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ABSTRACT

We consider a sheet bunch represented by a random sam-
ple ofN simulation particles moving in a 4D phase space.
The mean field (=‘self field’) of the bunch is computed
from Maxwell’s equations in the lab frame with a smoothed
charge/current density. The particles are tracked in the
beam frame, thus requiring a transformation of densities
from lab to beam frame. We seek improvements in speed
and practicality in two directions: (a) choice of integration
variables and quadrature rules for the field calculation; and
(b) finding smooth densities from scattered data. For item
(a) we compare our singularity-free formula with the re-
tarded time as integration variable, which we currently use,
with a formula based on Frenet-Serret coordinates. The lat-
ter suggests good approximations in different regions of the
retardation distance which could save both time and stor-
age. For item (b) we discuss Fourier vs. kernel density es-
timation and mention quasi vs. pseudo-random sampling.

INTRODUCTION

In this paper we discuss current and future approaches to
numerically integrating the Vlasov-Maxwell system for a
sheet bunch. More information on our current work can be
found in [1]-[3]. We first present the mathematical problem
in the lab frame. We write the field as an integral of the time
history of the source. Then the initial value problem (IVP)
for the Vlasov equation defines theu = ct evolution of
the phase space density,fL. The coefficients of the Vlasov
equation depend on the Maxwell self field and thus contain
integrals over the time history offL.

It is both physically and computationally advantageous
to determine the so-called beam frame phase space density,
fB. We define the beam frame phase space variables in
terms of the lab frame. The independent variable in the lab
frame (LF) isu and the independent variable in the beam
frame (BF) is arc lengths along a suitably defined reference
orbit. The lab to beam phase space variable transformation
gives the relation betweenfB andfL andfB satisfies a BF
Vlasov equation. Our goal is an efficient computation of
the s-evolution of fB given its valuefB0 at says = 0.
However, this problem is not well posed; solutions are not
unique. The root of this is a causality issue; ats, certain
coefficients of the BF Vlasov equation need information
aboutfB outside the interval[0, s]. This problem, which is
pertinent to the BF and absent in the LF, is easily resolved
to what we believe is a good approximation.

We want to numerically integrate the 4D BF Vlasov
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equation and we do this in terms of a random sample of
N points which simulate the 4D phase space density. We
work in a high performance computing (HPC) environ-
ment. Even so, we do not have a fast enough algorithm
to takeN large enough to obtain an accurate estimate of
the 4D density. Furthermore, there are probably more ef-
ficient ways to obtain the 4D density, e.g., the method of
local characteristics. However, the self field calculation
only needs the BF spatial density,ρB, and a 2D current
density type function, which we denote byτB. We believe
our sample of 4D points is large enough to accurately es-
timate these 2D quantities and this makes a simulation ap-
proach feasible. We randomly generate an initial sample of
BF phase space points fromfB0, and move this sample ac-
cording to the BF equations of motion. Having resolved the
causality issue, the self field can be computed at arc length
s from the history ofgB = (ρB, τB). The calculation ofgB

requires a density estimation procedure from our scattered
data which we discuss. To move the points froms to s+δs
we freeze the self field ats and move the points accord-
ing to the equations of motion. Important to our approach
is the discovery of ans-independent grid on which to rep-
resent the spatial density and a parallel implementation of
our algorithm.

STATEMENT OF PROBLEM FOR SHEET
BUNCH IN LAB FRAME

We consider particle motion in theY = 0 plane in a
right handed coordinate system,(Z, X, Y ), under an ex-
ternal magnetic fieldBext(Z, X, Y ) = Bext(Z)eY . The
equations of motion without self field are

Ṙ =
P

mγ(P)c
, Ṗ = qBext(Z)

1

mγ(P)c

(

PX

−PZ

)

, (1)

whereR = (Z, X)T , P = (PZ , PX)T , ˙ = d/du, m
is the electron rest mass,q is the electron charge andγ is
the Lorentz factor. The associated 4D phase space density,
fL(R,P; u), evolves according to the Liouville equation
∂ufL + Ṙ ·∂RfL + Ṗ ·∂PfL = 0, wherefL is normalized
so that its integral over a phase space region represents the
fraction of the beam in that region. All densities in this
paper are normalized in this way.

