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Abstract

The Vlasov equation can describe the evolution of a par-
ticle density under the effects of electromagnetic fields and
thus it is possible to describe the evolution of a charged
particle beam within an accelerator beam line. The Vlasov
equation forms a partial differential equation in a 6D phase
space witch renders it very expensive if it is solved via clas-
sical methods. A more efficient approach consists in rep-
resenting the particle distribution function by a discrete set
of characteristic moments. For each moment a time evo-
lution equation can be stated. These ordinary differential
equations can then be integrated efficiently by means of nu-
merical methods if all acting forces together with a proper
initial condition are given. The beam dynamics simulation
tool V-Code has been implemented at TEMF on the basis of
the moment approach. In this paper the numerical model,
main features and designated use cases of the V-Code will
be presented.

INTRODUCTION

The distribution of particles in the 6-dimensional (6D)
phase space can be described by a density distribution func-
tion f(�r, �p, τ) with space coordinates �r = (x, y, z), nor-
malized momentum �p = (px, py, pz) and equivalent time
τ = c · t. Their evolution in the phase space can then be
expressed by the Vlasov equation

∂f

∂τ
+
∂f

∂�r
· �p
γ

+
∂f

∂�p
·

�F

m0c2
= 0 (1)

where γ represents the relativistic factor, �F the applied
forces, m0 the particles rest mass and c the speed of light
in free space.
Equation (1) is applicable for any forces �F with slow vari-
ation in space [2]. Coulomb forces within an charged par-
ticle beam as well as forces from external electromagnetic
fields meet this condition. Thus, the Vlasov equation is ap-
plicable for beam dynamics simulations of charged particle
beams in accelerators.
It is very expensive to solve such a partial differential equa-
tion via classic numerical methods for a time varying 6D
density distribution function.
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MOMENT APPROACH

A more efficient approach is to consider a discrete set of
characteristic moments of the particle distribution function
instead of the function itself [3]. Following this approach
the problem can be reduced to a set of ordinary differen-
tial equations which can be evaluated by means of standard
time integration methods.

Moment Definition

The classical raw moments <μ> are obtained from the
distribution function f by a weighted integration over the
whole phase space Ω

<μ> =
∫

Ω

μ f(�r, �p, τ) dΩ. (2)

Here, the normalized density distribution function to ensure

1 != < 1 > =
∫

Ω

f(�r ) dΩ (3)

has to be applied for proper algebraic relations.

A numerically advantageous choice of moments witch
ultimately allows the determination of the overall position
and the overall momentum of a particle distribution is
given by the first order raw moments

μ ∈ {x, y, z, px, py, pz} (4)

in Cartesian coordinates.

By choosing the higher order moments in a central-
ized notation

μ ∈ {(x−<x>)l1 · . . . · (pz−<pz>)l6 , . . .} (5)

one automatically obtains a translatory invariant descrip-
tion of the shape of the particle distribution function.
For example, a subset of the second order moments

σx
2 =<(x−<x>)2>

σy
2 =<(y−<y>)2>

σz
2 =<(z−<z>)2>

then identify the important variances of the underlying par-
ticle distribution.
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Moment Evolution

The time evolution of the moment parameters can be ex-
pressed as follows:

∂ <μ>

∂τ
=

∂

∂τ

∫
μf dΩ =

∫
(f
∂μ

∂τ
+ μ

∂f

∂τ
) dΩ. (6)

Here, the Vlasov equation can be used to completely elim-
inate the time derivative of the distribution function and
substitute it with a spatial expression instead:

∂f

∂τ
= −(

∂f

∂�r
· �p
γ

+
∂f

∂�p
·

�F

m0c2
). (7)

Further, the time derivative of the moment parameter can
be reformulated like

∂μ

∂τ
=

∂μ

∂ <�r>

∂ <�r>

∂τ
+

∂μ

∂ <�p>

∂ <�p>

∂τ
. (8)

Inserting (7) and (8) in equation (6) and applying a partial
integration together with the moment definition (2) allows
to state the following fundamental time evolution equation

∂ <μ>

∂τ
= <

∂μ

∂ <�r>
><

�p

γ
> + <

∂μ

∂ <�p>
><

�F

m0c2
>

+ <
∂μ

∂�r

�p

γ
> + <

∂μ

∂�p

�F

m0c2
> (9)

In order to enable the evaluation of (9) by means of a time
integration method all arguments on the right hand side
have to be expressed in terms of time dependent bunch
parameters i.e. by moments of the settled form. This can
be achieved by Taylor expanding 1

γ and �F in an operation
point defined by the particle distribution and utilizing a
truncation according to the regarded order of moments.

If the energy spread is small compared to the mean
energy of the whole bunch a linear approximation of γ is
adequate

γ =
√

1 + px
2 + py

2 + pz
2 (10)

but in general higher order forms are possible.

