Proceedings of ICAP(09, San Francisco, CA TH2IOPKO01

SELF FIELD OF SHEET BUNCH: A SEARCH FOR IMPROVED METHODS
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ABSTRACT equation and we do this in terms of a random sample of

N points which simulate the 4D phase space density. We

We con;idera_sheet PU”Ch represe_nted by arandom S5k in a high performance computing (HPC) environ-
ple of V¥ S|m_ulat|on pa“"?'es moving in a 4D phase SPaC&nhent. Even so, we do not have a fast enough algorithm
The mean field (='self field’) of the bunch is computed,, 15,6 A7 |arge enough to obtain an accurate estimate of
from Maxwellsequatllonsmthe Iab_frame with asmoo.theqhe 4D density. Furthermore, there are probably more ef-
charge/current densny.l .The particles are tracked in Fr’ﬁ\ciem ways to obtain the 4D density, e.g., the method of
beam frame, thus requiring a tran;formatlon of qens't'QEcal characteristics. However, the self field calculation
from lab t_o bgam frame_. W(_a seek |mpro_vements in Spe%ly needs the BF spatial densityg, and a 2D current
and practicality in two directions: (a) choice of 'ntegrat'orljensity type function, which we denote by. We believe
variables and quadrature rules for the field calculation; an&hr sample of 4D points is large enough to accurately es-
(b) finding smooth densities from scattered data. For itefgote these 2D quantities and this makes a simulation ap-
(@) we compare our sllngular.|ty-free f9rm“'a with the re; roach feasible. We randomly generate an initial sample of
tarded time as integration variable, which we currently usey- phase space points frofa, and move this sample ac-
with a formula based on Frenet-Serret coordinates. The |38 jin g to the BF equations of motion. Having resolved the
ter suggests good approximations in differentregions of the, ity issue, the self field can be computed at arc length
retardation distance which could save both time and Stog'fromthe history ofyz = (pp, 75 ). The calculation of 5

age. .For item (b) we dISCU.SS Fourier vs. kemel denS|t)_/ e?équires a density estimation procedure from our scattered
timation and mention quasi vs. pseudo-random sampllngdata which we discuss. To move the points froto s -+ ds
we freeze the self field at and move the points accord-
INTRODUCTION ing to the equations of motion. Important to our approach

is the discovery of as-independent grid on which to rep-

In th.|s paperwe d!scuss currentand future approaches fgsq s the spatial density and a parallel implementation of
numerically integrating the Vlasov-Maxwell system for Aour algorithm

sheet bunch. More information on our current work can be

foundin [1]-[3]. We first present the mathematical problem

in the lab frame. We write the field as an integral of the timeSTATEMENT OF PROBLEM FOR SHEET

history of the source. Then the initial value problem (IVP) BUNCH IN LAB FRAME

for the Vlasov equation defines the = ct evolution of . . L .
We consider particle motion in thE = 0 plane in a

the phase space densify,. The coefficients of the Vlaso
P P . o " right handed coordinate systert®, X,Y), under an ex-

equation depend on the Maxwell self field and thus contaft? T -
integrals over the time history df. ternal magnetic fielB¢.:(Z, X,Y) = Bexi(Z)ey. The

It is both physically and computationally advantageou‘gqu"’monS of motion without self field are

to determine the so-called beam frame phase space density, _ 1 p

fB. We define the beam frame phase space variables iR = ——=—, P = ¢Beyt(Z) ——=— ( _1)_—,( ) (1)
terms of the lab frame. The independent variable in the lab my(P)e my(P)e 7

frame (LF) isu and the independent variable in the beani}vhereR — (Z,X)T, P = (Ps, Px)", " = d/du, m

frame (BF) is arc length along a suitably defined reference;

. ) “is the electron rest masg,is the electron charge andis
orbit. The lab to beam phase space variable transformauﬂ[ﬂe Lorentz factor. The associated 4D phase space density
gives the relation betweef; andf;, and fz satisfies a BF '

. . . . R, P;u), evolves according to the Liouville equation
Vlasov equation. Our goal is an efficient computation oéL} +RU)8 fLAP-Opf :8 wheref, is normz(aqlized
the s-evolution of fp given its valuefpy at says = 0. L RIL pJL ' L

so that its integral over a phase space region represents the
Qf"action of the beam in that region. All densities in this
rE)aper are normalized in this way.

