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PREFACE 
	  
The	  2009	  International	  Computational	  Accelerator	  Conference	  was	  held	  Aug	  31	  -‐	  
Sept	  4,	  2009	  in	  San	  Francisco,	  California.	  Hosted	  by	  Lawrence	  Berkeley	  National	  
Laboratory	  and	  the	  SLAC	  National	  Accelerator	  Laboratory,	  ICAP’09	  was	  the	  10th	  in	  
the	  conference	  series,	  following	  meetings	  in	  La	  Jolla,	  California	  (1988),	  Los	  Alamos,	  
New	  Mexico	  (1990),	  Pleasanton,	  California	  (1993),	  Williamsburg,	  Virginia	  (1996),	  
Monterey,	  California	  (1998),	  Darmstadt,	  Germany	  (2000),	  East	  Lansing,	  Michigan	  
(2002),	  St.	  Petersburg,	  Russia	  (2004),	  and	  Chamonix,	  France	  (2006).	  
	  
The	  combination	  of	  an	  exciting	  technical	  program	  and	  a	  world-‐class	  venue	  (the	  
Mark	  Hopkins	  InterContinental	  Hotel	  in	  the	  heart	  of	  San	  Francisco)	  resulted	  in	  a	  
conference	  that	  attracted	  168	  registered	  attendees,	  the	  most	  in	  the	  conference	  
series	  history,	  from	  North	  America,	  	  	  Europe,	  and	  	  Asia.	  	  Accepted	  for	  the	  program	  
were	  115	  talks	  and	  32	  posters	  on	  a	  variety	  of	  topics,	  including	  computational	  beam	  
dynamics,	  electromagnetics,	  advanced	  accelerator	  modeling,	  numerical	  algorithms,	  
and	  visualization.	  	  A	  special	  session	  was	  organized	  by	  researchers	  from	  the	  National	  
Energy	  Research	  Scientific	  Computing	  Center	  (NERSC)	  on	  Trends	  in	  High	  
Performance	  Computing.	  
	  
This	  conference	  would	  not	  have	  been	  possible	  without	  the	  dedicated	  efforts	  of	  many	  
people.	  T	  he	  Local	  Organizing	  Committee	  consisted	  of	  Martha	  Condon,	  Conference	  
Administrator;	  Laurie	  O’Brien,	  Financial	  Officer;	  Sarah	  Poon,	  Conference	  
Webmaster;	  Joe	  Chew,	  Conference	  Editor;	  and	  myself,	  Conference	  Chair.	  The	  
International	  Organizing	  Committee	  consisted	  of	  Martin	  Berz	  (MSU),	  Oliver	  Boine-‐
Frankenheim	  (GSI),	  Kwok	  Ko	  (SLAC),	  Kyoko	  Makino	  (MSU),	  Cho	  Ng	  (SLAC),	  
Kazuhito	  Ohmi	  (KEK),	  Dmitri	  Ovsyannikov	  (St.	  Petersburg	  State	  University),	  Ursula	  
van	  Rienen	  (U.	  Rostock),	  Stephan	  Russenschuck	  (CERN),	  Frank	  Schmidt	  
(CERN),	  Tsumoru	  Shintake	  (RIKEN),	  Chuan-‐Xiang	  Tang	  (Tsinghua	  University),	  
and	  Thomas	  Weiland	  (TEMF/Darmstadt).	  
	  
I	  want	  to	  thank	  Christine	  Petit-‐Jean-‐Genaz	  for	  providing	  Joint	  Accelerator	  
Confernces	  Working	  Group	  (JACoW)	  support	  for	  ICAP’09,	  and	  Matt	  Arena	  for	  
assistance	  with	  the	  JACoW	  database.	  
	  
I	  especially	  want	  to	  thank	  Joe	  Chew,	  Conference	  Editor,	  whose	  efforts	  before,	  during,	  
and	  after	  the	  conference	  have	  made	  these	  proceedings	  a	  reality.	  
	  
Lastly,	  thanks	  to	  the	  participants	  of	  ICAP’09.	  Their	  involvement	  and	  enthusiasm	  are	  
ultimately	  responsible	  for	  the	  success	  of	  ICAP.	  
	  
Robert	  D.	  Ryne	  
ICAP’09	  Conference	  Chair	  
	  
	  

iii



ICAP09 – San Francisco, CA

iv Preface
Foreword



ICAP09 – San Francisco, CA

Contents

Preface i
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Committees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
MO3IOPK03 – Calculation of Realistic Charged-Particle Transfer Maps . . . . . . . . . . . . . . . . . . . 1
MO3IOPK04 – Construction of Large-Period Symplectic Maps by Interpolative Methods . . . . . . . . . . 6
MO4IOPK02 – Highly Scalable Numerical Methods for Simulation of Space Charge Dominated Beams . 12
MO4IOPK04 – Overview of (Some) Computational Approaches in Spin Studies . . . . . . . . . . . . . . 18
MO4IOPK05 – An Efficient 3D Space Charge Routine with Self-Adaptive Discretization . . . . . . . . . . 23
MO3IODN01 – Impedance Estimation by Parabolic Partial Differential Equation for Rectangular Taper . . 27
MO4IODN02 – Applying an hp-Adaptive Discontinuous Galerkin Scheme to Beam Dynamics Simulations 30
MO4IODN03 – Portable High Performance Computing for Microwave Simulation by FDTD/FIT Machines . 35
MO4IODN05 – High-Order Differential Algebra Methods for PDEs Including Rigorous Error Verification . 38
TU1IOPK01 – Computational Beam Dynamics for a High Intensity Ring: Benchmarking with Experiment in

the SNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
TU1IOPK02 – Comparison of Different Simulation Codes with UNILAC Measurements for High Beam Cur-

rents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
TU1IOPK04 – Benchmarking Different Codes for the High Frequency RF Calculation . . . . . . . . . . . 53
TU2IOPK02 – Simulation Studies & Code Validation For The Head-Tail Instability With Space Charge . . 58
TU3IOPK03 – Progress with Understanding and Control of Nonlinear Beam Dynamics At The Diamond

Storage Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
TU3IOPK04 – Design and Control of Ultra Low Emittance Light Sources . . . . . . . . . . . . . . . . . . 68
TU4IOPK02 – Novel Methods for Simulating Relativistic Systems Using an Optimal Boosted Frame . . . 73
TU3IODN03 – Modeling Techniques for Design and Analysis of Superconducting Accelerator Magnets . . 77
TU3IODN05 – Transient, Large-Scale 3D Finite Element Simulations of the SIS100 Magnet . . . . . . . . 83
TU4IODN01 – A Parallel Hybrid Linear Solver for Accelerator Cavity Design . . . . . . . . . . . . . . . . 89
WE2IOPK01 – Hard- and Software-based Acceleration Techniques for Field Computation . . . . . . . . . 93
WE2IOPK03 – Graphical Processing Unit-Based Particle-In-Cell Simulations . . . . . . . . . . . . . . . . 96
WE2IOPK05 – VizSchema - A Standard Approach for Visualization of Computational Accelerator Physics

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
WE3IOPK01 – The Object Oriented Parallel Accelerator Library (OPAL), Design, Implementation and Ap-

plication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
WE3IOPK02 – Recent Progress and Plans for the Code ELEGANT . . . . . . . . . . . . . . . . . . . . . 111
WE3IOPK04 – Update on MAD-X and Future Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
WE4IOPK02 – High-Fidelity Injector Modeling with Parallel Finite Element 3D Electromagnetic PIC Code

Pic3P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
WE4IOPK04 – Beam Dynamics In The Low Energy Part Of The Low Emittance Gun (LEG) . . . . . . . . 125
WE3IODN01 – The XAL Infrastructure for High Level Control Room Applications . . . . . . . . . . . . . . 131
WE3IODN03 – Improvement Plans for the RHIC/AGS On-Line Model Environments . . . . . . . . . . . . 137
WE4IODN01 – Beam-Beam Simulations for KEKB and Super-B Factories . . . . . . . . . . . . . . . . . 141
WE4IODN03 – Recent Advances of Beam-Beam Simulation in BEPCII . . . . . . . . . . . . . . . . . . . 147
TH1IOPK02 – Modeling of Ultra-cold and Crystalline Ion Beams . . . . . . . . . . . . . . . . . . . . . . . 151
TH1IOPK04 – Developing the Physics Design for NDCX-II, a Unique Pulse-Compressing Ion Accelerator 157
TH2IOPK01 – Self Field of Sheet Bunch: A Search for Improved Methods . . . . . . . . . . . . . . . . . 163
TH2IOPK02 – Simulation of Microwave Instability in LER of KEKB And SuperKEKB . . . . . . . . . . . . 169
TH2IOPK04 – Study of Beam-Scattering Effects for a Proposed APS ERL Upgrade . . . . . . . . . . . . 173
TH3IOPK01 – The Simulation of the Electron Cloud Instability in BEPCII and CSNS/RCS . . . . . . . . . 179
TH3IOPK03 – Modeling Laser Stripping with the Python ORBIT Code . . . . . . . . . . . . . . . . . . . 184
TH3IOPK04 – Using Geant4-based Tools to Simulate a Proton Extraction and Transfer Line . . . . . . . . 190
TH4IOPK02 – End To End Simulations of the GSI Linear Accelerator Facility . . . . . . . . . . . . . . . . 196
TH4IOPK03 – Aperture and Beam-Tube Models for Accelerator Magnets . . . . . . . . . . . . . . . . . . 202
TH1IODN01 – A Fast and Universal Vlasov Solver for Beam Dynamics Simulations in 3D . . . . . . . . . 208
TH1IODN04 – Discretizing Transient Curent Densities in the Maxwell Equations . . . . . . . . . . . . . . 212
TH2IODN01 – Simulation and Commissioning of J-PARC Linac Using the IMPACT Code . . . . . . . . . 218

Contents v



ICAP09 – San Francisco, CA

TH2IODN04 – Physics Problem Study For A 100 MeV, 500 Microamp H− Beam Compact Cyclotron . . . 224
TH3IODN02 – Space Charge Simulations for ISIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
TH4IODN02 – An Integrated Beam Optics-Nuclear Processes Framework in COSY Infinity and Its Applica-

tions to FRIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
TH4IODN04 – The Study on the Space Charge Effects of RCS/CSNS . . . . . . . . . . . . . . . . . . . 239
FR1IOPK01 – Optimization Algorithms for Accelerator Physics Problems . . . . . . . . . . . . . . . . . . 245
FR1IOPK02 – Application of Multiobjective Genetic Algorithm in Accelerator Physics . . . . . . . . . . . 251
FR1IOPK09 – Application of Direct Methods of Optimizing Storage Ring Dynamic and Momentum Apertures 255
THPSC003 – RadTrack: A User-Friendly, Modular Code to Calculate the Emission Processes from High-

Brightness Electron Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
THPSC004 – Tomographic Reconstruction of a Beam Phase Space from Limited Projection Data . . . . 262
THPSC006 – Particle-In-Cell Simulation of Electron-Helium Plasma in Cyclotron Gas Stopper . . . . . . 266
THPSC010 – Including Partial Siberian Snakes Into the AGS Online Model . . . . . . . . . . . . . . . . . 270
THPSC011 – A Fast Point to Point Interaction Model for Charged Particle Bunches By Means of Nonequi-

spaced Fast Fourier Transform (NFFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
THPSC012 – TRIUMF-VECC Electron Linac Beam Dynamics Optimization . . . . . . . . . . . . . . . . . 277
THPSC013 – Design of 10 GeV Laser Wakefield Accelerator Stages with Shaped Laser Modes . . . . . 281
THPSC017 – Multipole Effects in the RF Gun for the PSI Injector . . . . . . . . . . . . . . . . . . . . . . 285
THPSC018 – An Application of Differential Algebraic Methods and Liouville’s Theorem: Uniformization of

Gaussian Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
THPSC019 – COSY Extensions for Beam-Material Interactions . . . . . . . . . . . . . . . . . . . . . . . 292
THPSC020 – Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework . . . . . . . . . . . 296
THPSC021 – Computational Models forµChannel Plate Simulations . . . . . . . . . . . . . . . . . . . . . 300
THPSC022 – Recent Improvement of Tracking Code BBSIMC . . . . . . . . . . . . . . . . . . . . . . . . 304
THPSC023 – A New Model-Independent Method for Optimization of Machine Settings and Electron Beam

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
THPSC026 – RF-Kick Caused by the Couplers in the ILC Acceleration Structure . . . . . . . . . . . . . . 311
THPSC028 – Computation of a Two Variable Wake Field Induced by an Electron Cloud . . . . . . . . . . 314
THPSC030 – A High-Level Interface for the ANKA Control System . . . . . . . . . . . . . . . . . . . . . 318
THPSC031 – PteqHI Development and Code Comparing . . . . . . . . . . . . . . . . . . . . . . . . . . 322
THPSC035 – Tracy# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
THPSC036 – Modeling Single Particle Dynamics in Low Energy and Small Radius Accelerators . . . . . 330
THPSC037 – Possibility of Round Beam Formation in RIBF Cyclotrons . . . . . . . . . . . . . . . . . . . 333
THPSC041 – Set Code Development and Space Charge Studies on ISIS . . . . . . . . . . . . . . . . . . 337
THPSC047 – Complete RF Design of the HINS RFQ with CST MWS and HFSS . . . . . . . . . . . . . . 340
THPSC049 – H5PartRoot - A Visualization And Post-Processing Tool For Accelerator Simulations . . . . 343
THPSC050 – Parallel SDDS: A Scientific High-Performance I/O Interface . . . . . . . . . . . . . . . . . . 347
THPSC052 – The Python Shell for the ORBIT Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
THPSC054 – Recent Progress on Parallel ELEGANT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
THPSC056 – Beam Fields in an Integrated Cavity, Coupler, and Window Configuration . . . . . . . . . . 359
THPSC057 – BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider . . . . . . . . . . . 363
THPSC058 – Recycler Lattice for Project X at Fermilab . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
THPSC059 – Array Based Truncated Power Series Package . . . . . . . . . . . . . . . . . . . . . . . . . 371
THPSC061 – Molecular Dynamics Simulation of Crystalline Beams Extracted from a Storage Ring . . . . 374

Appendices 379
List of Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Institutes List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Participants List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

vi Contents



COMMITTEES 
	  

Conference Chairman 
Robert Ryne (LBNL)  

 
Local Organizing Committee 
	  
Sarah Poon (LBNL), webmaster 
 
Joe Chew (LBNL), editor 
 
Martha Condon (LBNL), conference administrator 
 
Thanh Ly (SLAC), SLAC visit coordinator 
 
Laurie O'Brien (LBNL), finance officer 
 
International Organizing Committee 
	  
Martin Berz (MSU) 
Oliver Boine-Frankenheim (GSI) 
Kwok Ko (SLAC) 
Kyoko Makino (MSU) 
Cho Ng (SLAC) 
Kazuhito Ohmi (KEK) 
Dmitri Ovsyannikov (St. Petersburg State University) 
Ursula van Rienen (U. Rostock) 
Stephan Russenschuck, CERN 
Robert Ryne (LBNL), Chair 
Frank Schmidt (CERN) 
Tsumoru Shintake (RIKEN) 
Chuan-Xiang Tang (Tsinghua University) 
Thomas Weiland (TEMF/Darmstadt) 
 

vii



ICAP09 – San Francisco, CA

viii



CALCULATION OF REALISTIC CHARGED-PARTICLE TRANSFER
MAPS∗

C E. Mitchell and A. J. Dragt, University of Maryland, USA

Abstract

The stability of orbits in storage and damping rings

can depend sensitively on nonlinear fringe-field and high-

order-multipole effects in the various beam-line elements.

The inclusion of these effects requires a detailed and real-

istic model of the interior and fringe electric and magnetic

fields, including their high spatial derivatives. In the case

of magnetic elements a collection of surface fitting meth-

ods has been developed for extracting this information ac-

curately from 3-dimensional magnetic field data on a grid,

as provided by various 3-dimensional finite element field

codes. The virtue of surface methods is that they exactly

satisfy the Maxwell equations and are relatively insensi-

tive to numerical noise in the data. These techniques can

be used both to compute realistic design orbits and realis-

tic high-order transfer maps about these orbits. An exactly

soluble but numerically challenging model field is used to

provide a rigorous collection of performance benchmarks.

BACKGROUND
For the design of high-performance storage or damping

rings it is essential to have realistic electric and magnetic

field information for the various beam-line elements, in or-

der to compute accurate design orbits and high-order trans-

fer maps about the design orbits. Realistic field data can

be provided on a grid with the aid of various 3-dimensional

finite element codes, sometimes spot checked against mea-

sured data. But the computation of high-order transfer

maps based on this data appears to pose an insurmount-

able problem: the calculation of high-order transfer maps

requires a knowledge of high derivatives of the field data.

The direct calculation of high derivatives based only on

grid data is intolerably sensitive to noise (due to truncation

or round-off) in the grid data. We will see that this prob-

lem can be overcome by the use of surface methods. The

effect of numerical noise can be overcome by fitting onto

a bounding surface far from the beam axis and continuing

inward using the Maxwell equations. While the process

of differentiation serves to amplify the effect of numerical

noise, the process of continuing inward using the Maxwell

equations is smoothing. This smoothing is related to the

fact that harmonic functions take their extrema on bound-

aries. When using surface methods, all fits are made to

such boundaries. Therefore if these fits are accurate, inte-

rior data based on these fits will be even more accurate.

In this paper we will devote our attention to mag-

netic beam-line elements. (For a treatment of RF cav-

∗Work supported by U.S. Department of Energy Grant DE-FG02-

96ER40949.

ities, see [1].) Two cases have been treated separately:

straight and curved. For straight beam-line elements such

as quadrupoles, sextupoles, octupoles, and wiggglers, it is

convenient to employ cylindrical surfaces. These surfaces

may have circular, elliptical, or rectangular cross sections.

We will describe the use of elliptical cylinders. The use of

circular and rectangular cylinders is described elsewhere

[2, 3, 4]. For the case of curved magnetic elements such

as dipoles with large design-orbit sagitta, we will employ

the surface of a bent box with straight ends. In all cases

the bounding surface will surround the design orbit within

the beam-line element and will extend into the fringe-field

regions outside the beam-line element, thus taking into ac-

count all fringe-field effects as well as all effects within the

body of the beam-line element.

For the case of straight beam-line elements it is conve-

nient to describe the magnetic field in terms of a magnetic

scalar potential ψ. Then, if one wishes to compute transfer

maps in terms of canonical coordinates, one can proceed

with the aid of an associated vector potential A computed

from ψ. Alternatively, if one wishes to integrate noncanon-

ical equations employing the magnetic field B, it can be

obtained from the relation B = ∇ψ.

For the case of curved beam-line elements it is conve-

nient to work directly with the vector potential. Its use in

the case of canonical coordinates is then immediate. If in-

stead one wishes to integrate noncanonical equations em-

ploying the magnetic field B, it can be obtained from the

relation B = ∇× A.

In this paper we will first treat the case of straight beam-

line elements. For this case a cylindrical multipole expan-

sion for ψ is convenient. In Sections II-III we will describe

such an expansion and how it can be computed based on B
data provided on a grid and interpolated onto the surface of

an elliptical cylinder. In Section IV we will treat the case

of curved beam-line elements. In this case A will be com-

puted based on both B and ψ data provided on a grid and

interpolated onto the surface of a bent box.

CYLINDRICAL HARMONIC
EXPANSIONS

In a current-free region the magnetic field B is curl free,

and can therefore can be described in terms of a magnetic

scalar potential. Because B is also divergence free, ψ must

obey the Laplace equation ∇2ψ = 0. A general solution ψ
satisfying the Laplace equation in cylindrical coordinates

Proceedings of ICAP09, San Francisco, CA MO3IOPK03
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and analytic near the axis ρ = 0 takes the form

ψ(ρ, φ, z) =
∞∑

m=0

∫ ∞

−∞
dk Im(kρ)eikz [Gm,s(k) sinmφ

+Gm,c(k) cos mφ] . (1)

By utilizing the Taylor series of the modified Bessel func-

tion Im we may write ψ in the form of a cylindrical har-

monic (multipole) expansion:

ψ(ρ, φ, z) =
∞∑

m=0

[ψm,s(ρ, z) sinmφ + ψm,c(ρ, z) cos mφ] ,

(2)

where for α = s, c,

ψm,α(ρ, z) =
∞∑

l=0

(−1)lm!
22ll!(l + m)!

C [2l]
m,α(z)ρ2l+m. (3)

The functions C
[n]
m,α, known as generalized gradients, are

defined by

C [n]
m,α(z) =

in

2mm!

∫ ∞

−∞
dk eikzkm+nGm,s(k). (4)

Once they are known, ψ is specified. Note that C
[n]
m,α(z) =

dnC
[0]
m,α(z)/dzn.

FITTING USING AN ELLIPTICAL
CYLINDER

We will now describe how the generalized gradients can

be computed based on B data provided on a grid and in-

terpolated onto the surface of an elliptical cylinder. Elliptic

coordinates in the x, y plane are described by the relations

x = f cosh(u) cos(v), y = f sinh(u) sin(v). (5)

Contours of constant u, with u ∈ [0,∞], are nested ellipses

with common foci located at (x; y) = (±f ; 0). Contours

of constant v, with v ∈ [0, 2π], are hyperbolae. Together

these contours form an orthogonal coordinate system.

Suppose we are provided with the three components of

the magnetic field on a regular 3-d Cartesian grid. Con-

sider an elliptical cylinder surrounding the axis of the mag-

netic element, which lies within all iron and other magnetic

sources. Such a surface is obtained by setting u = U and

allowing the coordinates v, z to vary. This data can then be

interpolated onto the surface of the elliptical cylinder to ob-

tain the normal component Bu of the field on this surface.