We are interested in the evolution offL when cou-
pled to the self field and we begin with the coupled
Vlasov-Maxwell initial boundary problem in 3D with a
shielding boundary condition and initial data atu = ui

where ui will be specified further below. In general,
the self field will push the particles out of theY = 0
plane unless the bunch is a ‘sheet bunch’ and the self
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field is ‘symmetric’. We call the bunch a ‘sheet bunch at
u’ i f its phase space densityf has, at timeu, the form
f(Z, X, Y, PZ , PX , PY ; u) = δ(Y )δ(PY )fL(R, P; u).
Denoting the components of the self field by
EZ , EX , EY , BZ , BX , BY we call the self field “symmet-
ric at u” if EZ(R, Y ; u), EX(R, Y ; u), BY (R, Y ; u) are
even inY and ifEY (R, Y ; u), BZ(R, Y ; u), BX(R, Y ; u)
are odd inY . The point here is that if the initial bunch is
a sheet bunch and if the initial self field is symmetric then,
thanks to the reflection symmetry of Maxwell’s equations
with respect to theY = 0 plane, the bunch is a sheet
bunch for allu ≥ ui and the self field is symmetric for
all u ≥ ui. We assume that these initial conditions on
f and the self field are fulfilled whence, for allu ≥ ui,
EY (R, 0; u) = BZ(R, 0; u) = BX(R, 0; u) = 0. Thus no
particle is pushed out of theY = 0 plane.

We now focus on the self field components
FL(R; u) = (EZ(R, 0; u), EX(R, 0; u), BY (R, 0; u)) ≡
(EZ(R; u), EX(R; u), BY (R; u)) which together with
Bext(Z) are responsible for the in plane forces. The
solution of the initial boundary problem forFL, with
FL(R; u) = ∂uFL(R; u) = 0 atu = ui and the shielding
boundary conditionFL = 0 for Y = ±h/2, is

FL(R; u) = − 1

4π

∞
∑

k=−∞

(−1)k ×

∫

R2

dR′S(R′; u −
[

|R′ − R|2 + (kh)2
]1/2

)
[

|R′ − R|2 + (kh)2
]1/2

. (2)

The source is

S(R; u) = Z0QH(u − ui)





c∂ZρL + ∂uJL,Z

c∂XρL + ∂uJL,X

∂XJL,Z − ∂ZJL,X



 , (3)

whereH is the indicator function on[0,∞) and JL =
(JL,Z , JL,X)T . This solution is obtained by writing the
Maxwell equations in the wave equation form and using the
retarded Green function and the method of images. If the
initial condition is not zero a homogeneous solution must
be added. Without the boundary condition only thek = 0
term remains.

The Vlasov IVP for the LF phase space density is

∂ufL + Ṙ · ∂RfL + Ṗ · ∂PfL = 0,

fL(R,P; ui) = fL0(R,P), (4)

where

Ṙ =
P

mγ(P )c
, (5)

Ṗ =
q

c
(

(

EZ(R; u)
EX(R; u)

)

+
[Bext(Z) + BY (R; u)]

mγ(P)

(

PX

−PZ

)

).

The Vlasov equation and the self field are coupled by the
2D charge and current densities,QρL andQJL, where

ρL(R; u) =

∫

R2

dPfL(R, P; u), (6)

JL(R; u) =

∫

R2

dP(P/mγ(P))fL(R, P; u). (7)

We believe the IVP (4) is well posed, that is, there ex-
ists a unique solution depending continuously on the ini-
tial data. Furthermore, givenfL(·; u),FL(·; u) and a small
positiveδu the solution atu+δu can be determined approx-
imately by freezing the field atu and moving forward along
characteristics defined by the Vlasov equation in (4). Note
thatFL(R, u), requires knowingρL(·; v) andJL(·; v) for
ui ≤ v ≤ u.