We are interested in the evolution gf, when cou-

ed to the self field and we begin with the coupled

unique. The root of this is a causality issue;satertain
coefficients of the BF Vlasov equation need informatio
aboutf outside the intervgD, s]. This problem, which is

pertinent to the BF and absent in the LF, is easily resolv lasov-Maxwell initial boundary problem in 3D with a

to what we believe is a good approximation. o o L
Wi E i ically int te the 4D BE VI shielding boundary condition and initial dataat= wu;
¢ want to numerically integrate the asOV\yhere u; will be specified further below. In general,
* gabriele.bassi@stfc.ac.uk the self field will push the particles out of the = 0

T Work supported by US DOE grant DE-FG02-99ER41104 plane unless the bunch is a ‘sheet bunch’ and the self
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field is ‘symmetric’. We call the bunch a ‘sheet bunch atVe believe the IVP (4) is well posed, that is, there ex-
u' if its phase space densitfy has, at timeu, the form ists a unique solution depending continuously on the ini-
f(Z,X,Y,Pz,Px,Py;u) = 6Y)(Py)fc(R,P;u). tial data. Furthermore, givefy,(-; u), Fr(-; u) and a small
Denoting the components of the self field bypositiveduthe solution ati+du can be determined approx-
Ez, Ex, Ey, Bz, Bx, By we call the self field “symmet- imately by freezing the field at and moving forward along
ricatu” if Ez(R,Y;u), Ex(R,Y;u),By(R,Y;u) are characteristics defined by the Vlasov equation in (4). Note
eveninY andifEy (R,Y;u), Bz(R,Y;u), Bx(R,Y;u) thatFL(R,u), requires knowingy (-;v) andJ(; v) for

are odd inY. The point here is that if the initial bunch is u; < v < u.

a sheet bunch and if the initial self field is symmetric then, In this paper we focus on the numerical solution of the
thanks to the reflection symmetry of Maxwell’'s equationsVP (4). It is computationally intensive even in a HPC en-
with respect to they” = 0 plane, the bunch is a sheetvironment and so a fast algorithm is utmost on our mind.
bunch for allu > w; and the self field is symmetric for Actually, for several reasons, the Vlasov equation is inte-
all w > u;. We assume that these initial conditions orgrated in the beam frame and this will be discussed in the
f and the self field are fulfilled whence, for all > u;, next section. Several approximations will be involved. Ul-
Ey(R,0;u) = Bz(R,0;u) = Bx(R,0;u) =0. Thusno timately the approximations must be judged by how accu-

particle is pushed out of the = 0 plane. rately they give an approximation i, (-; ) as defined by
We now focus on the self field components(4).
Fr(Ryu) = (Ez(R,0;u), Ex(R,0;u), By (R, 0;u)) = The physical problem we have in mind is a single pass

(Ez(R;u), Ex(R;u), By (R;u)) which together with four magnet chicane, and this determinés..(Y) (e.g.,
Be:t(Z) are responsible for the in plane forces. Thesee [1]). We take:; to be the time at which the head of the
solution of the initial boundary problem faF;, with  bunch reaches the chicane. To have a well defined “head”,
Fr(R;u) = 0,F(R;u) = 0 atu = u; and the shielding as well as for other reasons, we consider a bunch of com-

boundary conditior¥, = 0 forY = £h/2,is pact spatial support, and we assume this in the following
;& (see [2]). In the regime we have studied we believe the self
Fr(Rsu) = i Z (—1)% x field atu = wu; is negligible and so (2) is appropriate. In
[ S—— applications such as this, it is important to determine the
/. / 2 211/2 evolution of the so-called BF phase space dengiywith
/ dR’S(R v “R —RI°+ (klh)z } ). (2) the arc lengths along a reference orbit as the independent
R? [R/ = R[? + (kh)?] / variable, and withfz given ats = 0, which we take to be
The source is the entrance to the chicane. This frame is also convenient

clzpr + OuJrL,z
S(R;u) = ZoQH (u — u;) cOxpr + 0uJr, x
OxJr,z —0zJr x
where H is the indicator function or0,cc) andJ;, = BEAM FRAME FOR SHEET BUNCH

(Jr,z,J1,x)". This solution is obtained by writing the  The heam frame is defined in terms of the reference or-
Maxwell equations in the wave equation form and using thgj R,(s) = (Z:(s), X,(s))T intheY = 0 plane, which
retarded Green function and the method of images. If thg tyrn is defined by the Lorentz equations without the self
initial condition is not zero a homogeneous solution Musig|q given in (1). Heres is the arc length along the or-
be added. Without the boundary condition only the- 0 pit and R,(0) = 0 is the entry point of the reference or-

term remains. o bit into the chicane. The unit tangent vector,to the
The Vlasov IVP for the LF phase space density is reference orbit is just(s) = R’(s) and we define the

T

as the phase space variables are small and so linearizations
) 3) are possible. We now turn our attention to the beam frame.