Define the functions F� and G� in terms of the surface

data as

F�(U, k) =
∫ π

−π

√
J(U, v)B̃u(U, v, k)se�(v, q)dv, (6a)

G�(U, k) =
∫ π

−π

√
J(U, v)B̃u(U, v, k)ce�(v, q)dv. (6b)

Here B̃u(U, v, k) is the Fourier transform of Bu(U, v, z),
se� and ce� are Mathieu functions [5, 6], J(u, v) is the Ja-

cobian of the mapping from Cartesian to elliptic coordi-

nates, and q = −k2f2/4. The on-axis gradients are now

given by

C [n]
m,α(z) =

in

2mm!
1√
2π

∫ ∞

−∞
km+neikzβα

m(U, k)dk (7)

where

βs
m(U, k) =

∞∑
�=0

g�
s(k)E(�)

m (k)
[

F�(U, k)
Se′�(U, q)

]
, (8a)

βc
m(U, k) =

∞∑
�=0

g�
c(k)D(�)

m (k)
[

G�(U, k)
Ce′�(U, q)

]
. (8b)

Here Se� and Ce� are modified Mathieu functions, and

g�
α, D

(�)
m , E

(�)
m are known functions that relate Mathieu and

Bessel functions [3, 4].

Benchmarks
Here we describe an exactly-soluble but numerically

challenging model field to be used to numerically bench-

mark the procedure just described. Suppose two magnetic

monopoles having strengths ±g are placed at the (x, y, z)
locations

r+ = (0, a, 0), r− = (0,−a, 0). (9)

These monopoles generate a scalar potential ψ(x, y, z)
given by the relation

ψ(x, y, z) = ψ+(x, y, z) + ψ−(x, y, z) =

− g[x2 + (y − a)2 + z2]−1/2 + g[x2 + (y + a)2 + z2]−1/2.
(10)

Due to the symmetries of the field, it can be shown that the

only nonvanishing associated generalized gradients C
[n]
m,α

are those with α = s and m odd. They have the values

C [0]
m,s(z) = (−1)(m−1)/2 g

am+1

(2m)!
22m−2(m!)2

β2m+1(z)

(11a)

where

β(z) =
a√

z2 + a2
. (11b)

This result has been used to benchmark the technique de-

scribed in the previous section in the case that a = 2.4 cm

and g = 1 Tesla-(cm)2. We set up a regular grid in x, y, z
space, where we let each variable range over the intervals

x ∈ [−4.4, 4.4] with spacing hx = 0.1, y ∈ [−2.4, 2.4]
with hy = 0.1, and z ∈ [−300, 300] with hz = 0.125 (in

units of cm). The values of the magnetic field at each grid

point are computed using B = ∇ψ.

Consider an elliptical cylinder of semimajor axis

xmax = 4 cm, semiminor axis ymax = 2 cm, and length

600 cm. We use bicubic interpolation to interpolate B at
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these grid points onto 120 selected angular points on the

cylinder, for each of the 4801 selected values of z. The

angular integration in (6) is performed using a Riemann

sum with N = 120. (This is necessary to ensure suffi-

cient convergence of the angular integrals to within 10−4.)

We evaluate the Fourier transform at 401 values of k in

the range [−Kc, Kc] with Kc = 20, using a spline-based

Fourier transform algorithm. We use these same points in k
space to evaluate the inverse Fourier transform, providing

a set of numerically determined functions C
[n]
m,α(z).

Suppose, for example, we wish to obtain the transfer

map for the monopole doublet through terms of degree 7.

We then require the generalized gradient functions C
[n]
m,s(z)

with (m+n) ≤ 7. For each of these functions, we find that

the relative difference between the numerical results and

(11) is on the order of 10−4 or smaller.

Smoothing

The key feature of this technique is that results are rela-

tively insensitive to surface errors due to smoothing. That

is, each kernel multiplying the surface functions F� and G�

in (8) falls off rapidly with spatial frequency k. As a result,

high frequency noise appearing in the boundary data has

little effect on the functions C
[n]
m,α of (7).

To illustrate this effect, let By(0, 0, z) denote the on-axis

monopole doublet field and make the noise model

Bnoise
x (xj , yj , zj) = εBy(0, 0, zj)δx(j), (12)

Bnoise
y (xj , yj , zj) = εBy(0, 0, zj)δy(j), (13)

where δx(j) and δy(j) are uniformly distributed random

variables taking values in the interval [−1, 1]. We take

ε = 0.01, obtaining a random distribution of field values

that are proportional at the 1% level to the on-axis vertical

field of the monopole doublet. Figs. 1-2 illustrate the gen-

eralized gradients C
[0]
7,c and C

[6]
1,c as computed from these

values using (7). The solid line illustrates the rms value of

the generalized gradient at each value of z, as computed

using a circular cylinder of radius R = 2 cm. The dashed

line illustrates the rms value of the generalized gradient at

each value of z as computed using a circumscribed ellip-

tical cylinder of semiminor axis 2 cm and semimajor axis

4 cm. In each case we find that a 1% noise in the surface

data produces only a 0.01% error or less in the generalized

gradients. These figures also illustrate that fitting to the sur-

face of an elliptical cylinder leads to greater suppression of

noise than fitting to an inscribed circular cylinder. This is

consistent with what we expect if errors in the surface data

are suppressed with increasing distance from the bounding

surface. We see that it is advantageous to use a fitting sur-

face which is as far from the axis as possible.

Applications

A less stringent test of the accuracy of this procedure

(but also a test of the quality of the magnetic data on the
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Figure 2: The quantity C
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1,c(z) computed from a field con-

sisting of random noise. (Solid line) Values computed us-

ing a circular cylinder of radius R = 2 cm. (Dashed line)

Values computed using an elliptical cylinder of semimajor

axis xmax = 4 cm and semiminor axis ymax = 2 cm.

mesh) is that the magnetic field computed from the sur-

face data should reproduce the magnetic field at the in-

terior grid points. We computed such an interior fit for

the modified CESR-c design of the Cornell wiggler, which

has been adopted as the design prototype for use in In-

ternational Linear Collider studies. Cornell provided data

obtained from the 3-dimensional finite element modeling

code OPERA-3d for the field components Bx, By , and

Bz on a grid of spacing 0.4 × 0.2 × 0.2 cm in a volume

10.4 × 5.2 × 480 cm, extending beyond the fringe-field

region. An elliptic cylinder with semimajor axis 4.4 cm

and semiminor axis 2.4 cm was placed in the domain of

the data, and the field on the elliptic cylinder boundary was

constructed using nearest-neighbor interpolation with cu-

bic splines. See Fig. 3.

The interior field was computed using generalized gra-

dients through terms of degree 6 in x, y over the domain
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Figure 3: Schematic of the ILC wiggler and an elliptic

cylinder centered on the z-axis, fitting within the bore of

the wiggler, and extending beyond the fringe-field regions

at the ends of the wiggler.
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Figure 4: Fit obtained to proposed ILC wiggler vertical

field using the elliptic cylinder of Fig. 3. The solid line is

computed from surface data; dots are numerical data pro-

vided by OPERA-3d.

of the original data. This solution for the interior field was

then compared to the original data at each grid point. Fig.

4 displays the fit to the vertical field By off-axis at (x, y) =
(0.4, 0.2) cm along the length of the wiggler. Note that

the fitted field captures the fringe-field behavior. The RMS

error obtained was |Bdata − Bfit|/|B|peak = 3.5× 10−4.

All other field components are fit equally well at all interior

points.

FITTING USING A BENT BOX

In this section we consider magnetic elements with large

sagitta. We employ a bent box with straight ends surround-

ing the region of the beam, but excluding all iron or other

sources (Fig. 5). Suppose B and ψ are given on a grid, and

these data are then interpolated onto the boundary of the

box, which we call Γ. Given such values on Γ, the vector

potential is given as the sum of two terms, A = An + At,

where

An(r) =
∫

Γ

[n(r′) · B(r′)]Gn(r; r′,m(r′))dS′,

At(r) =
∫

Γ

ψ(r′)Gt(r; r′,n(r′))dS′. (14)

Here n(r′) denotes the unit normal and m(r′) = r′/r′ at

each point r′ on the surface of the box. The vector-valued

integration kernels Gn and Gt are given by [3, 7]

Gn(r; r′,m(r′)) =
m × (r − r′)

4π|r − r′|(|r − r′| − m · (r − r′))
,

Gt(r; r′,n(r′)) =
n(r′) × (r − r′)

4π|r − r′|3 . (15)

It can be verified that each kernel Gα has the two properies

∇ · Gα = 0 and ∇ × ∇ × Gα = 0 within the region

of interest, where derivatives are taken with respect to the

variable r. As a result, the vector potential A given by

(14) shares these properties. It follows that ∇ · B = 0 and

∇×B = 0, and A satisfies the Coulomb gauge condition,

for any surface data n · B and ψ, even if the data are noisy

and the surface integrals are only evaluated approximately.

Furthermore, Gn and Gt are analytic within the region of

interest, and therefore A is also analytic in this region. By

expanding the kernels Gα as power series in the transverse

variables x and y, we may obtain corresponding power se-

ries for the vector potential A.

This method has been implemented in a Fortran 90 rou-

tine [3]. This routine uses efficient truncated power series

algebra (TPSA) algorithms to compute the Taylor series of

the integral kernels (15) about each point on the design or-

bit. Each Taylor coefficient of the vector potential A at a

fixed value of z requires a single integration of the field and

potential data over the surface Γ. The resulting coefficients

may then be utilized to find design orbits and high-order

transfer maps about these orbits.

Benchmarks
Consider the monopole doublet field described earlier.

We interpolate B and ψ onto the surface of a bent box with

a bending angle of 30 degrees, and then employ the method

described in the previous section to compute the vector po-

tential A and its Taylor coefficients about each point along

a path through the center of the box using (14). See Fig.

5. The resulting vector potential is shown in Fig. 6 as a

function of path length through the center of the box.

Using the power series for A, power series for the com-

ponents of B about each reference point rd are computed

using B = ∇ × A. These results can then be compared

to the known Taylor coefficients of the field. We find that

all computed coefficients through terms of degree 4 are ac-

curate to 10−6 in the arc section of the box, in the region
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Figure 5: Illustration of a monopole doublet and a bent box

with straight ends. The two dots denote equal and opposite

magnetic charges. The red curve denotes a path through

the center of the box.
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Figure 6: The vector potential of the monopole doublet il-

lustrated in Fig. 5, computed from surface data, along a

curved trajectory through the center of the bent box. In this

case Ay = 0 and the quantities Ax (dashed line) and Az

(solid line) are plotted versus path length.

where the field is rapidly varying. This error increases very

near the ends of the straight sections to 10−4. The error

at the ends is due to the fact that the field of a monopole

doublet falls off quite slowly. The error would have been

smaller had the straight ends of the box been made longer.

The smoothing of numerical noise, as described earlier, can

also be shown to occur in the case of the bent box. A de-

tailed discussion of this issue can be found in [3].

CONCLUSIONS

A collection of surface fitting methods has been devel-

oped for providing accurate interior field data in analytic

form based on 3-dimensional magnetic field data on a grid,

as provided by various 3-dimensional finite element field

codes. Each of these methods involves fitting field data

onto a boundary surface and continuing inward to obtain ψ
and/or A and their Taylor coefficients in a neighborhood

of the beam. These surface-fitting procedures have several

distinct advantages:

• The Maxwell equations are exactly satisfied.

• The results are manifestly analytic in all variables.

• The error is globally controlled. Both the exact and

computed fields satisfy the Laplace equation. There-

fore their difference, the error field, also satisfies the

Laplace equation, and must take its extrema on the

boundary. The fitting error on the boundary is con-

trolled, and the interior error must therefore be even

smaller.

• Interior values inferred from surface data are rela-

tively insensitive to errors/noise in the surface data. In

general, the sensitivity to noise in the data decreases

rapidly (as some high inverse power of distance) with

increasing distance from the surface, and this prop-

erty improves the accuracy of the high-order inte-

rior derivatives needed to compute high-order transfer

maps.

As a result one can, for the first time, obtain a realistic high-

order transfer map for an entire accelerator or storage ring

without the uncertainties associated with the use of only

approximate field models.
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Abstract

The goal is to construct a symplectic evolution map for
a large section of an accelerator, say a full turn of a large
ring or a long wiggler. We start with an accurate track-
ing algorithm for single particles, which is allowed to be
slightly non-symplectic. By tracking many particles for
a distance S one acquires sufficient data to construct the
mixed-variable generator of a symplectic map for evolu-
tion over S, given in terms of interpolatory functions. Two
ways to find the generator are considered: (i) Find its gra-
dient from tracking data, then the generator itself as a line
integral. (ii) Compute the action integral on many orbits. A
test of method (i) has been made in a difficult example: a
full turn map for an electron ring with strong nonlinearity
near the dynamic aperture. The method succeeds at fairly
large amplitudes, but there are technical difficulties near
the dynamic aperture due to oddly shaped interpolation do-
mains. For a generally applicable algorithm we propose
method (ii), realized with meshless interpolation methods.

1. INTRODUCTION

The method of differential algebra, giving automatic dif-
ferentiation of functions defined by complex algorithms,
allows the construction of the truncated Taylor series of a
map defined by a tracking code. After this method was im-
plemented by Martin Berz [1], the option of producing a
Taylor map eventually became a feature of several tracking
codes. The Taylor map is not symplectic, but some codes
use the Taylor coefficients to produce the mixed-variable
generator of a symplectic map, itself represented as a trun-
cated power series [2]. Another way is to use the Taylor
coefficients to form the symplectic “jolt factorization” of
Irwin, Abell, and Dragt [3]. The Taylor map, symplectified
or not, is good at small phase space amplitudes, but has a
range of usefulness at larger amplitudes that varies with the
type of accelerator lattice considered. It appears to be fairly
useful for hadron rings, but can fail badly for electron rings
with stronger nonlinearity near the dynamic aperture. In
this paper we choose such a lattice for a demanding test of
mapping methods.

∗Work supported in part by U.S. Department of Energy contracts DE-
AC02-76SF00515 and DE-FG-99ER41104.

† warnock@slac.stanford.edu; also affiliated with LBNL and UNM.
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Figure 1: Phase plot from element-by-element tracking,
1000 turns, νx = 16.23.

For our example the Taylor map fails at large amplitudes.
For a striking illustration we choose a tune νx = 16.23.
Element-by-element tracking gives the plot of Fig.1 on a
Poincaré section at a fixed position in the ring; p is dimen-
sionless and q is in meters. The corresponding plot from
iteration of the 10th order Taylor map is shown in Fig.2.
The prominent 9th order island chain is only vaguely vis-
ible, and there is spurious stochasticity. The result is not
improved by going to 13th order. The symplectified Taylor
map [2] shows islands and gets rid of the stochasticity, but
the shape of phase contours is all wrong. Changing to a
better tune of νx = 15.81, for which the lattice has a much
larger dynamic aperture, we find that the Taylor map still
breaks down at about the same amplitude.

One can easily see, however, that producing a more suc-
cessful map when the Taylor series fails is not out of the
question. A spline fit to one-turn tracking data on a grid
of initial conditions gives a map which produces the plot
of Fig.3 in 1000 iterations. To graphical accuracy it agrees
with the tracking map of Fig.1, but the symplectic condi-
tion is badly violated at large amplitudes: the determinant
of the map’s Jacobian differs from 1 at some points by as
much as 0.004. Nevertheless it does not do badly over 105

iterations, as is seen in Fig.4. The main features of the
phase plot persist correctly, but fuzziness appears near ends
of the islands. By 106 turns there is a clear failure, with
spurious damping, whereas phase curves including the is-
lands are sharply defined in tracking for 106 turns. The
spline is a tensor product B-spline interpolating tracking
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Figure 2: Phase plot from 10th order Taylor map, 1000
turns, νx = 16.23.
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Figure 3: Phase plot from Spline Map, 1000 turns, νx =
16.23.

data on a 40 × 40 uniform mesh; the spline coefficients
were determined in 0.6 sec, and the time for 105 iterations
was 0.14 sec. Computation times are for a single 2.66 GHz
processor.

This example supports our belief that interpolative meth-
ods can produce maps that are both accurate and fast, even
in cases where power series are not useful. Actually, the
promise of interpolative map construction was evident long
ago, in the work of Refs.[4, 5, 6, 7]. That work resulted in
the generator of a fast symplectic map represented in po-
lar coordinates in a hybrid Fourier-spline basis. It was ap-
plied successfully to an early LHC lattice, but in a slightly
restricted region of phase space owing to a coordinate sin-
gularity arising from the polar coordinates. In work go-
ing back to 1984, G. Wüstefeld and collaborators have ap-
plied generating functions to maps for complicated mag-
netic fields, sometimes using interpolative methods [8].

In 1999 two of the authors proposed a method to find
the map generator in Cartesian coordinates, with splines
in all variables [9]. (Earlier, Berz had described a for-
mally similar construction of the generator, but to be re-
alized through power series rather than splines [10].) The
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−0.005
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0.005

0.01

q

p

Figure 4: Phase plot from Spline Map, 105 turns, νx =
16.23.

present paper gives the first numerical implementation of
the scheme of Ref.[9]. Another idea, which came to light
when one of the authors was preparing an article on the
Hamilton-Jacobi equation [11], is to compute the genera-
tor directly as Hamilton’s Principal Function, which is the
integral of the Lagrangian regarded as a function of initial
and final spatial coordinates.

2. RELATION OF THE GENERATOR TO
THE TRACKING MAP

We denote the map defined through an element-by-
element tracking code as follows:

q = Q(q0, p0) , (1)

p = P (q0, p0) , (2)

where z = (q, p) = (z1, · · · , z2n) and z0 = (q0, p0) are
final and initial phase space points for a system with n de-
grees of freedom. The map can refer to an arbitrary period
in a circular or linear machine, but in the present applica-
tion it is for one turn of a circular machine. In the the-
ory of canonical transformations [11] the map is expressed
implicitly in terms of a generating function or generator,
which we take to be a “Type 1” generator of the form
F (q, q0). The implicit map is defined by the equations

p = Fq(q, q0) , (3)

p0 = −Fq0(q, q0) , (4)

where subscripts denote partial derivatives: Fq =
(∂F/∂q1, · · · , ∂F/∂qn). We suppose that for q and q0 in
the region of interest, the n×n Hessian matrix Fqq0 is non-
singular:

detFqq0 (q, q0) �= 0 . (5)

Then one can solve (4) for q = q(q0, p0) (at least locally)
and substitute the result in (3) to obtain also p(q0, p0) =
Fq(q(q0, p0), q0) [12]. We wish to determine F so that the
functions q(q0, p0), p(q0, p0) can be identified with the map
components Q(q0, p0), P (q0, p0).

Proceedings of ICAP09, San Francisco, CA MO3IOPK04

Linear and Nonlinear Orbit Theory

7



One can show that any F (q, q0) that has continuous sec-
ond derivatives and satisfies (5) defines a symplectic trans-
formation (q(q0, p0), p(q0, p0)). This fact is important for
our map construction since it shows that symplecticity can
be ensured even if F does not precisely reproduce the map
(1),(2).

To derive the relation of F to the map (Q, P ), let us
suppose that in the region of interest

detQp0(q0, p0) �= 0 , (6)

in which case we can solve (1) for p0(q, q0), provided that
q is in the range of Q. Then, if F actually generates the
map, Eqs. (3),(4), (2) show that

Fq(q, q0) = P (q0, p0(q, q0)) =: γ1(q, q0) , (7)

Fq0 (q, q0) = −p0(q, q0) =: γ2(q, q0). (8)

Symplecticity of the map guarantees that the vector γ =
(γ1, γ2) is actually a gradient; i.e., that it has zero curl.
The proof, which is not obvious, is given in Ref.[13]. Thus
we have ∇F = γ from which we can obtain F itself as a
path-independent line integral,

F (ζ) =
∫ ζ

ζ0

γ(ζ′) · dζ′ , ζ = (q, q0) . (9)

3. APPROXIMATION OF THE
GENERATOR AS A SPLINE

Our first realization of the scheme of the previous section
is based on interpolation of data by spline functions, with
the help of the B-spline basis [14]. Let s(x) be any spline
function specified by a knot sequence [ti]n+k

i=1 where k is the
order (degree +1) of the local polynomials that are joined
to make up the spline. The B-splines Bi(x) determined by
that knot sequence form a basis, so that for some λi

s(x) =
n∑

i=1

λiBi(x) . (10)

The λi are fixed so that s(x) interpolates data at distinct
sites xj , j = 1, · · · , n. This is done efficiently thanks to
the banded nature of the interpolation matrix. The banded
structure arises because at any x only k of the B-splines are
non-zero. At a given x all of the non-zero Bi are computed
at once by de Boor’s stable recursive method; their deriva-
tives can be obtained similarly. This gives a fast evaluation
of (10) or its derivatives in a time that increases only mildly
with n; the increase is due only to a higher cost of search-
ing for the knot interval in which x lies. Thus when the
B-spline representation of a function is refined the evalua-
tion time hardly changes, in marked contrast to a represen-
tation by Taylor series. For all B-spline operations we use
standard Fortran software available at netlib.org [15].