In this paper we focus on the numerical solution of the
IVP (4). It is computationally intensive even in a HPC en-
vironment and so a fast algorithm is utmost on our mind.
Actually, for several reasons, the Vlasov equation is inte-
grated in the beam frame and this will be discussed in the
next section. Several approximations will be involved. Ul-
timately the approximations must be judged by how accu-
rately they give an approximation tofL(·; u) as defined by
(4).

The physical problem we have in mind is a single pass
four magnet chicane, and this determinesBext(Y ) (e.g.,
see [1]). We takeui to be the time at which the head of the
bunch reaches the chicane. To have a well defined “head”,
as well as for other reasons, we consider a bunch of com-
pact spatial support, and we assume this in the following
(see [2]). In the regime we have studied we believe the self
field at u = ui is negligible and so (2) is appropriate. In
applications such as this, it is important to determine the
evolution of the so-called BF phase space density,fB, with
the arc lengths along a reference orbit as the independent
variable, and withfB given ats = 0, which we take to be
the entrance to the chicane. This frame is also convenient
as the phase space variables are small and so linearizations
are possible. We now turn our attention to the beam frame.

BEAM FRAME FOR SHEET BUNCH

The beam frame is defined in terms of the reference or-
bit Rr(s) = (Zr(s), Xr(s))

T in theY = 0 plane, which
in turn is defined by the Lorentz equations without the self
field given in (1). Heres is the arc length along the or-
bit andRr(0) = 0 is the entry point of the reference or-
bit into the chicane. The unit tangent vector,t, to the
reference orbit is justt(s) = R′

r(s) and we define the
unit normal vector,n, by n(s) = (−X ′

r(s), Z
′
r(s))

T so
that n is a π/2 counterclockwise rotation fromt. It fol-
lows from (1) thatt′(s) = −qBext(Zr(s))n(s)/Pr where
Pr = mγrβrc is the momentum of the reference particle.
This determines the curvatureκ up to a sign and we choose
κ(s) = qBext(Zr(s))/Pr. Thust′(s) = −κ(s)n(s) and
n′(s) = κ(s)t(s).

The BF Frenet-Serret coordinates areξ = (s, x), where
x is the perpendicular distance alongn. Let T : U :=
R × (−xM , xM ) → T(U) ⊂ R

2, whereT(ξ) = Rr(s) +
xn(s) andxM > 0 is chosen sufficiently small so thatT is
a bijection. This leads to the phase space variable transfor-
mation(R,P) ↔ (s, x, ps, px) defined by

R = T(ξ), P = P(s, ps, px), (8)
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where P(s, ps, px) := Pr(pst(s) + pxn(s)). Our
lab to beam transformation has two more transforma-
tions so that we have(R,P; u) → (s, x, ps, px; u) →
(u, x, ps, px; s) → (z, x, pz, px; s). We have included the
independent variables and in the second transformation the
variabless andu are interchanged makings the new inde-
pendent variable. In the final transformationz := s − βru
replaces u as a dependent variable andpz := (γ − γr)/γr

replacesps. Note that the variablesr := (z, x)T and
p := (pz, px)T are small near the reference orbit which
corresponds tor = p = 0.

The main objects in this paper are the phase space densi-
ties. The exact relation between the LF phase space density,
fL, and the BF phase space density,fB, is

fB(r,p; s) =
P 2

r

β2
r

fL{T(ξ),

Pr[ps(p)t(s) + pxn(s)]; (s − z)/βr}, (9)

where

ps(p)2 = (
1

βr
)2(1 + pz)

2 − p2

x − 1

γ2
rβ2

r

. (10)

Recall that we considerfL(·; u) to be well defined by (4)
for u ≥ ui and note thatfB(·; s) requiresfL(·; u) for a
range ofu values. This density transformation is unusual
in that there is an interchange ofu ands in their roles as in-
dependent and dependent variables and this requires that in
the dynamicss must be an increasing function ofu. There
are subtleties in the derivation of the transformation (9) and
details will be given in [2].