The series expansion for internal space charge forces
and forces due to external fields can be performed inde-
pendently. External fields are observed in radio frequency
cavities (RF-cavities) or any kind of magnetic multipole
for example.

External Field Representation

From the Maxwell equations in frequency domain and
isotropic homogeneous linear media one can describe the
fields within RF-cavities in cylindrical coordinates:

Er =
−1
jωμε

∂Bϕ

∂z
, Br =

1
jω

∂Eϕ

∂z

Eϕ =
1

jωμε
(
∂Br

∂z
− ∂Bz

∂r
), Bϕ =

−1
jω

(
∂Er

∂z
− ∂Ez

∂r
)

Ez =
1

jωμε

1
r

∂(rBϕ)
∂r

, Bz =
−1
jω

1
r

∂(rEϕ)
∂r

.

In this formulation the field components Br, Eϕ, Bz are
completely decoupled from Er, Bϕ, Ez . Within acceler-
ating cavities it is appropriate to consider the latter ones
exclusively.
By defining �B = curl �A and applying Bernoulli’s separa-
tion approach

�A(r, z) = �ezAz(r, z) = �ez

∞∑
i=0

Ai(z)r
i (11)

it is possible to describeEr,Bϕ,Ez solely with derivatives

of the z-component of the vector potential �A

Bϕ =−2A2 · r − 4A4 · r3 − 6A6 · r5 − . . . (12)

Er =
1

jωμε

(
2A′

2 · r + 4A′
4 · r3 + 6A′

6 · r5 + . . .
)

(13)

Ez =
−1
jωμε

(
4A2 + 16A4 · r2 + 36A6 · r4 + . . .

)
. (14)

Evaluation on the axis (r = 0) results in

Ez|r=0 = −4 ·A2

jωμε
, (15)

which allows to determine the coefficients consecutively

A2 = − 1
4jωμε · Ez|r=0 (16)

A4 = −1
16 · (A′′

2 + ω2μεA2

)
(17)

A6 = −1
36 · (A′′

4 + ω2μεA4

)
(18)

... .

By successively inserting the coefficients in (12) - (14) one
obtains the field components in cylindrical coordinates in
terms of a series expansion

Bϕ = 1
2jωμε Ez0 r− 1

16jωμε
(
E′′

z0+ω2με Ez0

)
r3+. . .

(19)

Er =− 1
2 E

′
z0 r+

1
16

(
E′′′

z0 + ω2με E′
z0

)
r3+. . . (20)

Ez =Ez0 − 1
4

(
E′′

z0+ω2με Ez0

)
r2+. . . . (21)

The function of this expansion constitute the paraxial
approximation of the field distribution within a RF-cavity.

For multipole magnets a similar approach to approx-
imate the three dimensional field distribution inside the
source free vacuum tube is possible. The Maxwell equa-
tions for magnetostatic problems in source free vacuum ar-
eas can be reduced to the following equations:

curl �B = 0 (22)

div �B = 0. (23)

This allows to state the scalar potential equation

ΔV = div grad V = 0 with �B = −grad V. (24)
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Applying Bernoulli’s separation approach together with a
series expansion for magnetic 2n poles leads to

Br =(rn−1 α(z) − (n+ 2) rn+1 α′′(z)
4(n+ 1)n

+ . . .) · sin(nϕ)

(25)

Bϕ =(rn−1 α(z) − rn+1 α′′(z)
4(n+ 1)

+ . . .) · cos(nϕ) (26)

Bz =(
rn α′(z)

n
− rn+2 α′′′(z)

4(n+ 1)n
+ . . .) · sin(nϕ) (27)

with the multipole strength α along the longitudinal axis z.

Force Calculation

The forces resulting from the external fields can now be
calculated by applying the Lorentz equation

�F = q( �E + �v × �B). (28)

As stated before the terms< �F > and<μ�F > in (9) have to
be expanded such that the resulting expression can be used
to setup a moment description form.
A multipole expansion splits the force naturally in constant,
linear, quadratic, etc. terms. By applying the moment defi-
nition (2) they can be expressed as follows:

• For constant forces Fν = a one gets
<Fν>= a and <μFν>= 0.

• For linear forces Fν = bμ one gets
<Fν>= 0 and <μFν>= bMμμ.

• For quadratic forces Fν = cμ2 one gets
<Fν>= cMμμ and <μFν>= cMμμμ

Hence, the order of the moments has to be at least one order
higher then that of the significant terms of the multipole
expansion.

Space Charge Forces

In order to determine the space charge forces a model to
reconstruct the charge distribution within the particle bunch
from the moment description is needed. The simplest ap-
proach is to assume a homogeneously charged ellipsoidal
bunch. Starting from the force acting between two particles
moving together with constant speed one gets the space
charge force F (�r) in an arbitrary point of observation �r
within the bunch by integrating over the bunch volume. In
order to avoid the singularities of the integrand in the prox-
imity of the point of observation one can omit a symmetric
area surrounding this point when integrating. Within this
area the space charge forces compensate themselves. Fol-
lowing this approach one gets

�F (�r) ≈ G

(
2γσz

σx + σy

)
· eQ0

γ2
· �r − 〈�r〉

VG
(29)

with

G (u) = (1 − exp (−u)) ·
⎛
⎝ 1 0 0

0 1 0
0 0 γ/u

⎞
⎠ . (30)

The moment approach is not limited to this linear space
charge model. The particle density reconstruction can also
be done by other techniques like moment matching or the
maximum entropy method.