For multidimensional interpolation the simplest ap-
proach is through a tensor product of B-splines. In 2D this
is

s(x1, x2) =
∑
i,j

λijB
(1)
i (x1)B

(2)
j (x2) , (11)

a simple iteration of the 1D interpolation. The superscripts
indicate possibly different knot sequences for the two di-
mensions. The tensor product interpolation requires data
on a Cartesian grid, which can be used in the present study
only at fairly small phase space amplitudes. At large ampli-
tudes we have oddly shaped interpolation domains, which
we handle by completing the array of real data with rea-
sonable but arbitrary values. An item on our agenda is
to look at more local interpolation methods that not only
can handle general domains but also are more efficient in
high-dimensions, for instance radial basis functions [16] or
Shepard interpolation [17]

Our construction of F proceeds in the following steps:

1. Make a spline Q̃(q0, p0) of Q(q0, p0) from values on
a Cartesian mesh {q0i, p0j}.

2. Solve (1) for p0(q, q0) on a similar mesh {qi, q0j}.
This is done by Newton’s method, taking a first guess
for p0 from the linear part of the map. The required
Jacobian is approximated by Q̃p0 .

3. Using this solution, evaluate γ1 in (7) on the same
mesh, and then make a spline of (γ1, γ2).

4. Integrate this spline on some convenient path to find
F (qi, q0j) through (9).

5. Finally, make a spline to represent F from the values
F (qi, q0j). This spline must be of order k ≥ 4 (cubic
or higher degree), to ensure that F ∈ C2.

The map defined implicitly by F comes from (3),(4) and
is evaluated as follows:

a. For any initial point (q0, p0) solve (4) for q by New-
ton’s method, taking the spline value Q̃(q0, p0) as a
first guess.

b. Substitute the solution from (a) in (3) to obtain p as
well.

In all the above steps the derivatives and integrals of splines
are expressed analytically then evaluated numerically by
means of BSPLVD and FPINTB [15]. Note that for a cubic
spline the function Fq0(q, q0) is C2 in q, which makes it
suitable for Newton’s method in step (a).

4. APPLICATION TO AN ELECTRON
RING LATTICE

We have carried out the map construction just described
for horizontal motion in a lattice for an electron ring that
was part of a study for an ILC damping ring. For a full de-
scription see [18]. It has racetrack form and entails 64 cells,
primarily 90◦ FODO cells. The energy is 5 GeV, the length
960m, and the x-emittance is 47nm. A scaling to include
more cells gives a lower emittance and a candidate for the
damping ring. Tracking is done by the code LEGO, which
integrates equations of motion based on the Hamiltonian in
the local frame of each lattice component [19].
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Figure 5: Phase plot from tracking, νx = 15.81.
Dynamic aperture (2000 turns) just beyond outer curve.

The motion of this example becomes very nonlinear as
the dynamic aperture is approached. This makes it a chal-
lenging example for map construction. A hadron machine
such as the LHC has weaker sextupoles and weaker nonlin-
earity out to the dynamic aperture, notwithstanding impor-
tant effects of random higher order multipoles which con-
tribute to long-term diffusion. On the basis of earlier work
[5, 6, 7] we expect that the present algorithm will be use-
ful for the LHC over a bigger range of amplitudes than it
is in the present example. Nevertheless, the difficulties of
this example have been very informative, and the lessons
learned will certainly be relevant to other cases.

We now choose a tune, νx = 15.81, for which the
short term dynamic aperture is large, near the orbit with
(q0, p0) = (7cm, 0). There are no easily found resonances
except for an 11th order one very close to the dynamic aper-
ture. A phase plot is shown in Fig.5.

We try to construct a map on a rectangular region |q0| ≤
r1, |p0| ≤ r2, and expect that some sub-region will be
mapped into itself by the constructed map. We therefore
seek to construct F (q, q0) in a square domain, |q|, |q0| ≤
r1. For r1 = 2.5cm everything goes according to the plan
of the previous section. This is in accord with the mathe-
matical analysis of Ref.[9] which showed that the scheme
should work at small amplitude. Passing to r1 = 4.5cm,
we encounter a new situation. The solution for p0(q, q0)
does not exist in one corner of the domain, as is seen in
Fig.(6). Let us call this triangular region B, for Bermuda
Triangle. The Newton iteration, which converges beauti-
fully elsewhere, diverges in B in a mode such that iterates
get larger and larger. To generate the plot of successful so-
lutions in Fig.6 the Newton iteration was declared a failure
when iterates p

(n)
0 got bigger than a small multiple of r2, or

when it failed to converge to desired accuracy within a set
maximum number of iterations. As expected, the bound-
ary of B corresponds closely to the curve along which the
condition of Eq.(6) first fails.

In order to make a tensor product spline of γ(q, q0) in
spite of the missing values, we have to fill in the array
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 (

m
)

Figure 6: Points at which p0(q, q0) exists, in blue. The
curves represent values of (q, q0) on the orbits of Fig.7.
The path of integration for Eq.(9) is shown in red.
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Figure 7: Symplectic map from generator, 107 turns. Itera-
tion time 20-25 sec. for 107 turns, per orbit.

in some reasonable manner. We choose to put in values
close to those on the boundary of B, line-by-line in the q-
direction. Of course, the path in the line integral must avoid
the region B. We choose the path shown in Fig.6.

This procedure with a 50 × 50 mesh leads to a symplec-
tic map that gives the phase plot of Fig.7, where each orbit
is followed for 107 turns in 20-25 seconds. We have also
followed the outer orbit for 109 turns, finding no change
to graphical accuracy from the result of 107 turns. Map-
ping time per turn is 20-200 times faster than the under-
lying tracking code (depending on the tracking integrator
chosen), but this is not a fair comparison since our tracking
code is not optimal for 2D tracking; it routinely computes
the time of flight which is not needed in 2D. Nevertheless,
the timing suggests a good outlook for speed in higher di-
mensions. The Newton iteration to solve (4) converged to
machine precision in two or three steps.

The plot of Fig.7 is graphically indistinguishable from
the corresponding plot from tracking over 105 turns. The
quantitative agreement is not spectacular, however. At the
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Figure 9: An enlargement of the top of Fig.8 showing in-
tersecting orbits in (q, q0) plane.

one turn level we have agreement to 5 digits at small am-
plitudes, declining to 4 digits at the outermost curve. As
the map is iterated a lot of phase error quickly builds up,
even though the iterates adhere to a clearly defined invari-
ant curve. This is in accord with much earlier experience
in approximating maps. For a quantitative test in spite of
phase error one has to make an accurate representation of
an invariant curve from tracking, then see how well the map
follows it; this can be done with the method of [20].

When we try to go beyond the outermost curve of Fig.7,
the method abruptly breaks down. The reason can be un-
derstood by using the tracking code to plot orbits in the
(q, q0) coordinates for increasingly large amplitudes. At
some point two curves for neighboring initial conditions
cross, as is seen in the upper right corner of Fig.8. There
are two crossings, as seen in the enlargement in Fig.9. After
this happens, the pair (q, q0) does not determine a unique
orbit, hence p0(q, q0) is not a single-valued function and
the construction of F (q, q0) must fail. The curve with
smaller initial condition (q0 = 0.0604m, p0 = 0) roughly

defines the boundary of existence of F . As seen in Fig.8,
the divergence of the Newton method defines part of the
boundary quite accurately.

We should be able with sufficient care to construct the
generator in its full region of existence. The reason that
our attempted construction failed abruptly with increasing
amplitude is seen by comparing Fig.6 and Fig.8, both of
which show the points at which p0(q, q0) was determined
by Newton’s method. The orbits of higher amplitude that
we seek go into the cusp-like region in the upper right cor-
ner of Fig.8, but the path of integration used in the code can
reach such points only by penetrating the boundary of the
allowed region, thus giving nonsensical F . This could be
avoided by a better choice of path, but that would be dif-
ficult if not impossible to generalize to higher dimensions.
Even with a better path, we have to face the problem of in-
terpolation, which becomes increasingly awkward for the
tensor product spline.

One might ask whether a generator F2(q, p0) exists when
F (q, q0) = F1(q, q0) does not. Plotting the same two or-
bits of Fig.8 in (q, p0) coordinates, we find again two inter-
sections but at negative q ≈ −.0605,−.025, rather than the
positive q ≈ .0375, .0475 of the intersections in (q, q0) co-
ordinates. Thus when (q, q0) fails to specify an orbit (q, p0)
succeeds, and vice versa. Each of the generators fails to ex-
ist at some points on each of the two orbits. The symplec-
tic condition in 2D phase space is Qq0Pp0 − Qp0Pq0 = 1
which shows that Qp0 and Qq0 cannot vanish simultane-
ously, hence either F1 or F2 must exist locally. A theorem
in [21] generalizes this statement to higher dimensions.

5. GENERATOR CONSTRUCTION BY
ACTION INTEGRAL

We have shown one way to construct the generator,
through a partial map inversion to give p0(q, q0) and
a line integral. Another method goes back to Hamil-
ton’s original work of 1830-1832 [11]. He obtained
the generator through the integral of the Lagrangian.
Namely,

S(q0, p0, t) =∫ t

0

[
p(τ, z0) · q̇(τ, z0) − H(z(τ, z0), τ)

]
dτ ,

(12)

where H is the Hamiltonian and the second argument of the
orbit z(τ, z0) indicates its initial condition, z0 = (q0, p0).
The time-like variable t would normally be path length s in
accelerator physics. Hamilton’s essential idea was to regard
the action as a function of (q, q0) rather than (q0, p0). Then
the generator, which is a solution of the Hamilton-Jacobi
equation called Hamilton’s Principal Function, is

F (q, q0, t) = S(q0, p0(q, q0, t), t) . (13)

This is identical to the function of the previous sections
when t = T is the period of the map.
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The advantage of this formula for a practical construc-
tion is that it avoids the line integral (9), which could be
almost impossible to deal with in higher dimensions with
excluded regions. A disadvantage is that the tracking code
must be augmented to calculate the action integral in the
course of tracking. Fortunately, LEGO is able to furnish
the Hamiltonian needed in the integrand.

6. LOCAL INTERPOLATION AND THE
USE OF SCATTERED DATA

Tensor product splines may be adequate in many prob-
lems but in general we need a more local sort of interpola-
tion or approximation that can be used in non-rectangular
domains. One possibility is a generalized Shepard method
[17] based on the formula

F (ζ) =
∑

i

Pi(ζ)
wi(ζ)∑
j wj(ζ)

,

wi(ζ) = c(ζ − ζi)‖ζ − ζi‖−n , (14)

where n is a positive integer such as 4 or 6. Here Pi(ζ) is a
polynomial that interpolates or approximates values of F at
ζi and a few nearby sites. The factor c(ζ − ζi) is a smooth
cutoff that restricts the sum at any evaluation. For ζ close
to ζi this behaves like Pi(ζ) with small corrections from
other terms in the sum. The formula is globally smooth,
with the degree of smoothness controlled by that of c.

This formula works when the sites ζi lie on a mesh or
even when they are scattered. In the latter case one would
normally use a least squares fit to determine the coefficients
of Pi, rather than strict interpolation, since the interpola-
tion matrix could be nearly singular for some dispositions
of sites. Interpolation could be done by replacing the poly-
nomial by a radial basis function [16].

As suggested by Fasshauer (private communication) it
may be advantageous to use scattered sites from a quasi-
random (low discrepancy) sequence. This might enjoy the
advantage that quasi - Monte Carlo quadrature has over
mesh based quadrature in high dimensions [22]. Such a
scheme was tried in Ref.[23], in connection with solution
of a Vlasov equation. In 2D it was possible to reduce the
number of data sites by a factor of 8 in comparison to mesh
based interpolation. A much bigger advantage is expected
in higher dimensions, and this augurs well for construction
of maps in 4D or 6D phase space using quasi-random data.

7. CONCLUSION

After analysis of a difficult example in 2D phase space,
we have a plan for building fast symplectic maps in higher
dimensions. The method described in Sec.3 will proba-
bly succeed in many cases, but in general we shall need
a more powerful approach using local interpolation and
Hamilton’s Principal Function. The use of scattered inter-
polation sites from quasi-random sequences may increase
the efficiency of interpolation in high dimensions.
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SPACE CHARGE DOMINATED BEAMS * 
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ABSTRACT 

 
Beam dynamic simulations with kinetic model have 

been conducted. We have successfully parallelized a 
PIC solver, TRACK, and developed new Vlasov 
solvers. For the PIC solver, particles are distributed 
evenly on different processors and space charge effect 
has been counted by solving Poisson’s equation on a 
finite mesh. Several Poisson solvers have been 
developed using Fourier method in Cartesian coordinate 
system, Fourier Spectral Element in Cylindrical 
coordinate system, Wavelet method, Spectral Element 
Method (SEM) on structured and unstructured grids. 
Domain decomposition (DD) has been used to 
parallelize these solvers. Different Poisson solvers have 
been developed for simulating space charge dominated 
beams. These solvers have been incorporated into 
PTRACK and Vlasov solvers. PTRACK has now 
widely been used for large scale beam dynamics 
simulations in linear accelerators. For the Vlasov solver, 
Semi-Lagrangian method and time splitting scheme 
have been employed to solve Vlasov equation directly 
in 1P1V and 2P2V phase spaces. Similarly, DD has 
been used for parallelization of Vlasov solvers.  

 

INTRODUCTION 
Plasma and charged particle simulations have great 

importance in science. There are three different 
approaches to simulate plasmas: the microscopic model, 
the kinetic model and the fluid model. In the 
microscopic model, each charged particle is described 

by 6 variables (x, y, z, zyx vvv ,, ). Therefore, for N 

particles, there are 6N variables in total. This requires 
solving the Vlasov equation in 6N dimensions, which 
exceeds the capability of current supercomputers for 
large N. On the other end is the fluid model which is the 
simplest because it treats the plasma as a conducting 
fluid with electromagnetic forces exerted on it. This 
leads to solving the Magneto-hydrodynamics (MHD) 
equations in 3D (x, y and z). MHD solves for the 
average quantities, such as density and charge, which 
makes it difficult to describe the fine structure in the 
plasma. Between these two models is the kinetic model, 
which solves for the charge density function by solving 
the Boltzmann or Vlasov equations in 6 dimensions (x, 

y, z, zyx vvv ,, ). The Vlasov equation describes the 

evolution of a system of particles under the effects of 
self-consistent electromagnetic fields. This paper deals 
with the kinetic model.  

There are two different ways to solve the kinetic 
model. The most popular one is to represent the beam 
bunch by macro particles and push the macro particles 
along the characteristics of the Vlasov equation. This is 
the so called Particle-In-Cell (PIC) method, which 
utilizes the motion of the particles along the 
characteristics of the Vlasov equation using a Lagrange-
Euler approach [1, 2]. The PIC method has the 
advantages of speed and easy implementation, but 
similar to MHD, it is hard to calculate fine structures in 
the plasma. Furthermore, there is noise associated with 
the finite number of particles in the simulation. This 
noise decreases very slowly, as N/1 , when the number 
of particles N is increased. The other way to solve the 
kinetic model is to solve the Vlasov equation directly. 
This can overcome the shortcomings of the PIC method. 
We have applied SEM which can achieve high order 
accuracy and developed scalable Poisson and Vlasov 
solvers. This paper reports our work using both models. 
In order to describe space charge effects, several 
Poisson solvers have been developed.  

 

BEAM DYNAMIC SIMULATION  
WITH PIC SOLVER 

In the last several years, we have parallelized a PIC 
solver, TRACK, which has been developed in physics 
division at ANL. Parallel algorithm and detailed 
benchmark results can be in [2, 3, 4]. Recently 
PTRACK has been used for an one-to-one RFQ 
simulation of FNAL proton driver. Totally 865M 
charged particles have been simulated from 50 keV to 
2.5 MeV in 325 MHz radio frequency quadrupole of a 
proton driver at FNAL. Figure 1 is the comparison in 
( WW /,  ) plane. This result provides much more 

accurate information and useful to the design 
optimizations. Now PTRACK has been used as 
workhorse for large scale optimizations. 

PARALLEL POISSON SOLVERS 

Fourier Method 
 
 

 
 
This is the most standard method for solving the 

Poisson’s equation in Cartesian coordinate system. The 
potential has been expanded in Fourier series in all three 
directions. Periodic and Dirichlet zero boundary 
conditions have been applied in all three directions. 
Three different domain decomposition methods have 
been implemented as shown in Fig.2. Using model C, it 
is easy to use tens of thousands of processors with 
relatively small grid for space charge calculation. Since 

___________________________________________  

* This work was supported by the U.S. Department of Energy, Office 
of Nuclear Physics, under Contract No. DE-AC02-06CH11357. 
#jin_xu@anl.gov 

  















12/

2/

12/

2/

12/

2/

),,,(

),,,(                            
M

Mm

P

Pp

N

Nn

nzipyimxi eeetnpm

tzyx





MO4IOPK02 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

12



relatively small grid can be used for space charge 
calculation, good scaling has been obtained and can be 
found in [3, 4]. 

  

Fourier Spectral Element Method 

   This solver is developed for cylinder coordinate 
system. The potential is expanded in Fourier series in 
the axial and circumferential directions, while it uses 
spectral element expansion in the radial direction. 

 
 
 
 
 
 
 
 
 
 
 
Domain decomposition in the radial and 

circumferential directions has been implemented as 
shown in the right of Fig. 1. Periodic B.C. has been 
applied in the axial and circumferential directions and 
zero Dirichlet B.C. have been applied in the cylinder 
wall. Detailed method and benchmark results can be 
found in [2]. 

 

Wavelet Method 
Recently, multi-resolution analysis (MRA) emerges 

as a powerful tool to analyses multi-scale phenomena. 
We have developed a Poisson solver using wavelet 
expansions.  A MRA of           consists of a chain of 
closed subspaces 

 
 
 
 
Since                    , we can define                   and  
                 , such that                              , where 
 
 
 
Then 
 
 
 
There is an efficient preconditioning matrix for the 

linear system generated by the wavelet expansion. We 
use following analytical solution to test this wavelet 
Poisson solver.  

 
 
 
 
 
 
 
 
 
The computation domain is 3]3,[  , and zero 

Dirichlet B.C. has been used. The history of the 
converging error is shown in the left of Fig. 3, the dash 
line corresponding to no preconditioning, and the solid 
line corresponding to with preconditioning. Using 
preconditioning the speed is about three times faster as 

before. Using wavelet, there are only few percent of 
total coefficients are larger than some critical value, as 
shown on the middle of Fig. 3. 
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Fig. 2:  Three parallel models (A, B and C) for solving Poisson’s equation using Fourier method 

 
Fig. 1: Phase contour comparison in ( WW /,  ) plane and parallel model in cylinder coordinate system 
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Domain decomposition has also been used for 

parallelization, and relatively good scaling has been 
achieved. It has also been incorporated into PTRACK 
code, nearly the same results have been obtained. 

 

Spectral Element Method on Structured Grid 

The Spectral Element Method (SEM) originated in 
the 1980’s [6, 7, 8], and has been applied in many 
different areas. In our Vlasov solvers, a parallel Poisson 
solver based on Spectral Element Method (SEM) on 
structured grid has been constructed.  2D structured grid 
has been shown on the right of Fig. 3. 2D bases have 
been shown on the left of the Fig. 4. Similarly, domain 
decomposition has been used for parallelization with 
Dirichlet boundary conditions. Continuous Galerkin 
(CG) method has been used and zero Dirichlet B.C. has 
been imposed. Due to the memory limitation, only the 
iterative solver can be used for solving boundary modes 
of the 2D Poisson’s equation when the mesh is large. 
Interior modes in each element have been solved 
directly according to the Shur complement. The discrete 
system of Poisson’s equation can be written as: (b and i 
correspond to boundary and interior variables) 
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Figure 4 (middle) and (right) show the charge and 

potential distributions. Since zero Dirichlet B.C. has 
been used, the potential is nonzero close to the 
boundary. This means the domain size need large 
enough to obtain the right potential distribution. 

 

Spectral Element Method on Unstructured 
Grid 

In order to solve Poisson in complex geometries, a 
parallel Poisson solver using SEM on an unstructured 
grid has been developed recently. Since finite element 
method (FEM) can handle complex geometry easily, 
and spectral method can achieve high order accuracy. 
Combine these two, SEM can handle the complex 
geometry and also achieve high order accuracy at the 
same time. 

The potential can be expressed as 
 
 
 

The continuous Galerkin formula for solving the 
Poisson’s equation is 
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A mesh partition for 4 processors has been shown on 
the left of Fig. 5. Middle and right plots in Fig. 5 show 
the charge and potential distributions on a circular 
domain. 
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Fig. 3: Convergence history with/out preconditioning (left), wavelet coefficients (middle)  

and 2D structured grid (right) 
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Fig. 4:  Modal bases (left) on 2D structured grid, charge (middle) and potential (right) distributions 
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DYNAMIC SIMULATION WITH  
VLASOV SOLVERS 

 
In order to overcome the shortcoming of the PIC 

solvers, we have developed direct Vlasov solvers. The 
distribution function ),,( tvxf


 in phase space is 

governed by the Vlasov equation. 