Introducing the inverse of (8), we write

fL(R,P; u) =
β2

r

P 2
r

fB{s(R) − βru, x(R),

pz(P, s(R)),P · n(s(R))/Pr; s(R)}, (11)

where(s(R), x(R)) = T−1(R) for R ∈ T(U), ps(p) =
P ·t(s)/Pr can be solved forpz(P, s) using (10) andpx =
P · n(s(R))/Pr . BecauseR = T(ξ) in (8) is only locally
invertible we require the coordinate densitiesρL(R; u) and
ρB(r; s) to have compact support.

To define the BF Vlasov equation we need the BF equa-
tions of motion. Using (5) and (8) we obtain

z′ = 1 − K(ξ)(1 + pz)

ps(p)
, x′ =

K(ξ)px

ps(p)
,

p′z =
qK(ξ)

mγrc2

(

E‖(T(ξ);
s − z

βr
) · t(s)

+
px

ps(p)
E‖(T(ξ);

s − z

βr
) · n(s)

)

p′x =
1

Pr

(

Prps(p)κ(s) − qK(ξ)Bext(Zr(s) − xX ′
r(s))

)

+
q(1 + pz)

Prps(p)βrc
K(ξ)E‖(T(ξ);

s − z

βr
) · n(s)

− q

Pr
K(ξ)BY (T(ξ);

s − z

βr
). (12)

Here′ = d/ds, E|| := (EZ , EX)T andK(ξ) := 1+κ(s)x.
The BF phase space densityfB, given in (9), satisfies the

Vlasov equation

∂sfB + r′ · ∇rfB + p′ · ∇pfB = 0, (13)

where the coefficients are given by (12). This can be veri-
fied by simply plugging (9) into (13) and using (4). It is also
consistent with the BF equations of motion themselves, as
it must be, since the Vlasov equation for (12) is (13). In
this context it is worth mentioning that the vector field in
(12) is divergence free (see [2]).

Since there exists a uniquefL defined by the IVP (4),
Eq. (9) gives us a uniquefB which we want to compute.
However, we want to compute it based on thes = 0 IVP
for (13), where

fB(r,p; 0) =: fB0(r,p), (14)

by using an algorithm which marches forward ins. The
initial condition can be determined from (9) givenfL0 and
the solution of (4) for a small forward time interval starting
atui. However, in our applications, e.g. [1], we have been
givenfB0, notfL0.

Clearly, (13) is a nonlinear partial differential integral
equation where thep′ coefficient depends on the self
field FL(R(s, x), (s − z)/βr) and thus onfB through
fL. However, there is a causality issue. The quantity
FL(R(s, x), (s − z)/βr) requires knowledge offB(·; τ),
not only for τ ∈ [0, s], but also for someτ outside this
interval. Nevertheless, since the main contribution top′

comes from[0, s], we obtain a feasible s-stepping algo-
rithm for fB given the initial condition (14). In the next
section we discuss what we do when knowledge offB(·; τ)
is needed forτ /∈ [0, s].

The basic computational issue is to solve the IVP (13-14)
in such a way that to good approximation (9) is satisfied,
with fL defined by (4). This requires determiningfL0 from
fB0, which we discuss in [2].

Before leaving this section we note that in our computa-
tions we use the approximate BF equations of motion,

z′ = −κ(s)x, p′z = Fz1(z, x; s) + pzFz2(z, x; s),

x′ = px, p′x = κ(s)pz + Fx(z, x; s), (15)

where

Fz1 =
q

Prc
E‖(R(ξ);

s − z

βr
) · t(s),

Fz2=
q

Prc
E‖(R(ξ);

s − z

βr
) · n(s), (16)

Fx=
q

Prc
[E‖(R(ξ);

s−z

βr
) · n(s) − cBY (R(ξ);

s − z

βr
)].

These equations were obtained from the exact BF equations
(12) by linearizing the terms without the self field and by
approximating the coefficients of the self field terms (see
[2]). Without the self field, the general solution of (15) can
be written in terms of the dispersion function,D(s), and the

Proceedings of ICAP09, San Francisco, CA TH2IOPK01

Computer Codes (Design, Simulation, Field Calculation)

165



momentum compaction function,R56(s). We have found
that it is numerically more efficient to integrate (15) in the
interaction picture based on this zero self field solution (see
[1]).

