

∂xj
of the derived potential given in Eq. (14):

Ex(rj) = −
∑

�∈INE
εI

(j)

∂

∂xj
φsr(rj − r�)

−
∑

k∈In

2πi kx b̂k

(
N∑

�=1

q� e−2πikr�

)

︸ ︷︷ ︸
NFFTT

e2πikrj

︸ ︷︷ ︸
NFFT

. (16)

Again the summation in the inner brackets denotes a trans-
posed NFFT. This is followed by n3 multiplications with
2πi kx b̂k. Finally the outer summation is computed by a
NFFT. The transforms are performed by the library [2].

To ensure an advantageous runtime behaviour of the al-
gorithm, we define the near field radius depending on the
number of particles:

εI =
p

2 3
√

N
. (17)

The order of smoothness is set to p = 3 and the total num-
ber of Fourier coefficients to n ≈ 3

√
N .

BENCHMARKING THE ALGORITHM

The presented algorithm has been implemented in C
and tested on an Intel(R)-Xeon(TM)-3 GHz machine with
4 GB RAM using Windows Server 2003.

Error Definitions

Beside the runtime behaviour of the algorithm which we
compare with the runtime of the direct summation Eq. (1),
we discuss the accuracy of the method. Therefore we de-
fine the relative error in the electric field strength by

fj =
‖Enfft(rj)‖ − ‖E(rj)‖

‖E(rj)‖ , j = 1, . . . , N , (18)

where ‖Enfft(rj)‖ is the absolute value of the strength
computed by Eq. (16). The field strength ‖E(rj)‖ is de-
termined by the direct summation Eq. (1). Additionally we
consider the maximum of the relative error given by

fmax =
N

max
j=1

|fj|. (19)

Spherical Distribution

Initially a spherical particle distribution is considered.
The radius of the sphere amounts to R = 2.2 mm. Fig. 2
shows the runtime for the direct summation (see Eq. (1))
and the NFFT-based summation (see Eq. (16).
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Figure 2: Runtime comparison for a spherical particle dis-
tribution using a logarithmic scaling of axes.

Note that logarithmic scales are used for both axes.
The �-curve documents the O(N2) runtime behaviour
of the direct field evaluation, whereas the �-curve shows
the beneficial O(N log N) performance of the NFFT-
approach. Moreover Fig. 2 demonstrates that the approach
becomes faster than the direct summation for N > 4500
particles. For less particles the proposed algorithm is
slower due to its overhead e.g. the computation of the
Fourier coefficients in Eq. (5).

Fig. 3 plots the error in the field strength in dependence
on the particle location rj . The error is encoded by the
colour and the size of the particle. It is obvious that the
field values in the center of the distribution are afflicted
with larger relative errors. The maximal relative error in
the electric field strength is fmax ≈ 0.0188.
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Figure 3: Locations of the relative errors |fj| for the spheri-
cal distribution with N = 64000 particles encoded by the
colour and the size of the particles.

It is mentionable that larger relative errors in the center
of the distribution result in small absolute errors, since the
field strengths are small in the center of the charged bunch.
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Cylindrical Distribution

Secondly a cylindrical distribution is taken into account.
It has a length of L = 3.5 mm and a radius of R = 2 mm.
For this case the runtime behaviour of the algorithm is very
similar to Fig. 2 [1].
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Figure 4: Locations of the relative errors |fj | for the cylin-
drical bunch with N = 64000 particles encoded by the
colour and the size of the particles.

Fig. 4 reflects the error |fj| for the cylindrical particle
distribution. The maximal error is fmax ≈ 0.027. Note
that the ”hard edges” of the cylinder are difficult to treat
numerically (especially with mesh-based strategies for field
evaluation) and analytically. Despite this fact the largest
relative error is again in the center of the distribution.

Sandwich Distribution

Finally a sandwich distribution is examined. It is con-
structed of ten flat ellipsoidal bunches arranged in series.
The semi-axes of the bunches are Rx = Ry = 1 mm in
the transversal direction and Rz = 0.025 mm in the lon-
gitudinal direction. The distance between the bunches is
Δd = 0.111 mm. The runtime behaviour of the algo-
rithm for the sandwich distribution is analog to Fig. 2, but
in contrast to that plot the point of intersection is now at
N ≈ 6000 [1].

Fig. 5 shows the geometry and illustrates the error |fj|
in the absolute electric field strength for each particle. The
maximal relative error is fmax ≈ 0.032. It is remarkable
that larger errors are not located on the boundary of the flat
ellipsoidal bunches, but again in the center of the whole
distribution.

CONCLUSIONS

In this paper a method for the efficient calculation of
electric fields inside a bunch of charged particles is con-
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Figure 5: Locations of the relative errors |fj | for the sand-
wich bunch with N = 64000 particles encoded by the
colour and the size of the particles.

structed. The presented algorithm overcomes the quadratic
runtime of the direct summation and scales for the pro-
posed examples with O(N log N). Although it is still
slower compared to mesh-based methods, it has the advan-
tage that it copes very well with ”hard edges” and disconti-
nuities in the charge density ρ.

It is spotlighted that the time evolution of the bunch’s
shape is mainly determined by the forces on the particles
located at the boundary of the distribution. Therefore es-
pecially the field values at the edges have to be computed
with small errors. Hence larger relative errors in the center
of the distribution pose no crucial problem for the tracking.
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