Vlasov equation in 1P1V phase space 

In 1P1V phase space, the non-dimensional Vlasov 
equation can be written as following: 

0
),,(

),(
),,(

),(
),,(














v

tvxf
txE

x

tvxf
txv

t

tvxf  

1),(
),(

),(,
),(

),( 








 tx
x

txE
tx

x

tx
txE   






 dvtvxftx ),,(),(  

Vlasov equation in 2P2V phase space 
In beam dynamics, a simplified model can be 

deduced in 2P2V form as a paraxial model based on the 
following assumptions: 

• The beam is in a steady-state: All partial 
derivatives with respect to time vanish; 

• The beam is sufficiently long so that the 
longitudinal self-consistent forces can be neglected; 

• The beam is propagating at a constant velocity bv  

along the propagation axis z; 
• Electromagnetic self-forces are included; 
•  , and ~ ),,,( byxbzzyx ppppppppp 


  where bb mvp  is the beam momentum. It follows in 

particular that 
2/122 )1(  ,)/(  bbbb cv   

• The beam is narrow: the transverse dimensions of 
the beam are small compared to the characteristic 

longitudinal dimension. The paraxial model can be 
written as: 
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,where s  is the self-consistent electric potential due 
to charges. eE


 and eB


 are external electric and 

magnetic fields. 
bv  is the reference beam velocity. 

Numerical Algorithm 
The Semi-Lagrangian Method (SLM) [9] has been 

used for time integration. A plot explains the idea has 
been shown on the left of Fig. 7. The time splitting 
scheme has been used for time integration as proposed 
by Cheng and Knorr [10].   
. . . . . . 
   Do istep=1,nstep: 

   - Compute   dvtvxftx ),,(),(  ; 

- Compute tjEE nnpred   from Ampere’s law; 

- Do until  predN EE 1  

      · Substep1: 2/)( 112/1 txEvv nprednn    

       · Substep2: tvxx nnn   2/11 ; 

       · Substep3: 2/)(2/1 txEvv nnnn   ; 

       · Interpolate to compute charge density; 

       · Solve Poisson’s equation for 1nE ; 

       · Update new 1 npred EE . 
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Fig. 5:  Modal bases (left) on 2D structured grid, charge (middle) and potential (right) distributions 
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The algorithm for 2P2V simulation is similar to the 
above, but with advancing the first and the last substeps 
in physical space and the second substep in the velocity 
space.  

 
Table 1. Scaling 2D Poisson solver (E=64, P=4) 

 
CPU 16 64 256 1024 4096 
Time (s) 286 68 17.2 4.08 1.66 
PE 1.0 1.0 1.0 1.0 0.673 

 

Benchmarks and Simulation Results 
The code comprises two major parts: interpolation 

and space charge (SC) calculation. The SLM performs 
back tracking and interpolation respectively in the 
physical and velocity spaces. Each processor has only 
part of the global mesh for the space charge 
calculations. The field mesh and space charge mesh are 
different. This scheme has the advantage of easy 
implementation and no communication for particle 
tracking is required. However, this method requires 
large memory in each processor and intense 
communication for the parallel Poisson solver. Figure 6 
(left) shows the domain decomposition in 4D for 2P2V 
simulations. 

Table 1 shows the benchmark results for the 2D 
Poisson solver. Good scaling has been achieved. Figure 
6 (middle) compares the interpolation errors with cubic 
spline, Jacobi polynomial with P=2 and 4. Clearly using 
a Jacobi polynomial gives much better results, which is 
good to use in the Semi-Lagrangian scheme. The right 
plot in Fig. 6 shows the strong scaling results for both 
the Poisson and Vlasov solvers in 2P2V simulations. It 

shows that the Vlasov solver can have good scaling 
because the most time consuming part is the 
interpolation. And since the interpolations are local on 
each processor, there is no communication between 
different processors. So even when the scaling of the 
Poisson solver becomes worse with 4k processors, the 
overall scaling is still good. 

The middle and right figures in the Fig. 7 show the 
time history of log(Ex) for linear and strong Landau 
damping. The initial particle distribution function and 
the related parameters are shown in following: 

 
 
 
 
 
 
 
 
For the linear Landau damping, alpha=0.01, and for 

the strong Landau damping, alpha is 0.5. Clearly they 
represent different dynamics. The decreasing and 
increasing rate can be measured and are consistent with 
theoretical predictions and other researchers. 

  

2P2V Simulations 
In 2P2V simulations, a proton beam has been 

simulated through alternating hard edge electric 
quadruple channel. The initial emittance is 

 200 mm mrad, and the energy is W=0.2 MeV. The 
current of the beam is 0.1 A, and the reference velocity 
is 61019.6 bv m/s. The  transverse physical space is [-

0.12, 0.12] by [-0.12, 0.12], and the velocity space is 
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Fig. 6: 4D domain decomposition (left), Interpolation errors vs. element number (middle)  

and strong scaling in 2P2V simulation (right) 

          
Fig. 7: Semi-Lagrange Scheme (left), Linear Landau Damping (middle), Strong Landau Damping (right) 
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]108,108[ 55   by ]108,108[ 55   m/s. The 

alternating electric quadruple field is defined as 
))(- ,)((),,( 00 yzkxzkzyxEe 


 and shown in Fig. 8. 

Since the initial beam distribution is Gaussian (not a 
KV distribution), the RMS envelope is not periodic with 
the amplitude fluctuating from one period to the next. 
Figure 9 shows the beam contours in (x, y), (x, x’), (y, 
y’) and (x’, y’) phase planes at z=0 and 192 steps. 
Detailed information on 1P1V and 2P2V Vlasov 
simulations can be found in [2]. 

 
SUMMARY 

 
This paper presents our researches on beam dynamic 

simulations with PIC method, different parallel Poisson 
solvers, and beam dynamic simulations with direct 
Vlasov solvers. Domain decomposition has been 
adopted for parallelization of TRACK code, and several 
parallel Poisson solvers have been developed and 
incorporated into PTRACK. PTRACK has now been 
used for large scale beam dynamic optimization and 
simulations. Several numerical techniques have been 
used to solve Poisson’ equation in different conditions, 
such as using Cartesian and Cylindrical coordinate 
systems, using structure and unstructured grids, etc.  
Direct Vlasov solvers have been developed with a 
high-order SEM. The advantages and effectiveness of 
the SEM have been demonstrated. The Vlasov solvers 
have adopted the Semi-Lagrangian method. Similarly 
domain decomposition has been used for parallelization 
of these solvers. Scalable Poisson solvers have been 
developed within. Benchmarks of the parallel models 
have shown good scaling on BlueGene/P at ANL with 
up to 4k processors. The SEM shows its advantages in 
these direct Vlasov solvers, such as local interpolation, 
easy parallelization and long time integration. These 
explorations are encouraging, and more investigation 
will be done.  
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Abstract

In the proposed electric dipole moment (EDM) experi-
ment, with an estimated spin coherence time of 1000 s, the
spin precession due to an EDM of 10−29 e.cm will pro-
duce a change in the vertical spin component of approxi-
mately 10 μrad during the storage time. Such high sensi-
tivity needs an highly accurate and reliable simulation envi-
ronment of the beam and spin behavior during the storage
time. Therefore, several spin-related accelerator simula-
tion programs have been considered. The paper surveys
the computational algorithms of these approaches and dis-
cusses their comprehensive analysis from multiple perspec-
tives.

INTRODUCTION

Introduced by Uhlenbeck and Goudsmit to explain the
result of Stern-Gerlach experiments, spin has become a
fundamental concept and plays an important role in the
interactions of elementary particles. To study the various
related phenomena, different experiment environments are
required. For example, to study spin dependence in the
interactions at the quark and gluon level, one employs col-
lision of intense beams of polarized protons at high energy.
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Lab provides a unique facility for this study. Here,
polarized protons can be collided with 50 to 500 GeV cen-
ter of mass energy. The design calls for an intensity of
2 × 1011 protons per bunch with a polarization of 70%.
When the polarized beam is produced from the source, ac-
celerated by several pre-acceleration facilities, injected and
ramped in RHIC to the required energy, numerous spin res-
onances due to the interaction of the magnetic moment and
external electromagnetic fields can deteriorate the polariza-
tion. Hence, the spin dynamics have to be understood and
solutions have to be proposed to preserve the polarization
during the acceleration and storage.

Recently, another quest for physics beyond the Stan-
dard Model (SM) represents a major effort in basic physics
research. A non-vanishing EDM is a violation of Time-
Reversal (T) and Parity (P) symmetries, and under the as-
sumption of CPT invariance also violates the CP symme-
try. Because the Electric Dipole Moment (EDM) values
predicted by most extensions to the SM are many orders of
magnitude larger than those of the SM itself and close to
present experimental sensitivity levels, EDM experiments
have become very sensitive probes for new physics, such

as new sources of CP violation.
A completely new approach to EDM studies is based on

a charged polarized particle storage ring [1, 2]. A non-zero
EDM will affect the observed spin precession, resulting in
the eventual change of the polarization. This technique
promises a significant sensitivity improvement, reaching
down to 10−29 e.cm in 107 s of physics running time. In
such a long time running, the polarization of the beam has
to be maintained, which requires the spin dynamics sys-
tematic errors need to be tightly controlled.

The most general description of spin motion under the
influence of external electromagnetic fields is

d�S

dt
= μ�S × �Fμ( �B, �β × �E) + d�S × �Fd( �E, �β × �B). (1)

Here, the spin vector �S is in the particle rest frame, �B and
�E stand for the laboratory magnetic field and electric field,
respectively. The first term, representing the spin preces-
sion due to the magnetic dipole moment μ = g e

2mc , has
been explored in previous accelerator experiments, for ex-
ample at RHIC. The second term is the spin precession due
to the electric dipole moment d = η e

2mc , which is proposed
for study in the EDM experiment.

The design, optimization, and commissioning of mod-
ern accelerator complexes rely on dedicated beam stud-
ies based on advanced numerical approaches. Analysis of
the spin motion required further development of conven-
tional accelerator codes by augmenting positional coordi-
nates with spin coordinates and combining the Lorentz and
Thomas-BMT equations. However, such composite spin-
orbital applications do not affect the basic computational
framework, especially given that particle orbits are essen-
tially independent of spin orientation (Stern-Gerlach forces
are negligible at the high particle energies considered). The
same numerical approaches are applicable and can be di-
vided into two major categories: tracking and mapping.
The list of successful implementations of these approaches
is very long and this paper does not presume to cover all of
them. Its primary goal is rather practical: to build an open
simulation environment addressing the challenging EDM
experiment. The correction of spin (g-2) frequency was se-
lected as an initial benchmark application.

EQUATIONS OF MOTION

Present beam simulation programs have usually consid-
ered only the first term of Eq.(1) dealing with the spin pro-
cession due to the magnetic dipole moment. This term with
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the magnetic field �B and electric fields �E defined in the
laboratory frame is described by the Thomas-BMT equa-
tion [3]

d�S

dt
= �S × �F , (2)

where

�F = ev0
p0c

[
(aγ + 1) �B − aγ2

γ+1 (�β · �B)�β

− (aγ + γ
γ+1)�β × �E

]
.

(3)

Here a = (g− 2)/2 (also called G in much of the accelera-
tor literature) is the anomalous magnetic moment, �β = �v/c
and γ is the Lorentz factor.

In a circular accelerator, the particle motion is conve-
niently described relative to the trajectory of a reference
particle with momentum p0 since all machine magnets are
positioned relative to this trajectory. In this coordinate
system, called Frénet-Serret plane coordinate system, the
Thomas-BMT equation can be rewritten as

dSx

ds
=

[
�S × �F

]
x

dt

ds
+ hSz

dSy

ds
=

[
�S × �F

]
y

dt

ds
(4)

dSz

ds
=

[
�S × �F

]
z

dt

ds
− hSx

where
dt

ds
=

1 + hx
pz

p0

1
v0

. (5)

Similarly, the Lorentz equations describing the particle
behavior in an external electromagnetic field in the Frénet-
Serret coordinate system are expressed in the following
form:

d

ds

(
px

p0

)
=

e

p0c

[
�E

β0
+

�p

p0
× �B

]

x

·
(

dt

ds
· v0

)
+ h

pz

p0

d

ds

(
py

p0

)
=

e

p0c

[
�E

β0
+

�p

p0
× �B

]

y

·
(

dt

ds
· v0

)
(6)

d

ds

( E
p0c

)
=

(
e �E

p0c

)
· �p

p0
·
(

dt

ds
· v0

)

where the third component of momentum is directly calcu-
lated as

pz

p0
=

√
E2 − (m0c2)2

p2
0c

2
−

(
px

p0

)2

−
(

py

p0

)2

. (7)

The above equations are given in the canonical coordinates
used in the MAD [4] and MAD-X program [5]. This set
of coordinates is not unique and is chosen differently in
different accelerator codes.

TRACKING APPROACH

Introduced in the early days of the SSC, the code
TEAPOT [6] had the narrowly defined purpose of inves-
tigating proton emittance growth (and lifetime reduction)
due to magnetic imperfections. Symplecticity was there-
fore of paramount importance. Because of the difficulty of
preserving symplecticity with thick elements, the code ac-
cepts only zero length elements, making it a “kick” code,
or a “finite element” code, or a “symplectic integrator”.

TEAPOT, like all tracking codes, is thus a numerical dif-
ferential equation solver (of the Lorentz force equation).
Finite-length elements are sliced as narrowly as is required
for the desired accuracy. Unlike some symplectic integra-
tors, however, negative drift lengths are disallowed. This
is consistent with the philosophy that zero length elements
are “better than” finite length elements, and that the sliced
accelerator, though idealized, is otherwise physical.

Conceptually the accelerator consists of a sequence of
zero length elements alternating with finite element drifts.
All orbits are therefore straight lines with kinks. All
straight lines and kinks are calculated exactly and symplec-
tically. One therefore calculates “exactly in an approximate
accelerator”, rather than “approximately in an exact accel-
erator”.

All longitudinal evolution proceeds by straight line seg-
ments. A single slice of a magnet is represented by a “mul-
tipole plane” which includes both intended and unintended
(error) fields. After solving for the intersection of an in-
dividual particle trajectory with this plane, the orbit kink
is calculated and the new straight line determined. Parti-
cle tracking consists of iterating this process for all lattice
elements and for each particle.

Unlike most beam dynamics codes, neither linear nor
nonlinear transfer matrices are used for particle propaga-
tion. But transfer maps and lattice functions are calculated
numerically and made available as optional output. This
capability has been completely superceded by arbitrary or-
der truncated Taylor series determination in the TEAPOT
module of UAL [7]. Numerous other simulation features
such as bunch generation, orbit smoothing, tune and chro-
maticity adjustment, and decoupling are also supported,
along with even more specialized features.

By augmenting the six phase space coordinates with
three spin coordinates, and solving also the BMT equation
using the same finite element approach, it was relatively
straightforward for S. Mane, in 1994, to extend the code to
include spin tracking.

Another approach has been implemented in the spin
tracking code SPINK [8]. This program was written for
the RHIC project at Brookhaven National Laboratory and
employed for years to study the behavior of polarized pro-
tons in all stages of the accelerator complex. SPINK uses a
composite approach. Its orbit module is based on the first
order matrices and the second order Transport maps pro-
duced by the MAD program. Spin propagation was imple-
mented by the additional thin elements, spin kicks, which
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rotate the spin in each accelerator element using the spin
rotation matrix M:

S = M S0 (8)

This procedure has the advantage of very high computa-
tional speed using matrices that by construction represent
a rotation of the spin vector by an angle δμ around an axis
defined by its latitude θ and longitude φ, with respect to the
reference coordinate axes.

Eqs.(4) yield three third order formally identical linear
equations for the three components of the spin

S′′′ + ω2S′ = 0, (9)

with

ω2 = f2
x +

(
fy − 1

ρ

)2

+ f2
z , �f = �F · dt

ds
. (10)

The general integral is

S = C1 + C2 cos(δμ) + C3 sin(δμ). (11)

with
δμ = ω δs (12)

the spin rotation angle (spin kick) in the machine element.
δs is the path length through the element along the refer-
ence orbit. The constants of integration, C1, C2, C3, can
be found as a linear function of the initial and the final val-
ues of the spin components using S, S′, S′′ and the origi-
nal system. The algebra is tedious but straightforward and
the resulting linear relation between spin after and before
kick, expressed in the form of the 3 × 3 matrix M, is
⎛
⎜⎜⎜⎜⎝

1 − (B2 + C2)c ABc + Cs ACc − Bs

ABc − Cs 1 − (A2 + C2)c BCc + As

ACc + Bs BCc − As 1 − (A2 + B2)c

⎞
⎟⎟⎟⎟⎠

with
c = 1 − cos(δμ) s = sin(δμ) (13)

and

A =
fx

ω
, B =

fy − 1
ρ

ω
, C =

fz

ω
(14)

M is a parametric linear transformation, whose elements
are function of the values of the particle coordinates in the
laboratory, and has a determinant

det(M) = 1. (15)

The matrix represents a rotation of the spin vector by an
angle δμ around an axis defined by the two angles θ and lφ.
The coefficient of Eq.(14) can be expressed as a function of
these angles, namely

A = cos θ sin φ, B = sin θ, C = cos θ cosφ (16)

MAPPING APPROACH

The transformation of spin-orbit variables after passage
through given beam line, which could be a single pass
transport channel or one turn in circular accelerator, can
be represented in the form of the map

{
�zf = �F (�zi)
�Sf = A(�zi) · �Si

(17)

where �z denotes the combined vector of six orbital vari-
ables and 3×3 matrix A(�z) belonging to the SO(3) group.
Assuming that �F (�0) = �0 (i.e. orbital variables are devia-
tions from reference orbit) and elements of the vector func-
tion �F and matrix A are differentiable functions, one can
make an approximation of the map in Eq.(17) expanding
its right hand side in Taylor series with respect to �z and
truncating this expansion at the certain order.

There is a variety of ways to calculate the numerical val-
ues of the coefficients of this truncated map. A.W.Chao
program SLIM, the first in this field, utilizes explicit for-
mulas and allows the treatment of the linear expansion of
the matrix A and assumes linear orbit motion [11]. The
code SPINLIE also uses explicit formulas obtained by for-
mula manipulators and extends the treatment of spin-orbit
motion up to third order [12]. It is clear that the complex-
ity of this semi analytical approach grows rapidly with the
truncation order making further development difficult.

Another possible way is to use some spin-orbit tracking
code with subsequent application of numerical differentia-
tion technique. This approach has its own difficulties and
will not be discussed here.

It seems that the most reliable way lies in the area of an-
alytical manipulations with polynomials. This allows ob-
taining spin-orbit map in a way which is independent from
the truncation order. The first program with such possibil-
ities for spin motion was FMN [10] written in 1992 un-
der the name VasiLIE. The computer code FMN was ap-
plied for several projects, for example, to the investigation
of schemes for preserving the polarization in the TRIUMF
KAON Booster, to the study of the possibilities to acceler-
ate polarized proton beams in the Nuclotron ring in Dubna,
in the HERA proton ring, and others. Later on similar pos-
sibilities were included into COSY INFINITY [13].

Both codes, FMN and COSY INFINITY, use such pow-
erful methods as numerical integration using the differen-
tial algebra techniques and the direct summing of Lie ex-
ponent series for s-independent elements. Note that Tay-
lor map coefficients obtained by these methods accumulate
two types of errors: computer rounding errors and errors
defined by the size of the integration step (or by the num-
ber of terms in the Lie series taken for summation). There
is an approach free from the defects of the second type in
which the number of the steps does not depend on a preci-
sion (like in the Gauss method of matrix inversion, where
the number of operations depends on the matrix dimension
only), which is also used in the FMN code [14].
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UAL FRAMEWORK

The Unified Accelerator Libraries (UAL) attempt to
”manage the complexity” of accelerators by providing an
environment for simulating a variety of properties of a va-
riety of accelerators using a variety of simulation codes and
methods. The intended value of the environment is to pro-
vide homogeneous access to these resources while masking
their diversity yet assuring their consistency. This allows
different methods to be consistently applied to the same
accelerator and the same methods to be applied to different
accelerators.

To facilitate such unification UAL has introduced an
open architecture in which diverse accelerator codes are
connected together via common accelerator objects such
as Element, Bunch, Twiss, etc. In this architecture each
accelerator code is implemented as an object-oriented li-
brary of C++ classes. There is a very natural identification
of physical elements, such as magnets, with their repre-
sentation by computer objects. UAL supports considerable
flexibility in the attributes of all objects - certainly enough
that all attributes of objects contained in modules included
so far have been describable without constraint. Such flex-
ibility has made it practical to evaluate, compare, and in-
tegrate a variety of design models and to build heteroge-
neous, project-specific applications.

The accumulated experience has motivated the develop-
ment of the Element-Algorithm-Probe framework [15], a
uniform mechanism for combining diverse modules to sim-
ulate complex combinations of the physical effects and dy-
namic processes. Elements are things like bending mag-
nets, RF cavities, collimators, and so on. Algorithms
are mathematical formulas capable of evolving quantities
known at element inputs to their corresponding values at
element outputs. So both element and algorithm are terms
of common usage, likely to be understood unambiguously
by all workers in the field. The term probe, because it is
less standard, requires more explanation. A similar term
is observable. As used in UAL a particle or beam bunch
probes the lattice elements. Other things also probe the
lattice. For example, the transfer map (identity at the ori-
gin) evolves into the transfer map from origin to element
output as it evolves through an element. So a probe is any-
thing whatsoever for which continuous evolution is mean-
ingful and the evolution is unambiguously caused by the
elements making up the lattice. It therefore makes sense
to evaluate the evolution of a probe caused by the lattice.
Examples of probes are 6D particle coordinates of all par-
ticles in a bunch, spin components, moments of a bunch
of particles, lattice functions such as Twiss functions and
dispersion functions, transfer matrices (i.e. linear maps),
nonlinear maps (which are represented by truncated power
series), wake fields, and so on.