SELF FIELD FROM BF PHASE SPACE
DENSITY AND CAUSALITY DISCUSSION

An s−stepping algorithm to evolve an approximation to
fB(·; s) according to (13-14) needs to compute

FL(T(ξ); (s − z)/βr) = (17)

−
∫

R2

dR′S[R′; (s − z)/βr − |R′ − T(ξ)|]
4π|R′ − T(ξ)| ,

approximately, whereFL(R; u) was defined in (2). Here
we ignore the shielding, as it adds little computational
complexity. To compute (17) we needρL(R′; v(R′)) and
JL(R′; v(R′)) in terms offB asR′ varies over the support
of ρL(R′; v(R′), wherev(R′) = (s−z)/βr−|Ŕ−T(ξ)|.
Using (11) we obtain

ρL(R; u) = (18)

β2

r

∫

dpfB{s(R) − βru, x(R),p; s(R)}|∂pz
ps(p)|,

and a similar formula forJL(R; u). Thus givenfB(·; τ)
over a suitableτ domain, (17) can be computed. Further-
more, using the fact thatfB is nonnegative and continuous,
it follows that the support ofρL(R; u) is the same as the
support ofρB{s(R) − βru, x(R); s(R)}.

There are two issues here. First, it would be inefficient
to integrate (17) over all ofR2. Thus it is important to de-
termine a good superset for the region where the integrand
is nonzero. However, thisR′ region appears to be diffi-
cult to determine efficiently. In the next section we explore
two sets of integration variables better suited to the inte-
gration in (17). Second, we must deal with the issue that
(17) requires knowledge offB(·; τ) for τ /∈ [0, s]. to good
approximation becomes

We begin by considerings = 0. We assume that the sup-
port of the initial z−density,

∫

dxdpzdpxfB0, is [−a, a].
For s = 0 we havez = −βru, so the arrival time ats = 0
of the particle withz−coordinateξ isu = −ξ/βr. Thus the
head of the bunch corresponds toz = a and the tail toz =
−a. Recall that we definedui to be the time at which the
head of the bunch enters the chicane, thusui = −a/βr. To
evaluate (17) we needfL(R′,P;−z/βr−|R′−T[(0, x)]|)
and so we needfL(R′,P; v) for v ∈ [ui = −a/βr, a/βr].
This will be discussed in [2].

We claim that ats we need partial information on
fB(·; τ) for some τ > s, i.e., there is a causality is-
sue. To demonstrate this we chooser = 0 and R′ =
Rr(s) + ∆t(s) in the integrand of (17), where∆ is pos-
itive and small relative to the bunch size. Thus the inte-
grand requires the value ofρL(Rr(s) + ∆t(s); s/βr −∆)
and by (18)fB{s(Rr(s) + ∆t(s))− s + βr∆, x(Rr(s) +
∆t(s)),p; s(Rr(s) + ∆t(s)} is needed. Now applying

Taylor’s theorems(Rr(s) + ∆t(s)) = s + ∆ + O(∆2)
andx(Rr(s) + ∆t(s)) = O(∆2) and we obtainfB{(1 +
βr)∆ + O(∆2), O(∆2),p; s + ∆}. Thus we need partial
information onfB(·; s + ∆) and this completes the claim.

A geometrical argument may be more insightful. Take
r = 0, then the LF observation point is at(Rr(s), s/βr).
The ‘backward lightcone’ of this event isCL = {(R′, u′) :
|R′ − Rr(s)| = s/βr − u′,R′ ∈ T(U)} with BF im-
ageCB = {(z′, x′, s′) : |Rr(s

′) + x′n(s′) − Rr(s)| =
(z′ − s′ + s)/βr, ξ

′ ∈ U)}. Solving|Rr(s
′) + x′n(s′) −

Rr(s)| = (z′ − s′ + s)/βr for small ∆ := s′ − s gives
z′ = ∆ + βr

√
∆2 + x′2. Thus there are small positive

∆ with (z′, x′) in the beam, i.e.,CB contains points in the
beams′ > s. In the drift, this argument even works without
the small∆ assumption.