Oufr +R-OrfrL+P- Opfr =0, unit normal vectorn, by n(s) = (—=X/.(s), Z.(s))T so
thatn is a7 /2 counterclockwise rotation from It fol-
R,P;u;) = R,P), 4
I us) = frol ) @ lows from (1) thatt’(s) = —qBext(Z.(s))n(s)/ P, where
where P, = m~,.B-c is the momentum of the reference patrticle.
_ P ©) This determines the curvatuseup to a sign and we choose
my(P)c’ k(8) = qBext(Zy(s))/P-. Thust'(s) = —«x(s)n(s) and

p_4 Ez(R;u) [Bext(Z) + By (R;u)] [ Px n'(s) = k(s)t(s). _
= E( (EX(R; u)) m~ (P) (_pZ> )- The BF Frenet-Serret coordinates &dre- (s, z), where

The Vlasov equation and the self field are coupled by thé 's the perpendicular distance along LetT : U :=

— — 2 =
2D charge and current densiti€zp;, andQJ,, where X (—aar, 2ar) — T(U) C R, whereT(¢) = Ry (s) +

an(s) andzys > 0 is chosen sufficiently small so thatis
R ) — dPfr (R.P: 6 @ bijection. This leads to the phase space variable transfor-
PLR;u) /R SR, Piu), ©)  ation(R.P) — (5,2 p..p,) defined by
TR = [ dPP/m PR P () R=T(), P=Pls.p.p). @
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where P(s,ps,ps) = Pr(pst(s) + pun(s)). Our Here' =d/ds, E| := (Ez, Ex)" andK(£) := 1+r(s)x.
lab to beam transformation has two more transforma- The BF phase space densfty, given in (9), satisfies the
tions so that we havéR,P;u) — (s,z,ps,p.;u) —  Vlasov equation
(u,z,ps, pz;8) — (2,2,pz, pz; s). We have included the
independent variables and in the second transformation the Osfp +r' - Vifp +p - Vpfp =0, (13)
variabless andu are interchanged makingthe new inde-
pendent variable. In the final transformation= s — G, u
replaces u as a dependent variable and= (v — v,-) /7
replacesp,. Note that the variables := (z,z)7 and
p := (p.,p.)T are small near the reference orbit whic
correspondste = p = 0.

The main objects in this paper are the phase space de
ties. The exactrelation between the LF phase space densE
fr, and the BF phase space densjty, is

where the coefficients are given by (12). This can be veri-
fied by simply plugging (9) into (13) and using (4). Itis also
consistent with the BF equations of motion themselves, as
hit must be, since the Vlasov equation for (12) is (13). In
this context it is worth mentioning that the vector field in
ng1-2) is divergence free (see [2]).

Since there exists a uniqug, defined by the IVP (4),
d. (9) gives us a uniqués which we want to compute.
However, we want to compute it based on the- 0 IVP
for (13), where

fB(I',p;O) = fBO(ra p)a (14)

by using an algorithm which marches forward<dn The

fa(r.pss) = Z—fh{w),
P lpe()b(s) + pen()): (s — 2)/B, ) (9)

where initial condition can be determined from (9) givép, and
1 1 the solution of (4) for a small forward time interval starting
2 _ 2 2 2
ps(P)” = (E) (L+p2)" =Pz — V252 (10)  aty,. However, in our applications, e.g. [1], we have been

given fgq, Not f1o.
Recall that we considefy,(;u) to be well defined by (4)  Clearly, (13) is a nonlinear partial differential integral
for u > u; and note thalf(-; s) requiresfr(-;u) fora  equation where thg’ coefficient depends on the self
range ofu values. This density transformation is unusuafield F,(R(s,z), (s — z)/8,) and thus onfp through
in that there is an interchange@fnds in theirrolesasin-  r, . However, there is a causality issue. The quantity
dependent and dependent variables and this requires thatan (R(s, z), (s — z)/4,) requires knowledge of 5(-; 7),
the dynamics must be an increasing function of There  not only forr € [0, s], but also for some- outside this
are subtleties in the derivation of the transformation (9) anghterval. Nevertheless, since the main contributiorpto