Several years ago, The BNL team extended UAL with
the space charge module SIMBAD [16] as a part of the Eu-
ropean Union contract. At this time, addressing the spe-
cial requirements of the EDM experiment, UAL accom-

modated another BNL code, SPINK, described in the pre-
vious section on tracking approaches. This development
solved three major tasks. First, UAL allowed the upgrade
of the original SPINK version with the TEAPOT symplec-
tic tracking engine and provided access to other modules,
for example, the differential algebra-based integrator and
others. Second, the SPINK Fortran code has been refac-
tored and transformed into a few dedicated C++ classes.
As a result, it added flexibility for developing new exten-
sions, such as new types of elements and enhancing the ac-
curacy of the original approach with the slicing technique.
Finally, the SPINK algorithm became a part of the simula-
tion infrastructure which can be applied to other projects.

(G-2) EXPERIMENT

In the studies of spin motion, the (g-2) frequency is de-
fined as the frequency of the spin precession relative to
the momentum vector, describing the rate of change of the
component of spin �S parallel to the velocity. For a particle
with momentum p0 moving in a plane perpendicular to the
magnetic field �B, the (g-2) frequency is given by Thomas-
BMT equation as

ω0 =
eB
p0c

γv0 · g − 2
2

, (18)

where B is the magnitude of the field. If the orbit is not ex-
actly perpendicular to the magnetic field, a small correction
to the (g-2) frequency will appear. This pitch correction
has been addressed and examined in a few papers [17, 18]
when the pitch angle (the angle with respect to the plane
perpendicular to the magnetic field) is varying due to axial
focusing force, presented by an almost uniform and only
particle linear position dependent magnetic field.

As part of a calibration effort of particle tracking codes
for the storage ring of electric dipole moment (EDM) ex-
periments (proton and deuteron), a study of the pitch cor-
rection has been carried out by simulating a circulating par-
ticle in a continuous ring with weak magnetic focusing.
Given the field focusing index n = −[ ρ0

B0

∂By

∂x ], the pitch
correction is extended [19] because of the quadratic depen-
dence on y2 in the curvilinear coordinate system. In the
limit of fast pitch change (ωy � ω0, with ωy the frequency
of the vertical betatron oscillation ), the corrected (g-2) fre-
quency is given as

ωa = ω0

[
1 − a

2
ψ2

0 +
n

2(1 − n)
ψ2

0

]
. (19)

Here, ω0 is the uncorrected (g-2) frequency given in
Eq.(18), a = (g−2)/2 and ψ0 is the amplitude of the pitch
angle with respect to the xz-plane perpendicular to the y di-
rection. This analytical formula has been confirmed quan-
titatively by the integration of the differential equations of
motion using the subroutine TDHPCG [20] based on the
fourth order corrector-predictor method of Runge-Kutta.

We applied this result to a simple muon ring defined by
the parameters in table 1. For n equals 0.13, ωy/ω0 ≈ 225
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Table 1: Testing muon particle and ring parameters.
Muon momentum p (GeV/c) 0.1
Focusing Index n 0.13
Radius ρ (m) 5
Anomalous magnetic moment a 0.00116592
Initial pitch angle ψ0 (mrad) 1
Initial spin vector Sx, Sy, Sz 0, 0, 1

close to the limit of fast pitch change. The results from
the analytical formula Eq.(19) and the UAL simulation are
listed in table 2. The number of slices each element broken
up into in UAL is listed in the first column. The last column
shows the CPU time of per particle per turn.

Table 2: List of pitch correction from analytical formula
and simulation of UAL.

Approach ωa−ω0
ω0

(×10−8) CPU time (ms)
Analytical formula 7.42
UAL, slices = 8 6.48 ± 0.01 0.86
UAL, slices = 32 7.34 ± 0.02 2.97
UAL, slices = 64 7.38 ± 0.02 5.81
UAL, slices = 128 7.39 ± 0.02 10.66
UAL, slices = 256 7.40 ± 0.02 21.72

SUMMARY

This paper has given a brief summary of the most promi-
nent sorts of accelerator simulation codes. The motivation
for this is the need for extraordinarily precise spin tracking
calculations required for interpreting high precision exper-
imental measurements of magnetic and, especially, elec-
tric dipole moments. The presentation has attempted to be
neutral as regards physical methods, but partial as regards
establishing an environment in which diverse methods of
calculation can be applied to multiple physical effects.

Many component errors and imperfections are capable
of producing behavior that can be misinterpreted as being
due to the particular dipole moment being measured. Ex-
amples are fringe fields, errors, nonlinearities, etc. In this
report just one (particularly simple)such effect has been in-
vestigated and compared with an analytic calculation. This
has been intended only as a prototype of the sorts of calcu-
lations and comparisons that will be required. This initial
step needs to be extended in many directions: new bench-
marks, new programs, especially from the mapping cate-
gory (like FMN and COSY), and new extensions encom-
passing all relevant physical effects.

ACKNOWLEDGEMENT

One of the authors (N.Malitsky) would like to thank
V.Balandin, N.Golubeva for their invaluable input.

REFERENCES

[1] F.J.M.Farley et al. Phys.Rev.Lett. 93, 052001 (2004).

[2] “AGS Proposal: Search for a permanent electric dipole
moment of the deuteron nucleus at the 1029 e.cm level.”
Spokesperson Y.K.Semertzidis (2008)

[3] L.H.Thomas, Phil. Mag. 3, 1 (1927) ; V.Bargmann,
L.Michel, V.L.Telegdi, Phys. Rev. Lett. 2, 435 (1956).

[4] H.Grote and F.Iselin, The MAD Program (Methodical Ac-
celerator Design), User’s Reference Manual, CERN/SL/SO-
l3(A:P) (1990).

[5] P.K.Skowronski, F.Schmidt, E.Forest. “Advances in MAD-
X using PTC”, Proceedings of PAC07, p.3381, Albu-
querque, New Mexico, USA (2007).

[6] L.Schachinger and R. Talman, “TEAPOT: A Thin-Element
Accelerator Program For Optics and Tracking”, Particle Ac-
celerators, Vol.22, pp.35-56 (1987).

[7] N.Malitsky and R.Talman, Unified Accelerator Libraries.
AIP 391 http://code.google.com/p/ual (1996).

[8] A.U.Luccio, Proceedings of the Adriatico Research Confer-
ence on Trends in Collider Spin Physics p.235 Trieste, Italy
(1995).

[9] V.Balandin and N.Golubeva, Hamiltonian Methods for the
Study of Polarized Proton Beam Dynamics in Accelerators
and Storage Rings, DESY 98-016, February 1998.

[10] V.Balandin and N.Golubeva, Nonlinear Spin Dynamics,
Proc. XV Int. Conf. High Energy Accelerators, Hamburg,
1992, Int. J. Mod. Phys. A, 2B, 998, (1992).

[11] A.W.Chao, Nucl. Instr. Meth., 180 (1981) 29.

[12] Yu. Eidelman and V. Yakimenko, Proc 1991 IEEE Part. Ac-
cel. Conf., 1991, San-Francisco.

[13] V.Balandin, M.Berz and N.Golubeva, Computation and
Analysis of Spin Dynamics, Computational Accelerator
Physics Conference, Williamsburg, Virginia, USA, (1996).

[14] V.Balandin, One of Methods to Extract Truncated Taylor
Map for Orbital and Spin Motion in Proton Storage Rings,
Particle Accelerator Conference, Washington, USA, (1993).

[15] N.Malitsky and R.Talman, Framework of Unified Accelera-
tor Libraries. ICAP’98 (1998).

[16] N.L.D’Imperio, A.U.Luccio, N.Malitsky, O.Boine-
Frankenheim, Parallel 3-D Space Charge Calculations in
the Unified Accelerator Library. EPAC’04 (2004).

[17] S.Granger, G.W.Ford, “Electron Spin Motion in a Magnetic
Mirror Trap”, Phys. Rev. Lett. 28, 1479 (1972).

[18] F.J.N.Farley, “Pitch Correction in (g-2) Experiments”, Phys.
Lett. 42B, 1, 66 (1972).

[19] F.Lin, etc “Extended Pitch Correction with Weak Magnetic
Focusing”, EDM internal note, (2009)

[20] This program is the differential equation solver-DHPCG
which uses the fourth order corrector-predictor method. This
is a modification of subroutine DHPCG from the scientific
subroutine package (SSP) published by IBM.

MO4IOPK04 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

22



AN EFFICIENT 3D SPACE CHARGE ROUTINE WITH SELF-ADAPTIVE
DISCRETIZATION ∗

G. Pöplau† , U. van Rienen, Rostock University, Rostock, Germany

Abstract

Precise and fast 3D space charge calculations for
bunches of charged particles are still of growing impor-
tance in recent accelerator designs. A widespread approach
is the particle-mesh method computing the potential of a
bunch in the rest frame by means of Poisson’s equation.
Whereas an adaptive discretization of a bunch is often re-
quired for efficient space charge calculations in practice,
such a technique is not implemented in many computer
codes.

In this paper we present a new approach to an adaptive
discretization which is based on the multigrid technique.
The goal is that the error estimator needed for the adaptive
distribution of mesh lines can be calculated directly from
the multigrid procedure. The algorithm was implemented
in the software package MOEVE and investigated for sev-
eral particle distributions. It turns out that the adaptive dis-
cretization technique performs very efficiently.

INTRODUCTION

The simulation of the dynamics of high-brightness
charged particle bunches demand the fast calculation of
3D non-linear space charge fields with an accuracy that
matches the quality of the bunch. The particle-mesh
method is a widespread model for space charge calcula-
tions. Here, adaptive discretization techniques are often
required in order to satisfy both computational demands:
accuracy and fast performance. Nevertheless, adaptive dis-
cretizations are implemented only in a few software pack-
ages together with space charge calculations. For instance,
the FFT Poisson solver that is often applied allows only
an equidistant mesh. An adaptive discretization following
the particle density distribution is implemented in the GPT
tracking code (General Particle Tracer, Pulsar Physics) to-
gether with a multigrid Poisson solver of the software pack-
age MOEVE (Multigrid for non-equidistant grids to solve
Poisson’s equation) [5, 11]. The disadvantage of this ap-
proach is that it does not provide a hierarchical construction
of meshes which could be used directly by the multigrid al-
gorithm.

In this paper we present a new approach to an adaptive
discretization which is based on the multigrid technique.
The goal is that the error estimator needed for the adap-
tive distribution of mesh lines can be calculated directly
from the multigrid procedure. The algorithm has been im-
plemented within the framework of the software package
MOEVE. It will be investigated for several particle distri-

∗Work supported by DFG under contract number RI 814/18-1
† gisela.poeplau@uni-rostock.de

butions among them a particle distribution which occured
during simulations for the European XFEL [1].

3D SPACE CHARGE MODEL

The space charge model we consider here is the particle-
mesh method. The distribution of particles in a bunch is
modeled as distribution of macro particles. Assuming that
the energy of the macro particles is within the same range
the space charge field is calculated in the rest frame of the
bunch. After the transformation into the rest frame a mesh
is constructed around the particles of the bunch and the
charge of the particles is assigned to the mesh points. Now,
the potential ϕ can be obtained from Poisson’s equation
given by

−Δϕ =
�

ε0
in Ω ⊂ R

3,

ϕ = 0 on ∂Ω1,
∂ϕ

∂n
+

1
r
ϕ = 0 on ∂Ω2,

(1)

where � the space charge distribution, ε0 the dielectric con-
stant and r the distance between the centre of the bunch
and the boundary. Usually, the domain Ω is a rectan-
gular box constructed around the bunch. On the surface
∂Ω = ∂Ω1 ∪ ∂Ω2 (∂Ω1 ∩ ∂Ω2 = ∅) perfectly conducting
boundaries (∂Ω1) or open boundaries (∂Ω2) can be applied.
For space charge calculations within a beam pipe the do-
main Ω is assumed to be a cylinder with elliptical cross sec-
tion. A detailed description of the 3D space charge model
can be found in [8] and the model with elliptical shaped
beam pipe in [4], respectively.

For the solution of the Poisson equation we applied the
discretization with second order finite differences. This
leads to a linear system of equations of the form

Lhuh = fh, (2)

where uh denotes the vector of the unknown values of the
potential and fh the vector of the given space charge den-
sity at the grid points. The step size h indicates a certain
refinement level and the operator Lh is the discretization of
the Laplacian.

THE POISSON SOLVERS OF MOEVE

The software package MOEVE has been developed for
space charge calculations. It involves several iterative Pois-
son solvers among them the state-of-the-art multigrid Pois-
son solvers MG (multigrid) and MG-PCG (multigrid pre-
conditioned conjugate gradients). These algorithms pro-
vide optimal convergence, i. e. the number of iteration steps
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needed to obtain a certain accuracy is independent of the
step size h.

The multigrid algorithm operates on a certain number of
grids starting with the mesh given by the discretization of
Poisson’s equation which is related to equation (2). This
mesh is referred to as the fine grid. Then a sequence of
coarser grids is generated by cutting mesh lines. On an
equidistant mesh where the number of mesh lines equals
N = 2t + 1, every second mesh line can be removed.
Of course this process can be also performed vice versa,
i. e. we start with a coarse mesh and refine the mesh (adap-
tively) until a certain fine level is achieved. More details
of the Poisson solvers of MOEVE can be found elsewhere,
for instance in [5, 6].

Since the bunch is located only in a certain part of Ω, an
adaptive discretization strategy is required for an efficient
solution method. Successfully applied for space charge
calculations, one possible method is the adaptive distribu-
tion of mesh lines according to the distribution of the par-
ticles inside the bunch as implemented in the tracking code
GPT [10]. However, the main drawback of this approach
is that the mesh has no natural relation to a multigrid hier-
archy. Together with the multigrid Poisson solver of MO-
EVE, a special coarsening strategy has been developed for
these adaptive meshes in order to achieve optimal multigrid
convergence [9].

SELF-ADAPTIVE MULTIGRID

The generation of adaptive meshes providing both an ap-
propriate approximation of the bunch and a hierarchy of
meshes for the multigrid Poisson solver is an important
task for the development of efficient 3D space charge al-
gorithms. The grid refinement should be self-adaptive, i. e.
the grid refinement is carried out dynamically during the
solution process. It is controlled by some refinement crite-
rion.

A common criterion which will be tested in this paper
is the τ -criterion [12]. Before this criterion can be defined
some notations are necessary. The step sizes h and 2h refer
to the step sizes on the fine and the next coarser grid (usu-
ally with double mesh size), respectively. The operators
I2h
h and Î2h

h denote different restriction operators. For the
numerical tests of the next section the injection was cho-
sen for Î2h

h and the full weighting restriction for I2h
h . The

τ -criterion is based on the so-called (h,2h) relative trunca-
tion error τ2h

h with respect to the restriction operators I2h
h

and Î2h
h . It is defined by

τ2h
h := L2hÎ2h

h uh − I2h
h Lhuh . (3)

The values of τ for the “XFEL bunch” (see section on nu-
merical investigations below) are represented in Figure 1.

By means of the refinement criterion a hierarchy of lo-
cally refined grids can be generated. The self-adaptive
multigrid scheme is given as follows:

Algorithm: Self-Adaptive Multigrid

1. Start on a relatively coarse mesh.

2. Perform a few multigrid cycles on equation (2).

3. Calculate τ2h
h .

4. Add mesh lines locally, where |τ2h
h | > ε.

5. Proceed from 2) as long as |τ2h
h | > ε.

The algorithm is constructed such that the mesh is refined
at locations where |τ2h

h | > ε. Hence, the structure of the
resulting mesh corresponds to the tensor product mesh im-
plemented in MOEVE. This strategy allows the direct ap-
plication of the MOEVE MG Poisson solvers on the refined
mesh. This algorithm was first given in [6].
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Figure 1: Values of τ for the XFEL bunch. The values are
shown in the (x,z)-plane at x=0.0 m.

NUMERICAL INVESTIGATIONS

In this section the performance of the adaptive dis-
cretization strategy is investigated. We applied both MG
(multigrid) and MG-PCG (multigrid preconditioned coju-
gate gradients) as multigrid Poisson solvers implemeted in
MOEVE. Although MG-PCG takes more time for one sin-
gle step because of additional caculations it is often more
stable in real life applications. The results for the adap-
tively refined grid were compared to those obtained with
an equivalent equidistant grid. All Poisson solvers were
applied until the relative residual had achieved a value of
less than 10−2. This value seems to be rather low, but fur-
ther iterations would not improve the numerical error, be-
cause the space charge densities of the following particle
distributions are discontinues.

Cylindrical Particle Distribution

First, the refinement algorithm was applied to a cylindri-
cal particle distribution with 100,000 macro-particles and
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Nx × Ny × Nz MG steps CPU time
17 × 17 × 33 2 0.05 s
33 × 33 × 65 3 0.16 s
65 × 65 × 129 4 1.36 s

129 × 129 × 257 4 10.80 s
257 × 257 × 513 4 88.90 s
Nx × Ny × Nz MG-PCG steps CPU time
17 × 17 × 33 2 0.05 s
33 × 33 × 65 4 0.20 s
65 × 65 × 129 4 1.38 s

129 × 129 × 257 4 11.10 s
257 × 257 × 513 4 92.2 s

Table 1: Performance of MG and MG-PCG for a cylindri-
cal particle distribution on equidistant grids.

a radius of R = 2 mm and a length of 17.3 mm. Such a
cigar-like bunch shape was chosen because these long dis-
tributions usually pose a problem to the Poisson solvers [7].
The macro particles of the bunch were uniformly dis-
tributed. Th bunch had a total charge of Q =−1 nC.
The computational domain Ω was constructed as Ω =
[−0.0085, 0.0085]× [−0.0085, 0.0085]× [−0.017, 0.017]
and open boundary conditions were applied. For the adap-
tive algorithm we started with an equidistant mesh i. e. the
step size at the coarsest level is approximately equal for all
coordinate directions. This is not necessary in general but
for long bunches it improves the performance.

In the following the performance of the straigth-forward
multigrid technique on equidistant grids was compared to
the performance on the adaptive grid. The CPU times in-
clude all calculations for space charge i. e. also the assign-
ment of the particle’s charge to the grid points.

In Table 1 the CPU time is given for calculations with
the MG and MG-PCG solver on equidistant grids. The re-
sults approve the linear behaviour of the MG and MG-PCG
algorithms.

Table 2 represents the results for the self-adaptive multi-
grid procedure. The algorithm starts with a grid of 17 ×
17 × 33 mesh points. Then the mesh will be refined suc-
cessively until all values of τ are less than 10−2. The re-
finement of each level is given in Table 2. The smallest
step size of each level coincides with the step size of the
corresponding level of the equidistant discretization. Since
the adaptive discretization requires only a fraction of the
mesh points of the equidistant grid the performance time
for MG-PCG reduces to a quarter of the time required for
the same refinement level on an equidistant grid.

XFEL bunch

The particle distribution in this section was taken from
simulations for the European XFEL [1]. The bunch had a
total charge of −1 nC. At the cathode it was started with
a radius of 3 mm and the laser was modeled as a flat top
shape with 20 ps full width half maximum and a rise and
fall time of 2 ps. The bunch was tracked through the rf gun

Nx × Ny × Nz MG steps CPU time
17 × 17 × 33 2 0.04 s
33 × 33 × 59 3 0.20 s
47 × 47 × 97 4 0.87 s
65 × 65 × 163 7 4.36 s
95 × 95 × 283 18 41.10 s
Nx × Ny × Nz MG-PCG steps CPU time
17 × 17 × 33 2 0.04 s
33 × 33 × 59 4 0.23 s
47 × 47 × 97 4 0.93 s
65 × 65 × 163 6 4.01 s
85 × 85 × 283 8 21.80 s

Table 2: Performance of MG and MG-PCG for a cylindri-
cal particle distribution on the adaptively constructed mesh.

Nx × Ny × Nz MG steps CPU time
33 × 33 × 65 3 0.15 s
65 × 65 × 129 3 1.4 s

129 × 129 × 257 3 3.19 s
257 × 257 × 513 2 51.20 s
Nx × Ny × Nz MG-PCG steps CPU time
33 × 33 × 65 4 0.12 s
65 × 65 × 129 4 1.34 s

129 × 129 × 257 4 10.70 s
257 × 257 × 513 2 53.00 s

Table 3: Performance of MG and MG-PCG for the simu-
lated XFEL bunch at 0.07 m on an equidistant mesh.

with the tracking code ASTRA [3] with the settings given
in the technical desing report [2].

For this numerical test the particle distribution at the lon-
gitudinal position of 0.07 m after the cathode was cho-
sen. Here, the bunch had a radius of 3.0 mm, a length
of 8.0 mm and an energy of 2.5 MeV. For the simula-
tion the bunch contained 100,000 macro particles. The
bounding box in the rest frame was constucted as Ω =
[−0.016, 0.016] × [−0.016, 0.016] × [0.037, 0.047] and
Dirichlet boundary conditions were applied.

Table 3 and 4 present the CPU time for the equidis-
tant and for the adaptively constructed grids, respectively.
It turns out that the computational effort can be reduced
enormously by the application of the adaptive discretiza-
tion strategy. Considering the finest dicretization the CPU
time of the MG method was reduced nearly to a tenth on
the adaptive mesh.

Figure 2 and 3 show the adaptive discretization with 45×
45 × 85 grid points.