We suspect that whenever causality is violated, within
the support offB, it is only violated in a smallτ inter-
val for τ > s. However, in our applicationsfB(·; s) is
slowly varying, that is,fB(·; s + ∆) ≈ fB(·; s) for |∆|
less than thez−size of the beam. Thus we believe that to
good approximation (17) can be determined fromfB(·; τ)
for τ ≤ s, if we takefB(·; τ) = fB(·; s) whenτ > s,
and this resolves the causality issue. Recall that the IVP
(4) definesfL(R,P; u) for u ≥ ui, givenfL0(R,P). So
the true test of any approximation is, does thefB(r,p; s)
we calculate approximately satisfy (9)? We believe our ap-
proximations do, but have no proof.

For eachs, the computation ofFL in (17) must be done
for a large number ofr values, thus both arguments ofFL

vary. However, sincefB(·; s) is slowly varying we be-
lieve thatFL(T[(s, x)], (s − z)/βr) is also slowly vary-
ing in s, for fixed r. Replacings by s + z and expand-
ing givesFL(Rr(s) + xn(s), (s− z)/βr) ≈ FL(Rr(s) +
M(s)r, s/βr), whereM(s) = [t(s),n(s)]. Thus to move
points, the second argument is independent ofz, and this
increases the efficiency. This is what we do in the code.
There is still a causality issue but it can be resolved as
above.

OUTLINE OF CALCULATION OF THE
BEAM FRAME SPATIAL DENSITY

Our ultimate goal is to compute the evolution offB(·; s)
for s > 0 givenf0B, i.e., the solution of the IVP (13-14),
but this is beyond our current capability as mentioned in the
Introduction. However the computation of the evolution of
the associated spatial densityρB(·; s) is possible. From
(10)∂pz

ps(p) is 1/β2

r to good approximation, thus by (11)
we can takeρL(R; u) = ρB{s(R) − βru, x(R); s(R)).
Also, to good approximation,JL can be determined from
ρB andτB whereτB(r, s) = βr

∫

R2 pxfB(r,p; s)dp (see
[1]-[3]). Thus, from the history ofgB := (ρB, τB), the
self field (17) can be computed. Our current goal is a fast
method to calculategB(·; s), for s > 0 givenfB0, consis-
tent with the IVP (13-14).

We begin by generating an initial,s = 0, set of phase
space points fromfB0 using a random number genera-
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tor. We currently use pseudo random points and are in
the process of investigating quasi random points, which are
known to have a significant advantage in numerical integra-
tion. From the scattered data we calculategB(·; 0) using a
density estimation procedure. We follow the phase space
points using (15) in the interaction picture. Ats we have
the scattered set of phase space points and the history of
gB(r; τ) for −2a ≤ τ < s on a 3D grid in(r, τ). To
go froms → s + δs we first calculategB(·; s) from scat-
tered data using well known density estimation procedures
from Statistics. Then from the knowledge ofgB(·; τ) for
−2a ≤ τ ≤ s we calculate the self field from (17) and use
this and (15) to move the points froms → s+δs. The bulk
of the calculations are done in parallel.

The main issues for a fast algorithm are the field calcu-
lation, the density estimation and the parallel implementa-
tion. The latter is elementary, the first two are discussed in
the next two sections.

FIELD CALCULATION

The bunch is small and moving. Thus, for eachs, it is
important to have a good estimate of the location and spa-
tial extent of the bunch. This allows for an s-independent
grid on which to representgB(r; s). We first discuss a
model we currently use in our bunch compressor studies,
which gives a compact,s-independent grid. Then we dis-
cuss two sets of integration variables for the integration in
(17).