details will be given in [2]. comes from|0, s], we obtain a feasible s-stepping algo-
Introducing the inverse of (8), we write rithm for fp given the initial condition (14). In the next
9 section we discuss what we do when knowledggsif; )
LR, P;u) = %fB{s(R) — Bru, z(R), is needed for ¢ [0, s].
T The basic computationalissue is to solve the IVP (13-14)

p=(P,s(R)),P-n(s(R))/Pr;s(R)}, (11) in such a way that to good approximation (9) is satisfied,
B with f;, defined by (4). This requires determiniyfigy from
Whel’e(s(R), l’(R)) =T 1(R) forR S T(U), ps(p) = fBO: which we discuss in [2]
P-t(s)/P, can be solved fop. (P, s) using (10) ang,, =

p R B o in (8) v locall Before leaving this section we note that in our computa-
. n(.s( )/ D _ecauseR — '_I‘(g) in ( )_'_S onlylocally  tions we use the approximate BF equations of motion,
invertible we require the coordinate densitiggR; «) and

PB (I‘; S) to have CompaCt Support' Z/ = —K(S)l‘, plz = Lzl (27 3 S) + szz2(Za 5 S)a

To define the BF Vlasov equation we need the BF equa- r_ o .
tions of motion. Using (5) and (8) we obtain = b P = K(s)p: + Fal(z,235),  (19)
h
R (31 I ((3)7 where
’ B ’ q s—z
K(e) ps(p) ps(p) Fa = ﬁEH(R(f); 3 ) - t(s),
q s—=z r 4
re= s (BT 5 ) 40s) g 5=
Yr r FZQZEEH(R(g)a 3 ) : n(s), (16)
Dz s —z r r
+—=E|(T(); ——) -n(s) q s—2 s— 2
pi(p) Br ) Fo=5—[Ej(R(&); ﬁ—) “n(s) — cBy (R(E); 3 )l-
A - — qK(8)Bewt (Z(s) — X,
P P, ( P (P)(s) = Gh(&) Bear (2 (5) — (S))) These equations were obtained from the exact BF equations
q(1+p.) s5—=z (12) by linearizing the terms without the self field and by
+Prps(p)ﬂrcK(£)EH(T(£)’ Br )-n(s) approximating the coefficients of the self field terms (see
q s—2 [2]). Without the self field, the general solution of (15) can
- E’C(@BY (T(); /3—)~ (12)  be written in terms of the dispersion functidn(s), and the
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momentum compaction functiomss(s). We have found Taylor's theorems(R..(s) + At(s)) = s + A + O(A?)
that it is numerically more efficient to integrate (15) in theandz(R.-(s) + At(s)) = O(A?) and we obtainfs{(1 +
interaction picture based on this zero self field solution (se&.)A + O(A?), O(A?), p; s + A}. Thus we need partial
[1D. information onfs(-; s + A) and this completes the claim.
A geometrical argument may be more insightful. Take

SELF FIELD FROM BF PHASE SPACE = 0, then the LF observation point is &R, (s), s/,

DENSITY AND CAUSALITY DISCUSSION The ‘backward lightcone’ of this eventés, = {(R’,u') :
R" — R, (s)] = s/6, —u/,R' € T(U)} with BF im-

An s—stepping algorithm to evolve an approximation toageCz = {(z/,2/,5') : |R.(s') + 2/n(s') — R,(s)| =

fB(+;s) according to (13-14) needs to compute (2 — s’ +5)/Br,& € U)}. Solving|R,(s') + 2'n(s') —
R.(s)| = (¢ — ¢ + s)/6, for small A := s’ — s gives
Fr(T(€); (s = 2)/Br) = an A4 BrV A2 + 22, Thus there are small positive
_/ Jr SR (s —2)/6, — R~ T(§)] A with (2',2) in the beam, i.e.(5 contains points in the
R2 4w |R! — T(€)| ’ beams’ > s. In the drift, this argument even works without

the smallA assumption.