CONCLUSIONS

In this paper we constructed an adaptive discretization
technique for space charge calculations which is based on
the τ -criterion. By means of this approach a hierarchy of
grids can be generated which can be directly used by the
multigrid scheme of the software package MOEVE. The
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Nx × Ny × Nz MG steps CPU time
31 × 31 × 53 2 0.06 s
45 × 45 × 85 3 0.52 s
59 × 59 × 141 2 2.00 s
83 × 83 × 243 3 5.96 s
Nx × Ny × Nz MG-PCG steps CPU time
31 × 31 × 53 2 0.14 s
45 × 45 × 85 4 0.65 s
59 × 59 × 141 6 2.16 s
83 × 83 × 243 6 7.96 s

Table 4: Performance of MG and MG-PCG the XFEL
bunch at 0.07 m on the adaptively constructed mesh.
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Figure 2: Adaptive discretization (transversal) for the
XFEL bunch. The potential in the rest frame is plotted in
the transversal plane through the longitudinal centre of the
bunch.

implementation into the framework of MOEVE allowed a
relatively simple approach. The numerical tests showed
that the adaptive discretization reduced the number of mesh
points enormously. Hence, the space charge calculations
were performed very efficiently.
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IMPEDANCE ESTIMATION BY PARABOLIC PARTIAL DIFFERENTIAL
EQUATION FOR RECTANGULAR TAPER∗

N. Okuda, The University of Tokyo, Tokyo, Japan
K. Yokoya, KEK, Tsukuba, Japan

Abstract

The mesh calculation based on the paraxial approxima-
tion can be much faster than ordinary methods when the
bunch is very short. There are two reasons. One is to
be able to choose the longitudinal mesh size independent
of the bunch length. The other is that the problem can be
solved as an initial-value problem in spite of frequency do-
main calculation.

However, the accuracy of the results by the approxima-
tion is not clear generally. It will be shown that the approx-
imation is valid for rectangular tapered chamber in some
frequency range.

INTRODUCTION

Recently, the calculation of wake field and the
impedance has become more important because new ac-
celerators require high current and much required fineness.
In many cases they are usually calculated numerically by
simulation using a mesh.

There are many methods of mesh calculation. The finite-
difference time domain (FDTD) [1] and the finite integra-
tion technique (FIT) [2] are popular.

The mesh computation based on the paraxial approxi-
mation [3] can be much faster than ordinary methods if
the bunch length is very short. The approximation has
used in geometrical optics. Since several years ago, it has
also used for beam field. The calculation of Coherent Syn-
chrotron Radiation (CSR) by paraxial approximation give
good results[4][5]. In Ref.[3], the analytical solution of ge-
ometric wake impedances by paraxial approximation are
shown. They are that for axisymmetric geometry.

In these proceedings, numerical 3D calculation will be
shown. The vertical impedance for rectangular tapered
chamber is computed. It agrees with the analytic solution
in the appropriate frequency.

The smaller angle taper should be better because the
wave at small angle is dominant.

We will focus only on short range wake and completely
conducting wall in this proceeding. Resistive wall is not
considered. MKSA unit is used in these proceedings.

∗Work supported by KEK and by Global COE Program “the Physical
Sciences Frontier”, MEXT, Japan.

IMPEDANCE

In these proceedings, special transformed fields for arbi-
trary function f̃(x, y, z, t) are defined by

f̃(x, y, z, t) =
1

2π

∫
f̀(x, y, z, k)e−ik(ct−z)dk. (1)

Tilde means original value and ‘grave’ (f̀ ) means the trans-
formed value satisfying the equation above. This is like
Fourier transform. However, the factor eikz has to be no-
ticed.

The wake effect is able to be represented by impedance.
Conventional vertical impedance is

Zy =
−i

cqys

∫ ∞

−∞
dz

[
Èy + cB̀x

]
rw=rs=(0,ys)

, (2)

where q is a charge, rs = (xs, ys) is an offset of source
particle, rw = (xw , yw) is an offset of witness particle,
ys is small, and Èy, B̀x are the special transformed fields
defined by Eq.(1). We will omit grave (f̀ → f ) from now
on.

PARAXIAL APPROXIMATION

In this study, paraxial approximation is used. iIt is valid
if the wave propagates at small angle θ from z axis, as
shown in Figure 1.

Figure 1: ‘Paraxial’ means the wave angle θ is small.

We will consider cτ � g, where τ = (zs − zw)/c and
g is the transverse minimum distance from beam axis. For
rectangular chamber whose hight is smaller than width, g is
the smallest half hight. In this range, backward or large an-
gle propagating waves cannot take effect. Therefore, θ � 1
can be assumed. Suppose cτ(� g) is bunch length, the
waves of θ ≥ 1 which generated by a bunch don’t catch
up with the same bunch. When considering wake effect for
bunch itself, paraxial approximation is valid for very short
bunch length.
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We divide electromagnetic fields into 2 terms as

E = E(b) + E, (3)

B = B(b) +B, (4)

where E, B is net electric, magnetic field, and E(b), B(b)

is vacuum fields, which is the solution of no wall. E,B
defined by above equation is the radiated fields.

The vacuum fields are found by solving Maxwell equa-
tion with charge density

ρ̃(r, z, t) = qδ(t− z/c)δ(r − rs). (5)

Therefore

Ẽ(b)(r, z, t) =
qδ(t− z/c)

2πε0|r − rs|2 (r − rs). (6)

B̃(b) =
1

c
ez × Ẽ(b) (7)

From Eq(1),

E(b)(r, z, k) =
cq

2πε0|r − rs|2 (r − rs) (8)

B(b) =
1

c
ez ×E(b) (9)

Accordingly, Maxwell equation with respect to E is

(∇2
⊥ + 2ik∂z + ∂2

z )E = 0. (10)

The source term is cancelled.
We will show 3rd term of Eq.(10) is negligible. In time

domain, Ẽ is superposition of the plain wave

Ẽη,k(x, y, z, t) = Ê(η, k)e−ik(ct−ηxx−ηyy−ηzz), (11)

where ‖η‖ = 1, Ê is a function of (η, k). η can be repre-
sented by

η = ex sin θ cosφ+ ey sin θ sinφ+ ez cos θ. (12)

θ is the angle of wave propagating from z axis. Neglecting
the order of θ,

η ≈ exθ cosφ+ eyθ sinφ+ ez(1− θ2/2). (13)

Therefore,

Ẽη,k(x, y, z, t)

= Êe−ik(−xθ cosφ−yθ sinφ+zθ2/2)e−ik(ct−z). (14)

E is the superposition of

Eη(x, y, z, k) = Êeik(xθ cosφ+yθ sinφ−zθ2/2). (15)

If θ3 is not omitted but O() is used,

Eη(x, y, z, k)

= Êeik[(θ+O(θ3))(cosφx+sinφy)−(θ2/2+O(θ4))z].(16)

Substituting it for E in Eq.(10), it is found that the first and
second term are order of k2θ2 and the third term is order
of k2θ4. Accordingly, it is negligible. Eq.(10) is approxi-
mately the following equation,

[∇2
⊥ + 2ik∂z

]E = 0. (17)

This is parabolic equation.
The parabolic equation and boundary conditions give

transverse electric fields. From them, we obtain the other
fields as

B⊥ ≈ 1

c
ez × E⊥, (18)

Ez =
ci

k
ez · (∇⊥ ×B⊥), (19)

Bz = − i

ck
∇⊥ × E⊥. (20)

The impedances are calculated from these fields.
Paraxial approximation has two advantages. One is to be

able to choose the transverse mesh size independent of the
bunch length. The other is a problem can be solved as an
initial-value problem in spite of frequency domain calcula-
tion. The reason is Eq.(10) is the first order with respect to
z. Common frequency domain calculations are eigenvalue
problem. Therefore, it must be faster than FDTD.

TAPERED RECTANGULAR CHAMBER

It is important to calculate the impedances of collima-
tors because they are designed depending on the wake field.
When the tapered angle of a collimator is small, bunch
length is short, and the collimator is not axisymmetric,
this impedance is hard to calculate by ordinary method.
However, it can be fast calculated by paraxial approxima-
tion. Both small tapered angle and short bunch are good
for paraxial approximation. When the tapered angle of a
collimator is small, the wave at small angle is dominant.
For short bunch length, only small τ is need if the wake
in the same bunch is considered. Therefore, we computed
the impedance for collimator which is not axisymmetric by
paraxial approximation. As an example of the collimator,
tapered rectangular structure was choiced.

Geometry

The half height b(z) depends on z. The half width w is
10mm. Figure 2 is up side view of the calculated geometry
from −x direction.

Figure 2: Side view of the upper half of the collimator. The
maximum of b(z) is 5 mm, and the minimum g is 3 mm.
L = 200 mm.

MO3IODN01 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

28



Mesh

Figure 3 shows how to mesh about vertical and longitu-
dinal direction. Mesh sizes Δx, Δη, Δζ is constant. Here
η = y/b(z), ζ = z/k.

Figure 3: How to mesh.

Analytic Formula

Stupakov derived analytic formula,

Zy(k → 0) = − iwZ0

4

∫
dz

(b′)2

b3
(21)

in Ref [6]. it is assumed b � g � L, and

k � b

αw2
, (22)

where α is the tapered angle.

Result

Figures 4 and 5 show comparisons of the simulation with
the analytical value. In Fig. 4, the horizontal axis repre-
sents frequency f and the vertical axis represents real part
of vertical impedance. Two kinds of data with different
longitudinal mesh size are plotted. Blue diamonds show
Δζ = 10−9m2. Green triangles show Δζ = 10−8m2. Or-
ange line shows analytic solution. It is applicable while f is
much smaller than 190 GHz because of condition (22). On
the other hand, paraxial approximation requires that f is
much greater than 16 GHz because cτ � g is correspond-
ing to f 	 c/(2πg) ≈ 16 GHz. Therefore, the simulation
agrees with the analytic solution while 16 GHz � f �
190 GHz although it fluctuates very much.

The imaginary impedance is shown in Fig. 5. Red squares
show Δζ=10−9m2. Purple ×’s show Δζ=10−8m2. Yel-
low line shows analytic solution. As is mentioned, it is
valid while f is much smaller than 190 GHz. On the other
hand, paraxial approximation requires f 	 16 GHz. As
you can see, the simulation agrees with the analytic solu-
tion while f is applicable range.

CONCLUSIONS AND DISCUSSIONS

In summary, for rectangular tapered chamber, the ver-
tical impedance by the simulation agrees with the ana-
lytic solution in the appropriate frequency. Accordingly,
the simulation is effective when bunch length σz is much
smaller than g.

Figure 4: Real part of the impedance for rectangular taper.

Figure 5: Imaginary part of the impedance for rectangular
taper.

There are at least three future tasks. First is to improve
the code. Second is to compare calculated impedances with
that of other simulation codes, then to know how accu-
rate and how fast the code is. Third is to calculate the
impedance of ILC collimator. It is hard to calculate.
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APPLYING AN HP-ADAPTIVE DISCONTINUOUS GALERKIN SCHEME
TO BEAM DYNAMICS SIMULATIONS∗

S. Schnepp† , Graduate School of Computational Engineering, TU Darmstadt, Germany
E. Gjonaj‡ , T. Weiland§ , Institut für Theorie Elektromagnetischer Felder, TU Darmstadt, Germany

Abstract

An adaptive high order discontinuous Galerkin (DG)
scheme for performing beam dynamics simulations is pre-
sented. We elaborate onh- andp-adaptations, the former
modifying the actual size of computational elements and
the latter the dimension of the associated approximation
space. The efficiency and stability of the adaptation tech-
niques are emphasized. The scheme is applied in order to
performhp-adaptive beam dynamics simulations. We com-
pare the results with the analytical solution and demon-
strate that the adaptive scheme requires significantly less
computational resources for obtaining a certain accuracy.

INTRODUCTION

The problem of self-consistent simulations of short rel-
ativistic particle bunches in long accelerator structuresex-
hibits a pronounced multi-scale character. The adequate
resolution of the THz space charge fields excited by short
ultra-relativistic bunches requires mesh spacings in the mi-
crometer range. On the other hand, the discretization of
complete accelerator sections using such fine meshes re-
sults in a prohibitive number of Degrees of Freedom (DoF).
Due to the spatial concentration of the particles and the ex-
cited space charge fields, the application of time-adaptive
mesh refinement is an emerging idea. We reported on the
implementation of time-adaptive mesh refinement for the
Finite Integration Technique (FIT) [1]. Based on this work,
an adaptive discontinuous Galerkin (DG) code was imple-
mented. Within the DG method, the electromagnetic field
solution is approximated elementwise, employing a set of
basis functions. This provides two options for adapting the
local accuracy of the DG approximation. First, the size
of the grid elements can be varied. This is referred to as
h-adaptation. Additionally, the maximum order of the em-
ployed basis functions can be modified, which is referred
to asp-adaptation. Combining both options yields anhp-
adaptive method. The twofold refinement mechanisms of
the hp-adaptive DG method offer maximum freedom for
the approximation of the electromagnetic field solution.

∗The work of S. Schnepp is supported by the ’Initiative for Excellence’
of the German Federal and State Governments and the GraduateSchool
of Computational Engineering at Technische Universität Darmstadt.

† schnepp@gsc.tu-darmstadt.de
‡ gjonaj@temf.tu-darmstadt.de
§ weiland@temf.tu-darmstadt.de

DISCONTINUOUS GALERKIN METHOD
FOR MAXWELL’S EQUATIONS

Spatial Discretization Procedure

Given a decomposition of the computational domainΩ
into N non-overlapping, hexahedral elements{Ci}, i =
1..N , a set of linearly independent basis functions{ϕp

i },
p = 0..P for every cell is defined, whereP denotes the
highest order employed. The basis functions are required
to be continuous within the cellCi and vanish otherwise

ϕ
p
i (r) =

{
ϕp(r), r ∈ Ci,

0, otherwise.
(1)

Subsequently, the space and time continuous electromag-
netic field quantitiesE andH are approximated in the form

E(r, t)≈Ẽ(r, t) =
∑

i

Ẽi(r, t) =
∑
i,p

e
p
i (t)ϕ

p
i (r), (2)

H(r, t)≈H̃(r, t) =
∑

i

H̃i(r, t) =
∑
i,p

h
p
i (t)ϕ

p
i (r), (3)

whereẼ andH̃ denote the approximate field vectors. The
numerical DoF are denoted byep

i andhp
i . They are gath-

ered in the vectorse andh.
Substituting the electromagnetic quantities by their ap-

proximations in Faraday’s and Ampère’s law and apply-
ing the Galerkin procedure yields the weak DG formula-
tion [2]. Due to the cell-wise compact support of the ba-
sis functions (1), the approximations (2) and (3) will, in
general, be discontinuous at element interfaces. Continuity
is enforced only in the weak sense via numerical fluxes.
Among the different flux definitions, we chose centered
fluxes. As demonstrated in [2, 3] this ensures the strict con-
servation of the electromagnetic energy. Using the naming
convention given there and vector notation for all terms, the
semidiscrete formulation reads

d
dt

(
Mǫe

Mµh

)
+

(
0 −C

CT 0

) (
e

h

)
= −

(
j

0

)
. (4)

The termsMǫ andMµ are the mass matrices andC de-
notes the weak DG curl operator. The vectorj represents
the convective currents.

In the particular case of particle accelerator problems,
the issue of charge conservation is specially relevant due to
the existence of freely moving charges. In [3] it was shown
that strict charge conservation is guaranteed if, and only
if, a tensor product basis on conforming Cartesian grids is
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applied for the approximations (2) and (3). The continuous
current density is given by

J(r, t) =

Np∑
k=1

QkvkS(|rk − r|), (5)

whereQk is the charge carried by thek-th ofNp particles,
rk andvk are its position and velocity vector andS is a
distribution function describing the assumed particle shape.
In caseS corresponds to the Kronecker delta, the particles
are modeled as point charges. Other shape functions are
discussed in [4]. Integrating the current density over one
time step and projecting to the basis functions yields the
DG approximation

(jp
i )n =

(
ϕ

p
i ,

∫ n∆t

(n−1)∆t
J(r, t)dt

)
Ci

(ϕp
i , ϕ

p
i )Ci

. (6)

Above,(a, b)Ci
denotes the inner product ofa andb onCi,

∆t is the time step andn the time step number.

Suitability forhp-Adaptation

The discontinuous Galerkin method is highly suited for
the application ofh- andp-adaptation techniques. Indepen-
dently of the approximation order, the method always pre-
serve the same high degree of locality. Due to the element-
wise compact support, individual elements communicate
only via interface fluxes. The computation of these, in
turn, involves only the interface values of direct neighbors.
Splitting and merging of elements, hence, is a purely local
operation, which affects none but the adapted elements. For
our particular setup of Cartesian grids and a tensor product
basis, this adaptation can be performed very efficiently, as
it will be shown in the following section. Since addition-
ally, assigning different approximation orders throughout
the elements of the computational domain is readily possi-
ble, the method is well-suited for anhp-adaptive procedure,
i.e., adapting the local grid step size, as well as the local ap-
proximation order in a problem oriented fashion.

ADAPTATION TECHNIQUES

h-Adaptation

When performingh-adaptation the size of dedicated el-
ements is modified locally by splitting them into subele-
ments or, conversely, by merging them into larger ones.
The grid topology is, thus, altered while the approximation
orders of the involved elements are kept constant.

In the case ofh-refinement, the approximations within
the subelements are obtained by projecting the existing ap-
proximation onto the support of the subelements. We re-
strict ourselves to the bisection of elements and do not con-
sider other division ratios. Continuous basis functionsψi,l

andψi,r are defined within the interior of the left and right

Figure 1: For the splitting of elements (top), the approx-
imate solution within the elementCi (gray, solid) is ac-
curately projected onto its subelementsCi,l (red, dotted)
andCi,r (blue, dash-dotted). Due to the discontinuity the
approximation within the merged element cannot be exact
(bottom).

subelementCi,l andCi,r and set identically zero elsewhere.
The integral terms

P
qp
l =

(ϕp, ψ
q
l )

Ci,l

(ψq
l , ψ

q
l )

Ci,l

and Pqp
r =

(ϕp, ψ
q
r )Ci,r

(ψq
r , ψ

q
r )Ci,r

, (7)

for p, q = 1..P determine the entries of the projection ma-
tricesPl andPr. Each term describes the contribution of
the basis function of orderp of the elementCi to the basis
function of orderq of its subelements. The numerical DoF
of the subelements,ei,l , ei,r andhi,l , hi,r, are obtained by
means of the matrix-vector multiplications

ei,l = Plei, ei,r = Prei, (8)

hi,l = Plhi, hi,r = Prhi. (9)

These operations are exact in the sense that the approxi-
mation within the subelements is identical to the approxi-
mation within the original element in every point. This is
shown in Figure 1 (top).

For the converse process, i.e., merging of elements, it
is not possible to obtain an exact representation within the
merged element due to the discontinuous character of the
approximations. The approximation withinCi is consid-
ered to be given piecewise on the subelements with the DoF
ei,l , ei,r andhi,l , hi,r. The entries of the projection matrix
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Pm are specified by

Pqp
m =

(ψq
l + ψ

q
r , ϕ

p)
Ci

(ϕp, ϕp)Ci

=
(ψq

l , ϕ
p)

Ci

(ϕp, ϕp)Ci

+
(ψq

r , ϕ
p)Ci

(ϕp, ϕp)Ci

= P
qp
m,l + Pqp

m,r.

(10)

Summing up the contributions of the subelements yields
the DoF of the merged element

ei = Pm,lei,l + Pm,rei,r, (11)

hi = Pm,lhi,l + Pm,rhi,r. (12)

The matricesPm,l andPm,r, as well asPl andPr, do not
depend upon the actual approximation but only on the basis
functions. They can be evaluated analytically and stored for
repeated use.

p-Adaptation

P-adaptation refers to a local or global modification of
the approximation orderP while keeping the mesh unal-
tered. In time-domain simulationsp-adaptation can be effi-
ciently implemented if a set of hierarchical basis functions
is employed. In this case, the DoF associated with the dif-
ferent approximation orders do not depend upon each other.
Thus, increasing the approximation order is as simple as
preserving the current coefficients and attaching those of
the next higher order basis functions to the DoF vectorsei

andhi for the respective elementCi. The new coefficients
are initialized to zero. In order to reduce the order, the
DoF associated with the higher order basis functions are
dismissed.

hp-Adaptation

For smooth solutions, the approximation order is di-
rectly linked to the asymptotic convergence order. It is,
thus, desirable to work with high order elements. However,
the convergence order breaks down if the solution is non-
smooth. In Fig. 2 the error of the DG approximation to a
Gaussian and a trapezoidal field distribution is shown. The
error is plotted versus the grid step size, both of them on
a logarithmic scale. The approximation error of the Gaus-
sian (top) reduces with the expected rate for increasedP .
For the trapezoidal distribution (bottom), however, the con-
vergence rate stagnates for higher approximation orders.
An important key point of anhp-adaptation algorithm is,
hence, the detection of regions with a low degree of so-
lution smoothness. Also, regions of low electromagnetic
field energy should be identified since they probably do not
require a high resolution.

Efficiency and Stability

We employ the orthogonal set of Legendre polynomials
as basis functions and define a tensor product basis for con-
forming Cartesian grids. This particular setting allows for
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Figure 2: Approximation error in theL2-norm of a Gaus-
sian (top) and a trapezoidal distribution (bottom) versus the
grid step. For the smooth function in the top graph the ex-
pected convergence rate is observed. For the non-smooth
function in the bottom graph the convergence rate breaks
down.

a very efficient implementation of the DG method since all
inner products of basis and test functions reduce to zero if
their order differs and to a factor which depends only on
the dimensions of the respective element, otherwise.

The projection basedh-adaptation can also be imple-
mented in a very efficient manner since the projection ma-
trices do not vary with time. They have to be evaluated only
once, which can be done analytically. During the actual
simulation, we additionally benefit from the Cartesian grids
and the tensor product basis ansatz since the bisection of
elements and the calculation of the coefficients within the
modified elements can also be performed very efficiently.