Compact Support Model of Bunch

The location and spatial extent of the bunch depends on
the initial phase space density. The one we use in our mi-
crobunching studies, [1], is

fB0(r,p) = (1 + ε(z))µ(z)ρc(pz − hz)ρt(x, px), (19)

where ε(z) = A cos(k0z), µ is a flat top with support
[−a, a], ρc is N(0, σu) and ρt is N(0, diag(σx0

, σpx0
)),

whereσu andσpx0
are small. Takingσu = 0 andσpx0

= 0,
the initial conditions for (15) have the formz = z̃, pz =
hz̃, x = x̃, andpx = 0 and without the self field the solu-
tion is

z = (1 + hR56(s))z̃ −D′(s)x̃, x = hD(s)z̃ + x̃. (20)

Hereh is the chirp parameter andD(s) andR56(s) were
introduced in the context of (15). Using(z̃, x̃) as coor-
dinates we find that the support ofgB(·; s) is essentially
independent ofs.

To obtain our compact support model we scale the tilde
variables and our final transformation isr = A(s)r̃ =
A(s)Σr̂ =: B(s)r̂. HereΣ is a diagonal matrix chosen
so that the support of the beam is just inside the circle
r̂T r̂ = 1. Thus the support ofgB(r; s) is given by

rT E(s)r ≤ 1, E(s) = B(s)−T B(s)−1, (21)

that is, it is the interior of an ellipse. Using (21) to de-
termine theR′ region of integration seems complicated.
We now introduce two sets of integration variables which
simplify the determination of the support and the task of
integration.

Polar Coordinates

We transform to polar coordinates(χ, θ) in (2) and then
take the temporal argumentv in place of the radial coordi-
nateχ. That is, we make the transformationR′ → (θ, v)
via R′ = R + χe(θ), e(θ) = (cos θ, sin θ)T , v = u −
√

χ2 + (kh)2.
This removes the integrable singularity giving the field

simply as an integral over the source,

FL(R, u) = − 1

4π

∫ u

ui

dv

∫ π

−π

dθ S[R+(u−v)e(θ), v], (22)

where we have ignored shielding. Using the slowly varying
assumption, as discussed at the end of Section 4, we obtain

F(, (s−z)/βr) ≈ F(Rr(s)+M(s)r, s/βr)

= − 1

4π

∫ s/βr

ui

dv

∫ π

−π

dθS[R̃(θ, v; r, s), v], (23)

whereR̃(θ, v; r, s) = Rr(s) + M(s)r + (s/βr − v)e(θ).
This is what we must calculate, at arc lengths, asr varies
over the bunch. Note that forr = 0 the approximation is
exact. Also takingr = 0, v = s/βr − ∆ ande(θ) = t(s),
we see the same causality issue as before and resolve it in
the same way.

Except for v close to s/βr the θ support in (23) is
tiny and it is important for a fast algorithm to compute
this accurately. Using the slowly varying approximation
and (18), it can be shown that the support ofS(R̃, v) is,
to good approximation, the same asρB(MT (βrv)(R̃ −
Rr(βrv)), βrv). The support of the latter is given by (21)
with r replaced byMT (βrv)(R̃−Rr(βrv)) ands replaced
by βrv. This gives a quartic inexp(iθ) and solving this
gives reasonableθ limits. This is discussed in some detail
in [1] and [3].

Currently theθ integration is done with the superconver-
gent trapezoidal rule. The remainingv−integrand varies
with v, R andu in ways we have not yet quantified and so
we use an adaptive integrator based on the Gauss-Kronrod
algorithm. We are investigating two improvements. The
adaptive integrator is slow and we are studying thev de-
pendence of the integrand after theθ integration with the
hope of using a non-adaptive algorithm. Solving the quar-
tic to determine theθ support may not be the best approach.
The ellipse in (21) is quite elongated and we are investigat-
ing replacing it by a parallelogram which should simplify
the calculation.

The computational effort for the calculation of one com-
ponent of the self field isO(NzNxNvNθ), whereNz and
Nx are the number of grid points in̂z and x̂ respec-
tively, Nv is the number of evaluations for thev integra-
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tion, andNθ is the number of evaluations for theθ in-
tegration. Typical values for our simulations in [1] are
Nz = 1000, Nx = 128, Nv = Nθ = 1000, therefore
O(NzNxNvNθ) = O(1012).