We suspect that whenever causality is violated, within
e support off, it is only violated in a small- inter-

val for 7 > s. However, in our applicationgz(-; s) is
slowly varying, that is,f5(-;s + A) ~ fg(-;s) for |A|
less than the—size of the beam. Thus we believe that to
good approximation (17) can be determined frép(-; 7)

N for 7 < s, if we take f5(:;7) = fB(:;s) whenT > s,
pr(Riu) = (18) and this resolves the causality issue. Recall that the IVP
ﬁf/dpr{s(R) — Bru, z(R), p; s(R)}O,.ps(p)|, (4) definesfr(R,P;u) for u > u;, given fro(R,P). So

the true test of any approximation is, does fhgr, p; s)

and a similar formula fod ,(R;«). Thus givenfz(-;7) We calculate approximately satisfy (9)? We believe our ap-
over a suitable- domain, (17) can be computed. FurtherProximations do, but have no proof.
more, using the fact thafts is nonnegative and continuous, ~For eachs, the computation of;, in (17) must be done
it follows that the support of,(R;u) is the same as the for a large number of values, thus both arguments 5,
support ofos{s(R) — B,u, z(R): s(R)}. vary. However, sincefg(+;s) is slowly varying we be-

There are two issues here. First, it would be inefficienieve thatF.(T[(s,z)], (s — z)/5;) is also slowly vary-
to integrate (17) over all dR2. Thus it is important to de- iNg in s, for fixedr. Replacings by s + z and expand-
termine a good superset for the region where the integrafidd 9ives7 . (R (s) + zn(s), (s — 2)/8;) = FL(Rr(s) +
is nonzero. However, thiR’ region appears to be diffi- M (s)r,s/B:), whereM (s) = [t(s),n(s)]. Thus to move
cult to determine efficiently. In the next section we explor@0ints, the second argument is independent,and this
two sets of integration variables better suited to the intdncreases the efficiency. This is what we do in the code.
gration in (17). Second, we must deal with the issue thdthere is still a causality issue but it can be resolved as
(17) requires knowledge offz(-; 7) for 7 ¢ [0, s]. to good ~above.
approximation becomes

We begin by considering= 0. We assume thatthe sup- QUTLINE OF CALCULATION OF THE

approximately, whereF ., (R; u) was defined in (2). Here
we ignore the shielding, as it adds little computationallh
complexity. To compute (17) we need,(R’; v(R')) and
Jr(R’;v(R’)) interms of fp asR’ varies over the support
of p1.(R’;u(R’), wherev(R') = (s—z)/f, — [R~T(€)].
Using (11) we obtain

port of the initial z—density, [ dzdp.dp, fBo, is [—a, a]. BEAM FRAME SPATIAL DENSITY

Fors = 0 we havez = —3,.u, so the arrival time at = 0

of the particle with-—coordinate isu = —¢/,.. Thusthe Our ultimate goal is to compute the evolutionfof(-; s)
head of the bunch corresponds:te- a and the tail toz =  for s > 0 given fyp, i.e., the solution of the IVP (13-14),

—a. Recall that we defined; to be the time at which the but this is beyond our current capability as mentioned in the
head of the bunch enters the chicane, thus- —a/3,. To  Introduction. However the computation of the evolution of
evaluate (17) we neef},(R/, P; —z/6,.— |R'—T[(0,z)]|) the associated spatial densjty;(-;s) is possible. From
and so we needr (R’,P;v) forv € [u; = —a/B,,a/B,]. (10)8,.ps(p) is 1/32 to good approximation, thus by (11)
This will be discussed in [2]. we can takepr(R;u) = pp{s(R) — Gru,z(R); s(R)).

We claim that ats we need partial information on Also, to good approximation]; can be determined from
fB(:;7) for somer > s, ie., there is a causality is- pp andrp whererg(r,s) = 3. fw pfB(r,p; s)dp (See
sue. To demonstrate this we choase= 0 andR’ = [1]-[3]). Thus, from the history ofys := (pp,75), the
R.(s) + At(s) in the integrand of (17), wherA is pos- self field (17) can be computed. Our current goal is a fast
itive and small relative to the bunch size. Thus the intemethod to calculates(+; s), for s > 0 given fpq, consis-
grand requires the value of,(R,.(s) + At(s); s/3, — A)  tent with the IVP (13-14).
and by (18)fg{s(R,(s) + At(s)) — s+ - A, z(R,-(s) + We begin by generating an initia§, = 0, set of phase
At(s)),p; s(Rr-(s) + At(s)} is needed. Now applying space points fromfp, using a random number genera-
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166