It remains to address the stability of the adaptation tech-
niques. The adaptations are stable if their application does
not increase the electromagnetic energy within the modi-
fied elements. The energy of the elementCi reads

Wi =
1

2
|Ci|

(
ǫi‖ei‖

2
2 + µi‖hi‖

2
2

)
, (13)

where|Ci| denotes the volume ofCi andǫi, µi are its per-
mittivity and permeability.

It is readily seen that ap-reduction induces a loss of the
discrete energy associated with the respective coefficients.
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Figure 3: Snapshot of the total electric field excited by a
bunch of particles in cut view. The upper half shows the
electric field and the computational grid, the lower half
shows thehp-adapted grid exclusively.

The coefficients, which are added duringp-enrichment are
initialized by zero. In this caseWi is preserved.

We will not present formal derivations of the stability of
theh-adaptations but rather state their results. Details are
found in [5]. In the case ofh-refinement, the sum of the
discrete energies of the subelements is equal to the energy
of the parent element. Since the approximations within
the subelements exactly represent the original approxima-
tion this is consequential. Forh-coarsening the energy is
at most preserved. The application ofp-enrichment orh-
refinement, hence, conserves the discrete energy exactly
while p-reduction orh-coarsening usually induce a loss of
energy.

APPLICATIONS

The method has been applied to the simulation of a parti-
cle bunch drifting with the constant velocityv = 0.9c0 in a
cylindrical perfectly electrically conducting tube, wherec0
is the speed of light in vacuum. The electromagnetic field
solution for this situation at an arbitrary point in time is de-
scribed in [6], where the tube is considered semi-infinite in
the direction of bunch propagation. The length and radius
of the tube are set to 120 mm and 40 mm respectively. The
particle distribution of the bunch is Gaussian with an RMS
length and radius of 5 mm and 3 mm, respectively.

We applyhp-adaptation for the simulation of the prob-
lem. Thep-adaptation is controlled by the field ampli-
tude. In addition,h-refinement is applied to the elements
containing particles and all neighboring elements with the
same index along thez-axis. This ensures a conforming
grid refinement. Fig. 3 shows the total electric field along
with the hp-adapted grid. For thep-adaptation a range
of one through four for the approximation orders was ap-
plied. In order to visualize the approximation order of an
element, the respective number of collocation points are
plotted. Along thez-direction an additional conforming
h-refinement is applied to the elements, which contain par-
ticles and all neighboring elements with the samez-index.

Table 1: Relative error and total variation of solutions ob-
tained by the non-adaptive and adaptive scheme using var-
ious settings.

L Pmin Pmax ≈DoF / 1e6 Time / sec ε
rel TV

0 1 1 6.80 310 0.081 8.71

0 2 2 22.96 2020 0.042 4.15

1 1 3 9.00 1170 0.043 2.68

1 1 4 10.50 1650 0.028 1.00

The relativeL∞-error and the total variation (TV) [7] of
the electric field along the cylinder axis are given as mea-
sures for the quality of the numerical solutions. The TV is
a measure for the smoothness of a function. It is defined as

TV (E(z)) =

∫
|E′(z)|dz. (14)

Table 1 summarizes the results. The number ofh-
refinement levels is denoted byL. The grid step sizes and
theh-refinement level are chosen such that the minimum
step size remains identical. The total variation is normal-
ized to the smallest value obtained. The adaptive simula-
tions consume more time per DoF. Partly, the extra time is
spent for the adaptation routines, and partly it is due to the
reduced maximally stable time step connected with higher
approximation orders.

As a second application, we have simulated a part of
the PITZ injector (Photo Injector Test Facility at DESY
Zeuthen) [8]. The PITZ project was initiated in order to
test and optimize sources of high brightness electron beams
for future free electron lasers (FELs) and linear colliders.
Fig. 4 shows the total electric field andhp-adapted grid in
a y-cut through the three-dimensional domain. The sim-
ulated section consists of the 1.5 cell RF gun and has a
length of 25 cm. This grid was generated for illustration
purposes only. Accurate simulations require a higher res-
olution. Nevertheless, it demonstrates the ability of the
scheme to handle more complex situations.

OUTLOOK ON ERROR BASED
AUTOMATIC HP-ADAPTATION

For the examples presented above, we used a naive algo-
rithm for controlling thehp-adaptation. The approximation
orderp of every element, e.g., is determined from a com-
parison of its field magnitude with the maximum field mag-
nitude. However, the adaptation should be based on the ap-
proximation error, which is for general examples not linked
to the field magnitude. In [9] it is shown that the residual re-
lates to the size of the jump across element interfaces. Per-
forming an error estimation is, hence, a trivial task for the
DG method. After deciding whether to adapt an element,
the next step is the decision betweenh- andp-adaptation.
This requires the estimation of the local smoothness of the
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Figure 4: Snapshot of the total electric field excited by a
bunch of particles in cut view. The upper half shows the
electric field and the computational grid, the lower half
shows thehp-adapted grid exclusively.

approximation. In [5, 10] smoothness indicators are pre-
sented.

We implemented an algorithm for performing automatic
hp-adaptations for the scalar wave equation, which was
tested on a Gaussian and trapezoidal wave packet as de-
picted in Fig. 5. There, the blue and green line repre-
sent the electric and magnetic field approximations. The
gray dashed lines depict the position of the grid points
and the height of the red circles indicate the approxima-
tion order employed for the respective element divided by
ten. The snapshots were recorded after several hundreds of
time steps. For the Gaussian packet the adaptation algo-
rithm chooses medium sized to big elements and the preset
maximum approximation order of five in the vicinity of the
packet. For the non-smooth trapezoidal packet, the algo-
rithm does not employ an approximation order above two
throughout the simulation. In the vicinity of the pulse edges
a high degree ofh-refinement is applied, thus showing the
desired behavior for the second packet as well.

CONCLUSIONS

Adaptation techniques for the high order DG method
have been presented, which we apply on Cartesian grids
using a tensor product basis of orthogonal basis functions.
This particular setting allows us to performh- and p-
adaptations in a very efficient manner. Details of both kinds
of adaptation were presented, and we showed that their ap-
plication does not induce any instability. We performed
hp-adaptive simulations and compared the results with the
analytical solution. Thehp-adaptive scheme was shown to
require significantly less computational resources and time,
yielding a higher accuracy as the non-adaptive method.
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PORTABLE HIGH PERFORMANCE COMPUTING FOR MICROWAVE 

SIMULATION BY FDTD/FIT MACHINES* 
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Abstract 
This paper presents a development of fully customized 

printed circuit board of a dedicated computer for 

FDTD/FIT method which is aiming to portable high 

performance computation for microwave simulation.   In 

the construction of dedicated computer hardware, it is 

very important to carefully consider parallel properties 

hidden in the target application scheme of the dedicated 

computer to achieve its maximum performance.  In 

addition, judgement on tread-off between calculation 

performance and flexibility for various target applications 

is also very important in concrete design of the dedicated 

computer architecture.  In this paper, basic concept and 

concrete design of the FDTD/FIT dedicated computer 

architecture are described, and a printed circuit board 

which is manufactured according to these concepts are 

presented. 

INTRODUCTION 

Due to strong requirements of high performance 

computation (HPC) for electromagnetic microwave 

simulation in not only science but also industry, a method 

of FDTD or FIT dedicated computer has been actively 

investigated in the last several years [1-8].  One of most 

important advantages of the method of dedicated 

computer in a regime of HPC technologies is possibility 

of portable computing.  That is to say, in most cases, HPC 

hardware such as supercomputer and PC cluster is 

installed at apart from user computers because such the 

HPC hardware are basically multi-user system, therefore 

those kinds of HPC environment are not familiar with 

industrial applications such as microwave simulation 

connecting with CAD system which are usually carried 

out in user personal computers.  Then the method of the 

dedicated computer is one of powerful solutions to those 

requirements.  Especially appearance of large size 

rewritable LSI hardware such as FPGA and GPU, very 

useful LSI design tool and low price Printed Circuit 

Board (PCB) development service enhance such the 

activities of dedicated computer researches.  Authors also 

have been working in development of dedicated 

computers of the FDTD or FIT method for high 

performance computation in microwave simulation [5-8]. 

The method of dedicated computer allows us to construct 

highly optimized hardware architecture and high 

performance computation dedicated into the calculation 

scheme of the target application by comparably small size 

hardware.  Especially a problem of Neumann bottleneck 

related to memory access overhead, which is essential 

problem for achievement of HPC in Neumann 

architecture based computer system, can be avoidable in 

the method of dedicated computer.  This paper presents a 

design of the dedicated computer specialized into FDTD / 

FIT method and its hardware implement. 

PARALLEL PROPETIES HIDDEN IN 

FDTD METHOD AND CONCEPTUAL 

DESIGN OF DEDICATED COMPUTER 

Parallel properties hidden in FDTD method 

To achieve efficient computation in use of dedicated 

computer, we need to embed parallel properties hidden in 

the FDTD method ( (1) and (2) ) into the hardware 

architecture of the dedicated computer. 

,  (1) 

,  (2) 

There are roughly three kinds of parallel properties in the 

FDTD method, 

- dataflow property in the FDTD calculation structure 

- parallel calculation of x-, y-, z- three field components 

- parallel calculation of different grid field components 

The FDTD dedicated computer implementing all of these 

parallel properties (we call this "full dataflow architecture 

FDTD/FIT machine") indeed gives us extremely high 

performance computation, however its hardware size is 

quite large and especially 3D FDTD machine will be 

impossible in the next several years even beyond 

remarkable progress of recent LSI technology [6].  

Accordingly the FDTD/FIT dedicated computer based on 

the first two parallel properties is practical solution in the 

present LSI technology (we call this "memory 

architecture FDTD/FIT machine"). 

Design of memory architecture FDTD  machine 

The figure 1 shows an overview of the FDTD/FIT 

dedicated computer architecture.  The hardware mainly 

consists of two parts, calculation and memory modules.  

All components of electromagnetic field values, material 

____________________________________________  
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constant distributions, boundary conditions are stored in 

the memory module, and x-, y-, z- three component 

FDTD scheme calculation for one grid are executed in the 

calculation module.   The fundamental operation of this 

machine is as follows, (a) downloading electromagnetic 

field components from the memory module to the 

calculation module, (b) execution of one grid FDTD 

calculation ( (1) or (2) ) and PML calculation at the 

calculation module, (c) uploading the calculated field 

components from the calculation module to the memory 

module. 

Then calculation module is composed of three same 

dataflow circuits for both of normal FDTD grid (see Fig.2 

for (1)) and PML grid to perform three components 

FDTD calculation of (1) or (2) in single computer clock 

cycle.  This structure of the calculation module realizes 

the first two parallel properties of the FDTD method.  

Parallel memory access architecture 

The FDTD method is heavy memory access scheme, 

for example, at least 12 different field component values 

are needed in three components calculation as in the right 

hand side of (1) or (2).  This mean that 12 times memory 

access are required if the memory module is composed by 

simply single RAM.  To avoid this quite inefficient 

machine operation for the FDTD calculation, we adopt 

parallel memory access architecture for the FDTD/FIT 

dedicated computer as shown in Fig.1.   That is, in the 

memory module, each field component value is stored 

individually in four physically different RAMs.  In this 

memory structure, all field components which are needed 

in three component calculation of (1) or (2) can be loaded 

from the memory module to the calculation module 

within only single memory access cycle. 

Automatic boundary condition setting 

Implementation of boundary condition setting in the 

dedicated computer is also one of most important matter 

for practical use of the FDTD/FIT machine.  There are 

mainly three kinds of fundamental boundary conditions, 

material boundary condition, perfect conductor boundary 

condition and absorbing boundary condition such as PML.  

These boundary conditions can be automatically imposed 

by hardware circuit of the dedicated computer [see ref. 5 

and 6].  Especially various kind of numerical models can 

be treated by rewriting the contents of memory module, 

then it is not necessary to change hardware circuit. 

FULL CUSTOM PCB OF FDTD/FIT 

DEDICATED COMPUTER 

The figure 3 shows fully custom made printed circuit 

board (PCB) for the FDTD/FIT dedicated computer 

according to the memory architecture of Fig.1.  The 

memory module is composed by 16 SRAMs and all other 

complicated circuits such as calculation module, address 

generator, machine operation scheduler, etc. are 

embedded in one FPGA.   As an example of microwave 

simulation based on this FDTD / FIT dedicated computer, 

microwave radiation from rectangular wave guide is 

simulated here (see Fig.4).   The numerical model is 

stored in one of SRAMs and then machine hardware 

automatically executes FDTD microwave simulation for 

this numerical model without any software program code.  

It is confirmed that simulation results show good 

agreement with software simulations. 

CONCLUSION 

This paper has presented a development of the 

FDTD/FIT dedicated computer aiming portable high 

performance computation of electromagnetic microwave 

simulation.  Especially highly optimized memory access 

architecture dedicated into the FDTD scheme are 

introduced to achieve high throughput performance 

including memory access.  And then real PCB hardware 

of the dedicated computer has been shown. 

Based on the development of the prototype FDTD/FIT 

machine, we are now planning to proceed to further 

improvements such as introduction of DDR like high 

speed SDRAM, parallel calculation by interlocking 

operation of the dedicated computer PCBs, etc.

 
Fig.1 Hardware of architecture FDTD/FIT machine 

  
Fig.2  Dataflow circuit for  FDTD/FIT basic calculation 
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Fig.3  Full custom printed circuit board of FDTD / FIT dedicated computer 
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Fig.4  Numerical example of FDTD/FIT machine operation for radiation from waveguide 
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Abstract
Many processes in Physics can be described by Partial

Differential equations (PDE’s). For various practical prob-
lems, very precise and verified solutions of PDE are re-
quired; but with conventional finite element or finite dif-
ference codes this is difficult to achieve because of the
need for an exceedingly fine mesh which leads to often
prohibitive CPU time. We present an alternative approach
based on high-order quadrature and a high-order finite el-
ement method. Both of the ingredients become possible
through the use of Differential Algebra techniques. Further
the method can be extended to provide rigorous error veri-
fication by using the Taylor model techniques. Application
of these techniques and the precision that can be achieved
will be presented for the case of 3D Laplace’s equation.
Using only around 100 finite elements of order 7, verified
accuracies in the range of 1E-7 can be obtained.

INTRODUCTION
Many problems in physics and engineering require the

solution of the three dimensional (3D) Laplace equation

∆ψ (−→r ) = 0 in the bounded volume Ω ⊂ R3 (1)

It is well known that under mild smoothness conditions for
the boundary ∂Ω of Ω, the Laplace equation admits unique
solutions if either ψ or its derivative normal to ∂Ω are spec-
ified on the entire boundary surface ∂Ω. In many typical
applications, not only the normal derivative of ψ but indeed
the entire gradient ~∇ψ is known on the surface; for exam-
ple, in the magnetostatic case the entire field ~B = ~∇ψ is
measured, and not merely whatever component happens to
be normal to the surface under consideration. The corre-
sponding problem of determining ψ based on the knowl-
edge of the field ~∇ψ (−→r ) =

−→
f (−→r ) on the surface ∂Ω is

referred to as the Helmholtz problem.
Analytic closed form solutions for the 3D case can usu-

ally only be found for special problems with certain regu-
lar geometries where a separation of variables can be per-
formed. However, in most practical 3D cases, numerical
methods are the only way to proceed. Frequently the fi-
nite difference or finite element approaches are used to find
the approximations of the solution on a set of points in the
region of interest. But because of their relatively low ap-
proximation order, for the problem of precise solution of
PDEs, the methods have very limited success because of
the prohibitively large number of mesh points required. For

reference, codes like the frequently used TOSCA [1, 2] can
usually solve 3D Laplace problems with a relative accuracy
of 10−4 with meshes of size about 10−6[3]. Furthermore,
direct validation of such methods is often very difficult.

In the following we develop a new method based on the
Helmholtz theorem and the Taylor model methods[4, 5]
and the corresponding tools in the code COSY Infinity
[6, 7] to find a validated solution of the Laplace equation
starting from the field boundary data. The final solution
is provided as a set of local Taylor models, each of which
represents an enclosure of a solution for a sub-box of the
volume of interest.

THEORY AND IMPLEMENTATION

The Helmholtz Approach
We begin by representing the solution of the Laplace

equation via the Helmholtz vector decomposition theorem
[8, 9, 10, 11, 12, 13], which states that any vector field

−→
B

which vanishes at infinity can inside Ω be written as the
sum of two terms

−→
B (~x) = ~∇× ~At (~x) + ~∇φn (~x) , where (2)

φn (~x) =
1

4π

∫
∂Ω

~n (~xs) ·
−→
B (~xs)

|~x− ~xs|
ds− 1

4π

∫
Ω

~∇ ·
−→
B (~xv)

|~x− ~xv|
dV

~At (~x) = − 1

4π

∫
∂Ω

~n (~xs)×
−→
B (~xs)

|~x− ~xs|
ds+

1

4π

∫
Ω

~∇×
−→
B (~xv)

|~x− ~xv|
dV.

Here ∂Ω is the surface which bounds the volume Ω. ~xs
denotes points on the surface ∂Ω, and ~xv denotes points
within Ω. ~n is the unit vector perpendicular to ∂Ω that
points away from Ω, and ~∇ denotes the gradient with re-
spect to ~xv .

The first term is usually referred to as the solenoidal
term, and the second term as the irrotational term. Because
of the apparent similarity of these two terms to the well-
known vector- and scalar potentials to ~B, we note that in
the above representation, it is in general not possible to uti-
lize only one of them; for a given problem, in general both
φn and ~At will be nonzero.

For the special case that ~B = ~∇V, we have ~∇ × ~B =
0; furthermore, if V is a solution of the Laplace equation
~∇2V = 0, we have ~∇ ·

−→
B = 0. Thus in this case, all the

volume integral terms vanish, and φn (~x) and ~At (~x) are

MO4IODN05 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

38



completely determined from the normal and the tangential
components of ~B on the surface ∂Ω via

φn (~x) =
1

4π

∫
∂Ω

~n (~xs) ·
−→
B (~xs)

|~x− ~xs|
ds

~At (~x) = − 1

4π

∫
∂Ω

~n (~xs)×
−→
B (~xs)

|~x− ~xs|
ds

For any point within the volume Ω, the scalar and vec-
tor potentials and consequently the solution of the Laplace
equation depend only on the field on the surface ∂Ω.

Using the fact that if ~x 6= ~xs,we have ~∇ (1/ |~x− ~xs|) =

− (~x− ~xs) / |~x− ~xs|3 , and similar relationships, it is pos-
sible to explicitly obtain the gradient of the scalar potential,
and with some more work the curl of the vector potential;
the results have the explicit form

~∇φn (~x) = − 1

4π

∫
∂Ω

(~x− ~xs)
(
~n (~xs) ·

−→
B (~xs)

)
|~x− ~xs|3

ds

(3)

~∇× ~At (~x) =
1

4π

∫
∂Ω

(~x− ~xs)×
(
~n (~xs)×

−→
B (~xs)

)
|~x− ~xs|3

ds

(4)

From eq.(2) we know that the field inside the volume
of interest is just a sum of the irrotational(eq.(3)) and the
solenoidal(eq.(4)) part. This is then the solution for the
magnetic field as surface integrals. But to numerically in-
tegrate the kernel and get the validated solution as the local
Taylor model we need a specialized numerical scheme. In
the next section we introduce one such scheme based on
the Taylor models of the code COSY Infinity[6, 7]. We
quickly introduce the definition of the Taylor model and
discuss briefly the anti-derivation operation on the Taylor
models which will be extensively used in implementation
of the scheme. We then proceed to explain the numerical
scheme to perform the surface integration.

Solution of the Helmholtz Problem using Taylor
Models

In the following, we develop a validated method based
on Taylor model methods to determine sharp enclosures
of the field ~B and the potential ψ utilizing the Helmholtz
method.

Definition (Taylor Model) Let f : D ⊂ Rv −→ R
be a function that is (n + 1) times continuously partially
differentiable on an open set containing the v-dimensional
domain D. Let x0 be a point in D and P the n-th order
Taylor polynomial of f around x0. Let I be an interval
such that

f(x) ∈ P (x− x0) + I for all x ∈ D

and that has the property that I scales with the (n + 1)st
power of the width of D. Then we call the pair (P, I) an
n-th order Taylor model of f around x0 on D.

A full theory of Taylor model arithmetic for elemen-
tary operations, intrinsic functions, initial value problems
and functional inversion problems has been developed; see
[5, 4] and references therein. Details about the validated
implementation of arithmetic operation in COSY can be
found in [14, 4]. For the purposes of the further discussion,
one particular ”intrinsic” function, the so-called antideriva-
tion, plays an important role. We note that a Taylor model
for the integral with respect to variable i of a function f can
be obtained from the Taylor model (P, I) of the function by
merely integrating the part Pn−1 of order up to order n− 1
of the polynomial, and bounding the n-th order into the
new remainder bound. Specifically, we have

∂−1
i (P, I) =(∫ xi

0
Pn−1 (x) dxi, (B (P − Pn−1) + I) · (bi − ai)

)
More details about the implementation of the anti-

derivation operation can be found in [15].
Utilizing Taylor model arithmetic, the following algo-

rithm now allows to solve the Laplace equation for the
Helmholtz problem.

1. Discretize the surface ∂Ω into individual surface cells
Si with centers si and the volume Ω into volume cells
Vj with centers vj .