Beam Frame Coordinates

The transformationR′ → ξ′ viaR′ = T(ξ′) in (2) gives

FL(T(ξ); (s − z)/βr) = − 1

4π

∫

R2

dξ′
K(ξ′)

|T(ξ′) − T(ξ)|
×S[T(ξ′);

s − z

βr
− |T(ξ′) − T(ξ)|]. (24)

The nonsingular part of the integrand forE|| is given by

K(ξ′)S||[T(ξ′);
s − z

βr
− |T(ξ′) − T(ξ)|]/QZ0c

= [(
1

γ2
r

− β2

rx′κ(s′))D1ρB() + D3ρB()]t(s′)

+ K(ξ′)[D2ρB() + D1τB()]n(s′), (25)

where() = (z′, x′; s′), z′ = s′− s+ z−βr|T(ξ′)−T(ξ)|
and S|| is defined in the obvious way. Thus the sup-
port of the integrand is the support ofgB(z′, x′; s′). For
eachs′, the x′ region of integration can now be deter-
mined from (21) by solvingr(ξ′)T E(s′)r(ξ′) = 1 where
r(ξ′)T = (s′ − s + z − βr|T(ξ′) − T(ξ)|, x′). This is
a quartic equation inx′, which is not so surprising asx′

is analogous toθ in the previous subsection. We can now
write (24) as an iterated integral as in (23).

We are in the process of comparing this with the polar
coordinate approach. The integrand is given naturally in
terms ofgB which is nice. For example, one sees the fac-
tor, D3ρB, which gives rise to the compression and is not
there for a rigid bunch. Also, studies by Warnock suggest
(i) this is a natural framework for the study of 1D collective
force approximations, (ii) it could lead to a good approxi-
mation fors′ nears, which includes the singularity, and (iii)
a multipole expansion fors′ a few bunch lengths froms is
possible and may save time and storage. We are pursuing
these ideas.

DENSITY ESTIMATION

Density estimation is a significant and active area of
Statistics, see for example [4] and [5]. We compare the
computational effort of three methods for the same level of
accuracy.

One approach to density estimation is based on orthog-
onal series and we have studied the Fourier series case
in some detail following [4]. HereρL and JL are ob-
tained at everys step by computing the Fourier coeffi-
cients of the truncated Fourier series via Monte Carlo in-
tegration of the random sample of phase space points. De-
tails are given in [1] and [3]. The computational effort is
O(NJzJx) + O(NzNxJzJx), whereN is the number of
simulated points, andJz andJx are the number of Fourier

coefficients inẑ andx̂ respectively. Typical values in our
microbunching simulations areN = 5×108, Jz = 150 and
Jx = 50. Therefore the computational effort isO(1012)
and is of the same order as the computational effort for the
polar coordinate field calculation discussed previously.

A second approach employs cloud in cell charge depo-
sition where at everys step the random sample is placed
on our fixed grid (See Section3.5 of [5] and [6]). HereρL

andJL are obtained by computing the Fourier coefficients
of the truncated Fourier series by a simple quadrature. The
computational effort in this case isO(N )+O(NzNxJzJx).
We have found that usingN , Jz, Jx as above,Nz = 1000
andNx = 128, gives the same approximation as the Monte
Carlo approach of the previous paragraph. This computa-
tional effort ofO(109) is much smaller than for the orthog-
onal series method and negligible with respect to the com-
putational effort for the polar coordinate field calculation.
This is the present method implemented in our code.

A third approach applies kernel density estimator tech-
niques to the random sample. This approach is still in the
testing phase where we are investigating standard kernels
like bivariate Gaussians or bivariate Epanechnikov kernels
(all with a uniform bandwith,h). The computational ef-
fort for the bivariate Epanechnikov kernel isO(N ÑzÑx),
whereN is as before but now̃NzÑx is the number of grid
points inside the square which encloses the circle of ra-
diush centered at the scattered particle positionẑ, x̂. For
N = 5 × 108, Nz = 1000, Nx = 128 we approximately
getÑz = 24, Ñx = 3, O(N ÑzÑx) = O(1010). Thus this
method is comparable in speed to the second method and
is worthy of further investigation.

So far, for all three approaches, the initial random sam-
ple is generated from pseudo-random numbers but quasi-
random numbers will be tested soon.
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