Proceedings of ICAP(09, San Francisco, CA TH2IOPKO01

tor. We currently use pseudo random points and are ihat is, it is the interior of an ellipse. Using (21) to de-
the process of investigating quasi random points, which atermine theR’ region of integration seems complicated.
known to have a significant advantage in numerical integrdde now introduce two sets of integration variables which
tion. From the scattered data we calculgtg-; 0) using a simplify the determination of the support and the task of
density estimation procedure. We follow the phase spagetegration.
points using (15) in the interaction picture. Atwe have
the scattered set of phase space points and the historyRdlar Coordinates

r;7) for —2a < 7 son a 3D grid in(r,7). To . .
gﬁ(fr;)nzs s ds Weﬁrst calculateji(-; 5) S‘r(;m) scat- We transform to polar coqrdmatég, 0) in (2)_and then
tered data using well known density estimation procedurt—{@ke the temporal argumenin place of the_ radial coordi-
from Statistics. Then from the knowledge @f (; 7) for  N3€X- Thatis, we make the transformatlé:i}tf — (6,0)
—2a < 7 < s we calculate the self field from (17) and use"'2 5 = R2+ xe(t),e(f) = (cosf,sinb)", v = u -
this and (15) to move the points from— s+ ds. The bulk VX - (Kh)2. . . o .
of the calculations are done in parallel. _ This removes the integrable singularity giving the field

The main issues for a fast algorithm are the field calcus-Imply as an integral over the source,
lation, the density estimation and the parallel implementa- 1 ¢ ™
tion. The latter is elementary, the first two are discussed i/ L(R.u) = —-— /dv/dO S[R+(u—v)e(0),v], (22)
the next two sections. oo
where we have ignored shielding. Using the slowly varying

FIELD CALCULATION assumption, as discussed at the end of Section 4, we obtain
The bunch is small and moving. Thus, for eaghit is F(,(s—2)/Br) = F(R.(s)+M(s)r,s/ )
important to have a good estimate of the location and spa- 1 [s/Br w _
tial extent of the bunch. This allows for an s-independent =~ dU/ dOS[R(0, v;r,s),v],  (23)

grid on which to represengp(r;s). We first discuss a

model we currently use in our bunch compressor studieﬁ,heref{(g vir, s) = Ro(s) + M(s)r + (s/Br — v)e(d).
which gives a compact-independent grid. Then we dis- s js what we must calculate, at arc lengttasr varies
cuss two sets of integration variables for the integration igyer the bunch. Note that far = 0 the approximation is

(17). exact. Also taking = 0, v = s/3, — A ande(f) = t(s),
we see the same causality issue as before and resolve it in
Compact Support Model of Bunch the same way.

Except forv close tos/3, the 6 support in (23) is
y and it is important for a fast algorithm to compute
s accurately. Using the slowly varying approximation
and (18), it can be shown that the supportSchL v) is,

_ to good approximation, the same ag(M* (3,v)(R —
=(1 c\VMz — h yHMa ) 19 . .

fBo(r,p) = (1 + &(2))u(2) pe(p= — h2)pe(x, ps),  (19) R, (8,v)), B-v). The support of the latter is given by (21)

wheres(z) = Acos(koz), 1 is a flat top with support With r replaced byl ™ (3,v)(R —R.(8v)) ands replaced

[—a.d], p. is N(0,0,) and p; is N(0,diago,,, 0, ), by 8,.v. This gives a quartic irxp(if) and solving this
whereo, ando,, are small. Taking, = 0 ando, 20, gives reasonablé limits. This is discussed in some detail
u T . u £ H

The location and spatial extent of the bunch depends on
the initial phase space density. The one we use in our M
crobunching studies, [1], is

the initial conditions for (15) have the form= 2, p, = in[lland[3]. o _
hz, z = 7, andp, = 0 and without the self field the solu- Currently thed integration is done with the superconver-
tion is gent trapezoidal rule. The remaining-integrand varies

with v, R andu in ways we have not yet quantified and so
z= (14 hRss(s))Z— D'(s)z, x=hD(s)2+. (20) We use an adaptive integrator based on the Gauss-Kronrod
algorithm. We are investigating two improvements. The
Here h is the chirp parameter anB(s) and R5s(s) were adaptive integrator is slow and we are studying thee-
introduced in the context of (15). Using,z) as coor- pendence of the integrand after theéntegration with the
dinates we find that the support 9f(-; s) is essentially hope of using a non-adaptive algorithm. Solving the quar-

independent of. tic to determine thé support may not be the best approach.
To obtain our compact support model we scale the tild&he ellipse in (21) is quite elongated and we are investigat-
variables and our final transformationis= A(s)t = ing replacing it by a parallelogram which should simplify