Time Integration

The time evolution of all moments <μ> is specified by
the stated set of fundamental differential equations (9). By
defining a single comprehensive vector �ψ which includes
all considered moments one can state the new time depen-
dent variable �ψ(t). The whole physical model can then be
written in the standard mathematical form

�ψ′(t) = �φ(t, �ψ(t)), �ψ(t0) = �ψ0, (31)

where �ψ′ denotes the time derivative and �φ summarizes
all kinematic and kinetic effects of the forces mentioned
above. If an initial set of moments �ψ0 is provided the prob-
lem can be solved by standard time integration methods
[1].

Multi Ensembles

In order to reproduce more complex particle interactions
a multi ensemble model is possible. In this approach a par-
ticle distribution is represented by several sets of moments
each of them defining an ensemble as shown in Fig. 1.

Figure 1: A 2D example of a multi ensemble setup. The
red ellipsoids show four ensembles representing the parti-
cle distribution. The green dashed shape describes the set
of moments obtained through weighted averages over the
moments of the four single ensembles.

The time evolution of the several ensembles are calculated
according to the procedure for single ensemble bunches de-
scribed above. At any time a set of moments representing
the whole bunch can be obtained from the moments of the
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ensembles. The density distribution function for the whole
bunch composed e.g. of two ensembles is defined as

f(�r ) = f1(�r ) + f2(�r ). (32)

This leads to the following equations for the charge Q:

Q = Q

∫
Ω

f1(�r ) dΩ︸ ︷︷ ︸
Q1

+Q

∫
Ω

f2(�r ) dΩ︸ ︷︷ ︸
Q2

(33)

and defines the local density distribution functions via the
relations

1 =
∫

Ω

Q

Q1
f1(�r ) dΩ 1 =

∫
Ω

Q

Q2
f2(�r ) dΩ. (34)

The first order moments of the whole bunch can then be
obtained from the first order moments of the individual en-
sembles <μ>f1 and <μ>f2 as follows:

<μ>=
Q1

Q
<μ>f1 +

Q2

Q
<μ>f2 . (35)

For the second order centralized moments

Muv =<(u−<u>) · (v−<v>)>

with u, v ∈ {x, y, z, px, py, pz} one obtains

Muv =
Q1

Q
·Muv,f1 +

Q1

Q
(〈u〉f1 − 〈u〉) · (〈v〉f1 − 〈v〉)

+
Q2

Q
·Muv,f2 +

Q2

Q
(〈u〉f2 − 〈u〉) · (〈v〉f2 − 〈v〉).

(36)

Additional higher order moments can be calculated simi-
larly.

APPLICATIONS

Based on the moment approach the fast online beam dy-
namics simulation tool V-Code was implemented at TEMF.
The aim of several further developments was to increase the
application range to various accelerator designs. For exam-
ple dipole bending magnets were introduced in [6] in order
to simulate recirculating machines. The V-Code can be uti-
lized for the design phase as well as during the accelerator
operation.

Beam Line Design and Optimization

At the Superconducting Darmstadt Linear ACcelerator
S-DALINAC the V-Code has been used during the design
process of the injector for the new 100 keV polarized elec-
tron source. Starting from an initial ensemble issued from
a simulation of the electron source with the CST code
MAFIA [4] the entire beam line was modeled within the
V-Code and simulated as a whole. The results of detailed
simulations can be found in [5].

triplets

Wien filter

dipole magnet

prebuncher

α magnet

100 keV
source

Figure 2: Schematic computational model of the compact
injector design for the new polarized electron source at the
S-DALINAC.

Operator Support

Fast beam dynamics simulations can advantageously as-
sist the machine operators at various particle accelerator
machines because of a flexible parameter variation com-
bined with nearly simultaneous solution responses giving
a detailed insight into the actual machine status. A user
friendly front end was implemented for this purpose, giving
the operator the possibility to comfortably change the pa-
rameter setup and receiving a well-arranged overview over
the actual beam status.

Automatic Beam Adjustment

Finding an optimal parameter setup for an accelerator
beam line is a tedious and laborious task as the number
of variable parameters is typically very large. A fast sim-
ulation code opens the possibility to analyze a multitude
of parameter sets in a reasonable time. By implementing
objectives and valuation rules this procedure can be auto-
mated. Further, a connection between the simulation code
and the accelerator diagnostic software allows to take into
account measured parameters in the automated optimiza-
tion process.
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