A(s)Xt =: B(s)t. HereX is a diagonal matrix chosen the calculation.
so that the support of the beam is just inside the circle The computational effort for the calculation of one com-

#7# = 1. Thus the support ajz(r; 5) is given by ponent of the self field i©® (N, N, N, Ng), whereN, and
N, are the number of grid points id and & respec-
r’E(s)r <1, E(s) = B(s)"TB(s)™1, (21) tively, N, is the number of evaluations for theintegra-
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tion, and Ny is the number of evaluations for thein-  coefficients inZ andi respectively. Typical values in our
tegration. Typical values for our simulations in [1] aremicrobunching simulations af¢ = 5x 108, J, = 150 and
N, = 1000, N, = 128, N, = Ny = 1000, therefore .J, = 50. Therefore the computational effort 3(10'2)

O(N,N,N,Ny) = O(10'2). and is of the same order as the computational effort for the
polar coordinate field calculation discussed previously.
Beam Frame Coordinates A second approach employs cloud in cell charge depo-
, , sition where at every step the random sample is placed
The transformatioRR’ — ¢’ viaR' = T(¢') in (2) gives

on our fixed grid (See Section3.5 of [5] and [6]). Here
( andJ, are obtained by computing the Fourier coefficients

s —

of the truncated Fourier series by a simple quadrature. The
computational effortin this case@®N)+O(N, N, J, J.;).
|T( ") — ( )|] (24) We have found that using’, J., J,. as above}N, = 1000
ﬁr andN, = 128, gives the same approximation as the Monte
Carlo approach of the previous paragraph. This computa-
tional effort of O(10%) is much smaller than for the orthog-

xS[T(¢);

The nonsingular part of the integrand By, is given by

, 85— 2 , onal series method and negligible with respect to the com-
KED)S)[T(E); B, IT(E) = T(OI/Q%0c putational effort for the polar coordinate field calculation.
1 This is the present method implemented in our code.
== - Bra'w(s")) Dipp() + Dapp()]t(s") A third approach applies kernel density estimator tech-
T , , nigues to the random sample. This approach is still in the
+ K(E)[D2p5() + Di7p()In(s"), (29) testing phase where we are investigating standard kernels

like bivariate Gaussians or bivariate Epanechnikov kernels
(all with a uniform bandwith). The computational ef-
fort for the bivariate Epanechnikov kernel&N N, N,),
where\ is as before but now N, is the number of grid
points inside the square which encloses the circle of ra-
dius h centered at the scattered particle positiot. For
N =5 x 108, N, = 1000, N, = 128 we approximately
WgetN =24, N, = 3, O(J\/N N,) = O(10%°). Thus this
method is comparable in speed to the second method and
|s worthy of further investigation.

So far, for all three approaches, the initial random sam-
le is generated from pseudo-random numbers but quasi-
{andom numbers will be tested soon.

where() = (2/,2';8"), 2 =’ —s+2—6,|T() —T(§)]
and S, is deflned in the obvious way. Thus the sup-
port of the integrand is the support 9k (2', z’; s’). For
eachs’, the z’ region of integration can now be deter-
mined from (21) by solving:(¢')T E(s")r(¢') = 1 where
()" = (8 — s+ z — B|T(E) — T(6)|,’). Thisis
a quartic equation i/, which is not so surprising ag’
is analogous t@ in the previous subsection. We can no
write (24) as an iterated integral as in (23).

We are in the process of comparing this with the polar
coordinate approach. The integrand is given naturally in
terms ofgg which is nice. For example, one sees the fac*
tor, D3pp, which gives rise to the compression and is no
there for a rigid bunch. Also, studies by Warnock suggest
(i) this is a natural framework for the study of 1D collective ACKNOWLEDGMENTS
force approximations, (ii) it could lead to a good approxi- e gratefully acknowledge Bob Warnock for useful dis-
mation fors’ nears, which includes the singularity, and (i) ¢ssions.

a multipole expansion fo#’ a few bunch lengths fromis
possible and may save time and storage. We are pursuing
these ideas. REFERENCES
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