2. Pick a volume cell Vj .

3. For each surface cell Si, evaluate the integrands in eq.
(3) and (4), the so-called ”kernels”, in Taylor model
arithmetic to obtain a Taylor model representations in
BOTH the surface variables of Si AND the volume
variables of Vj , i.e. in a total of five variables.

4. Use the Taylor model anti-derivation operation twice
to perform integration over the surface variables of
each cell Si.

5. Add up all results to obtain a three dimensional Taylor
model enclosing the field ~B over the volume cell Vj .

6. If a validated enclosure of the potential ψ to ~B over
the volume cell Vj is desired, integrate the field ~B over
any path using the anti-derivation operation.

As a result, for each of the volume cells Vj , Taylor model
enclosures for the fields ~B and potentials ψ are obtained.
All the mathematical operations to evaluate these Taylor
Models and surface integration are implemented using the
Taylor Model tools available in the code COSY Infinity[6,
7].

Apparently the computational expense scales with the
product of the number of volume elements and the num-
ber of surface elements; of these, the number of volume
elements is more significant because of their larger num-
ber. In practice one observes that when using high-order
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Taylor models, a rather small number of volume elements
is required, in particular compared to the situation in con-
ventional field solvers discussed above.

AN EXAMPLE: THE BAR MAGNET

The Example Field

As a reference problem to study the behavior of the
method, we consider the magnetic field of rectangular iron
bars of a uniformly magnetized material with inner surfaces
(y = ±y0) parallel to the mid-plane y = 0 as shown in
fig.1. The geometry of these uniformly magnetized bars,
which are assumed to be infinitely extended in the ±y-
directions, is defined by: x1 ≤ x ≤ x2, |y| ≥ y0,and
z1 ≤ z ≤ z2. From this bar magnet one can obtain an
analytic solution for the magnetic field ~B (x, y, z) - see for
example [16, 17, 18] - and the result is given by

By (x, y, z) =
B0

4π

2∑
i,j=1

(−1)
i+j

[
arctan

(
Xi · Zj

Y+ ·R+
ij

)
+ arctan

(
Xi · Zj

Y− ·R−
ij

)]

Bx (x, y, z) =
B0

4π

2∑
i,j=1

(−1)
i+j

[
ln

(
Zj +R−

ij

Zj +R+
ij

)]

Bz (x, y, z) =
B0

4π

2∑
i,j=1

(−1)
i+j

[
ln

(
Xj +R−

ij

Xj +R+
ij

)]

where Xi = x − xi, Y± = y0 ± y, Zi = z − zi, and

R± =
(
X2

i + Y 2
j + Z2

±
) 1

2 .

Figure 1: Geometric layout of the bar magnet, consisting
of two bars of magnetized material.
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Figure 2: The magnetic field component By on the center
plane of the bar magnet

Results and Analysis As a first step in the analysis of
the influence of the discretization of the surface and vol-
ume on the result, we study the contributions of the surface
elements towards the remainder interval part of the total
integral. The volume expansion point is chosen as ~r =
(.1, .1, .1) , and the size of the volume box around it is cho-
sen zero. Thus after the surface integration, the polynomial
part of the dependence on volume vanishes except for the
constant term, and the accuracy is only limited by the width
of the surface element, which after integration over the sur-
face variables influences the width of the remainder bound.
We plot the width of the remainder interval versus surface
element length for the scalar potential Fig.3. The center of
the surface element is chosen as ~rs = (.034, .011, .5). It is
observed that for high orders, the method quickly reaches
an accuracy of around 10−16 for about 25 surface subdi-
visions, which correspond to about 210 ≈ 1000 surface
element cells per surface. Under the assumption that each
of these surface cells brings a similar contribution, the ac-
curacy due to the surface discretization will be in the range
of approximately 6 · 1000 · 10−16 < 10−12.

We now study the dependency of the polynomial part
and width of the remainder interval of the magnetic field
on the volume element length. In all these plots the surface
element length is kept fixed at 1/128. Figure 4 shows the re-
mainder interval width for the y component of the magnetic
field versus volume element lengths for different orders of
computation. The other components of the magnetic field
exhibit a similar behavior.

We see that a validated accuracy in the range of 10−4

can be achieved for a volume element width of around
10−1, corresponding to a total of around 1000 volume ele-
ments. This number compares very favorably to the above-
mentioned numbers for the commercial code TOSCA [1,
2]. An accuracy in the range of 10−7 can be achieved for a
width of around 10−1.4, corresponding to a total of around
200, 000 volume elements.
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Figure 3: Remainder interval width versus surface element
length for integration over a single surface element and
vanishing volume size
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Figure 4: Remainder interval width vs length of volume
element for y component of the magnetic field.

Overall, we see that the method of simultaneous surface
and volume expansion of the Helmholtz integrals leads to
validated tools for the solutions of ODEs which when exe-
cuted in Taylor model arithmetic can lead to very sharp en-
closures. It is obvious that the method can be generalized
to other surface-integral based approaches to the solution
of PDEs.
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COMPUTATIONAL BEAM DYNAMICS FOR A HIGH INTENSITY RING: 

BENCHMARKING WITH EXPERIMENT IN THE SNS* 

J. Holmes, S. Cousineau, and V. Danilov, ORNL, Oak Ridge, TN 37831, U.S.A. 

Z. Liu, Indiana University, Bloomington, IN 47405, U.S.A.

Abstract 
As the Spallation Neutron Source (SNS) continues to 

ramp toward full intensity, we are acquiring a wealth of 

experimental data. Much effort is being applied to 

understand the details of the beam accumulation process 

under a variety of experimental conditions. An important 

part of this effort is the computational benchmarking of 

the experimental observations. In order to obtain 

quantitative agreement between the calculations and the 

observations, and hence a full understanding of the 

machine, a great deal of care must be taken to incorporate 

all the relevant experimental parameters into the 

calculation. These vary from case to case, depending upon 

what is being studied. In some of these cases, the 

benchmarks have been critical in unearthing flaws in the 

machine and in guiding their mitigation. In this paper, we 

present the results of benchmarks with a variety of 

experiments, including coupling in beam distributions at 

low intensities, space charge effects at moderate 

intensities, and a transverse instability driven by the 

impedance of the ring extraction kickers. 

INTRODUCTION 

The Spallation Neutron Source continues to make 

impressive progress toward its full operating power of 

1.44 MW. In the most recent run, SNS operated at a 

sustained power of 865 kW during production. At the 

current applied energy of 930 MeV, this corresponds to 

nearly 10
14

 protons on target per pulse. In recent dedicated 

high intensity studies, 1.55 10
14

 protons (24.8 μC) were 

injected stably into the ring, extracted, and transported to 

the target. This is the first time the SNS ring has exceeded 

its design beam intensity of 1.5 10
14

 protons per pulse. 

Although we are able to operate in production mode at 

865 kW with acceptably low losses (< 10
-3

 total beam loss 

and 10
-4

 uncontrolled beam loss), losses in the high 

intensity studies are much higher. In order to achieve 

acceptable losses as we continue to increase the beam 

intensity, we must gain a detailed understanding of the 

underlying beam dynamics. 

Another reason to thoroughly understand the SNS ring 

beam dynamics is to avoid instabilities. In several studies, 

including the one that achieved the record beam intensity, 

we found that we can easily induce instabilities in the 

ring. In order to do so, a number of measures are typically 

taken. These include various combinations of the 

following: ring RF buncher voltages are modified, or 

turned off altogether, so that coasting beams are 

accumulated; the choppers may be turned off to provide 

continuous beam with no gap; the chromatic sextupoles 

are activated in order to zero the ring chromaticity; and 

the ring tunes may be altered to induce the resistive wall 

instability. So far, three independent instabilities have 

been observed. The frequency signatures of these 

instabilities strongly suggest 1) a low frequency resistive 

wall instability at ~100 kHz, 2) a transverse (extraction 

kicker) impedance-induced instability in the 4 10 MHz 

range, and 3) a broad e-p instability in the 20 100 MHz 

range. The slow-growing resistive wall instability occurs 

only when the tunes are set below integer values, such as 

5.8 < x,y < 6. Because SNS is operated nominally with 

x = 6.23 and y = 6.20, the resistive wall instability will 

not be a problem. The extraction kicker instability has 

been observed only for a continuous coasting beam under 

the condition of zero chromaticity and with the beam 

stored for several milliseconds. It is not expected to be a 

problem for SNS as currently designed, but it could arise 

at the higher powers being considered for an SNS 

upgrade. The e-p instability has been observed the most 

frequently and under a wide variety of conditions. It is 

likely to present the greatest challenge as we push the 

intensity frontier. The observations of these instabilities 

have been discussed in Refs. [1,2], and preliminary 

simulation results have been shown in Refs. [3-5]. 

In order to gain a quantitative understanding of the 

beam dynamics in the SNS ring, it is necessary to apply 

careful numerical simulation. We carry this out using the 

ORBIT Code [6], which was written with high intensity 

rings and transfer lines in mind. We now present the 

results of benchmarks with a variety of experiments, 

including coupling in beam distributions at low 

intensities, space charge effects at moderate intensities, 

and the transverse instability driven by the impedance of 

the ring extraction kickers. We begin with a low-intensity 

study that revealed the presence of x-y coupling in the 

extraction septum magnet and follow this work through to 

its present state of benchmarking with low and 

intermediate intensity beams with injection painting. We 

then present the results of a careful study of the observed 

extraction kicker induced instability. Lacking from this 

paper will be any results of e-p instability simulation. We 

are actively pursuing this work on a number of fronts, but 

have not yet obtained results beyond those previously 

presented [3,4]. Throughout this paper we stress the 

necessity of attention to detail as well as the interplay 

between theory, experiment, and computation required for 

successful and accurate simulation. 

____________________________________________ 

* ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. 

Department of Energy under contract DE-AC05-00OR22725. 
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ACCUMULATION 

One of the first benchmarks attempted for the SNS ring 

was to simulate the accumulation process. The object of 

the benchmark was to compare measured wire scanner 

profiles of the extracted beam in the Ring to Target Beam 

Transport (RTBT) line with corresponding profiles from 

the simulations. The simulations meticulously matched 

the parameters used in the experiments. These included 

the injection stripper foil position and incident beam 

emittances, position, and angles; the painting waveforms 

of the injection kickers; the ring lattice settings and tunes; 

and the applied ring RF focusing. The runs were carried 

out using ORBIT’s foil scattering model, a complete set 

of apertures and collimators, symplectic tracking, 1D 

longitudinal space charge, and 2.5D transverse space 

charge. 

The initial tracking studies were conducted at low 

intensities, and were thus designed to test the accuracy of 

our single particle model of the ring, rather than collective 

effects. The simulation results bore no similarity to the 

measured profiles, which changed shape significantly, in 

both planes, over the several wire scanners in the RTBT. 

This, together with an unexplained tilt of the beam at the 

target view screen, suggested that there was x-y coupling 

somewhere upstream of the wire scanners. Because care 

had been taken to correct x-y coupling in the ring using 

the available skew quadrupole magnets, we focused on 

the large and complicated extraction septum magnet, 

which simultaneously bends the beam vertically down and 

horizontally left from the ring into the RTBT. J.G. Wang 

then modeled this magnet using the OPERA 3D Code [7]. 

He found many higher order multipoles, including strong 

sextupole components [8]. 

 
Figure 1. Measured and simulated distributions of single 

turn injected pulses stored for varying times. 

 

These calculated multipoles were then included in the 

ORBIT simulation, and a careful experiment was 

performed. Experimentally, single turn injection was 

carried out and the pulses were stored for various 

durations up to 120 turns. They were then extracted and 

their positions were recorded on the several beam position 

monitors (BPMs) in the RTBT. In this way, the signals 

from the single pulses were used to build up a distribution 

at each BPM. The resulting experimental distributions 

were then compared with one from an ORBIT simulation 

in which a single macroparticle was injected each turn for 

120 turns. Figure 1 shows a comparison between the 

experimental and simulation results at BPM07 in the 

RTBT. Both distributions have substantially the same size, 

shape, and orientation, thus confirming both the presence 

of coupling and the extraction septum magnet as its 

source. Without the coupling multipoles, the distribution 

is a rectangle without tilt in the x-y plane. Similar results 

were found at BPMs throughout the RTBT. As a result of 

this initial benchmark, the extraction septum magnet was 

modified to remove the higher order multipoles and the 

consequent coupling [8]. This illustrates the value of 

careful benchmarking in finding and diagnosing problems 

with real machine components. 

 

 

 
 

Figure 2. Measured and calculated horizontal and vertical 

beam profiles at wire scanner WS24 in the RTBT for a 

low intensity beam of 8.6 10
12

 protons per pulse. 

 

After the modification of the extraction septum, the 

benchmark of the injection process was repeated. The 

simplest cases used flat-topped injection kicker 

waveforms, so that the painting was constant. In both the 

experiments and the benchmarks the injected beam spot at 

the stripper foil was 18 mm, both horizontally and 

vertically, from the closed orbit of the circulating beam. 

Beams were accumulated in the ring for various times, 
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ranging from 80 to 460 turns, and corresponding 

intensities, ranging from 8.6 10
12

 to 5.3 10
13

 protons per 

pulse. Thus, these benchmarks were carried out at low to 

moderate beam intensity. The beams were extracted after 

two turns of storage and then measured in the RTBT. 

Figure 2 shows a comparison of the measured and 

calculated horizontal and vertical beam profiles at the low 

intensity of 8.6 10
12

 protons per pulse taken at wire 

scanner WS24 in the RTBT. The agreement is very good, 

with ORBIT matching the widths and hollow shape, due 

to off-axis injection, of the actual profiles. Minor 

observed differences include slight tails on the 

experimental data and slightly different density 

fluctuations in the profiles at the beam center. 

Comparably good agreement was obtained at the other 

wire scanners in the RTBT. 

 

 

 
 

Figure 3. Measured and calculated horizontal and vertical 

beam profiles at wire scanner WS24 in the RTBT for a 

moderate intensity beam of 5.3 10
13

 protons per pulse. 

 

Good agreement between experiment and simulation 

was found over the entire range of intensities. Figure 3 

shows the comparison of measured and calculated beam 

profiles at wire scanner WS24 for 5.3 10
13

 protons per 

pulse. In comparison with the low intensity profiles, 

accumulated over 80 turns, the moderate intensity 

profiles, accumulated for 460 turns, fill in the centers and 

broaden slightly due primarily to space charge. The 

broadening is not substantial, however, because the 

maximum incoherent space charge tune shifts, estimated 

using ORBIT, are only about 0.07, so the coherent tune 

shift is perhaps 0.04. With the bare tunes of the ring set at 

x = 6.23 and y = 6.20, there is not sufficient space 

charge in the beam to activate the half integer resonance 

at  = 6 [9]. In addition to profiles, measurements were 

also taken of the RMS emittances of the beams. These are 

compared with the calculated RMS emittances from the 

simulations in Table 1, in units of millimeter-milliradians. 

As with the beam profiles, the agreement is quite good, 

falling within 5% for all cases. It is interesting that, in 

spite of the different shapes of the low and high intensity 

beams, the RMS emittances change little with intensity. 

 

Table 1: RMS Emittances, Experiment and Simulation 

Case Expmnt (H,V) ORBIT (H,V) 

80 Turns (13.3,13.1) (13.7,12.6) 

460 Turns (13.8,13.1) (13.2,12.5) 

 

The studies for injection with painting were carried out 

in a somewhat different fashion than those with flat-

topped injection kickers. In all cases with painting, 640 

turns of beam accumulation and two turns of storage were 

performed prior to extraction. The intensity was varied by 

beam decimation, in which pulses are injected only on a 

fraction of available turns. In this way, intensities ranging 

from 8.2 10
12

 to 7.5 10
13

 protons per pulse were 

obtained. As in the flat top case, these benchmarks are 

still in the range of low to moderate intensity. The initial 

results showed less agreement between experiment and 

simulation than for the flat-topped case, especially at low 

beam intensity, where the simulated case resulted in more 

hollow and slightly narrower profiles than the 

experimental case. At moderate intensity, the agreement 

was better, but the disagreement at low intensity was a 

cause for concern. Because the agreement in the flat top 

injection cases was so good, we focused on the injection 

kicker waveforms. The simulations faithfully 

implemented the programmed waveforms from the 

control room, so an experiment was carried out to test the 

experimental waveforms. Single turn injection was carried 

out with varying delay times between the initiation of the 

injection kickers and the injected pulse. Then the BPMs 

were used to measure the displacement between the 

injected pulse and the closed orbit in the ring at the time 

of injection. In this way, the actual injection waveforms 

were determined. Not surprisingly, these did not match the 

programmed waveforms. The reason turned out to be that 

the timings of the injection kickers were not synchronized 

with each other or with the beam, resulting in delays of as 

many as 60 turns. This problem is now being rectified. 

Once again, careful benchmarking provided guidance in 

finding and diagnosing faulty hardware performance. 

In order to “close the loop” on this injection 

benchmark, the painting experiment was repeated, but this 

time the actual measured kicker waveforms were used in 

the simulations. Figure 4 shows the resulting profiles in 

the vertical direction at wire scanner WS24, both for low 

and moderate intensities. The moderate intensity results 
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are good, with the measured profiles just slightly broader 

than the calculations. At low intensity the agreement, 

although better than before (compare red and green curves 

with blue experimental data), is not yet perfect. As we 

continue to improve these injection benchmarks, our next 

efforts will be to repeat the painting experiment after the 

injection kickers have been corrected, and also to repeat 

the flat top experiment with different kicker amplitudes. 

 

 
Figure 4. Measured and calculated vertical beam profiles 

at wire scanner WS24 in the RTBT for low (8.2 10
12

 

protons per pulse) and moderate (7.5 10
13

 protons per 

pulse) intensity beams. 

 

Before leaving this subject, we again remark on the 

difference between the low and moderate intensity beam 

profiles. Calculation of the incoherent space charge tune 

shifts using ORBIT shows maximum shifts of about 0.07 

for the moderate intensity case. As in the flat top 

injection, this is insufficient to excite the half integer 

resonance. Accordingly, we see neither substantial beam 

broadening nor an increase in emittances with increasing 

intensity. Rather, space charge tends to “smooth out “ the 

profiles by filling in the hollow center and adding slightly 

to the width. As we push to higher intensities and greater 

tune shifts, we expect to see broadening of the profiles 

due to space charge [9]. 

EXTRACTION KICKER INSTABILITY 

The Spallation Neutron Source accumulator ring was 

designed and constructed to be stable at the full intensity 

of 1.5 10
14

 protons. Because early estimates predicted 

that the extraction kickers would present the dominant 

ring impedance, they were carefully designed to minimize 

that impedance. As a result, stability calculations for the 

extraction kicker impedance showed longitudinal stability 

up to 8 10
14

 protons, while transverse stability at 1.5 10
14

 

protons was predicted for up to 3 to 4 times the known 

impedance [10]. These results were obtained 

computationally for bunched beams using ORBIT. 

However, for coasting beams in SNS, analytic and ORBIT 

calculations for mode number n = 10 and 1.5 10
14

 

protons predict vertical instability when Re(Z) > 0 k /m 

at zero chromaticity and when Re(Z)  250 k /m at 

natural chromaticity. The measured impedance of the 

extraction kickers in the vicinity of n = 10 is Re(Z) ~ 25-

30 k /m. It is therefore appropriate to use coasting beams 

and corrected chromaticity to look for this instability. 

The extraction kicker instability has been observed in 

the course of high intensity beam studies. The scenario 

was the following: The ring tunes were set at Qx = 6.23 

and Qy = 6.20. The chromaticity was corrected to zero and 

the RF buncher cavities were turned off. The choppers 

were also turned off so that a continuous coasting beam 

was accumulated. An 860 MeV beam of 7.7 10
13

 protons, 

more than 12 μC, was injected for 850 turns and 

subsequently stored until the beam was lost in the ring. 

The evolution of the beam was followed for 10000 turns. 

The observed instability began at about 1200 turns and 

saturated somewhat beyond 4000 turns. It was active in 

the transverse vertical direction with dominant harmonic 

at 6 MHz and noticeable excitation in the 4 10 MHz 

range. Interpreting this to be a “slow” mode, the 

frequency is consistent with dominant harmonic n = 12, 

and excitation in the range 10  n  16. This agrees well 

with the predicted range of dominant unstable mode 

numbers from the extraction kicker impedance. 

The experimental results for this case have been 

presented in Ref. [1], and the growth rate of the 6 MHz 

(n = 12) harmonic was use to theoretically infer the 

extraction kicker impedance at that frequency. The 

resulting prediction of 28 k /m is in excellent agreement 

with the laboratory-measured impedance of 25 k /m. The 

intent of this paper is to precisely simulate this case, using 

ORBIT, and to match all known experimental details as 

closely as possible. The parameters used in the earlier 

simulations, presented in Refs. [3-5], differ somewhat 

from those of the experiment, so that quantitative 

comparison is not appropriate for those cases. 

The present simulation was carried out using the 

ORBIT code [6]. We used the actual ring settings with 

Qx = 6.23 and Qy = 6.20 and zero chromaticity. The ring 

RF cavities were turned off and a continuous coasting 

beam of 7.7 10
13

 protons at 860 MeV was injected for 

850 turns and stored up to 10000 turns. The injected beam 

RMS energy spread was taken to be 0.5 MeV, consistent 

with observation, and the nominal SNS transverse 

injection painting was employed. Tracking was carried 

out using symplectic single particle transport, the 

laboratory-measured longitudinal and transverse 
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impedances for the extraction kickers, and the 3D space 

charge model. In addition, the ORBIT foil scattering 

model was activated and a complete set of apertures was 

included to incorporate beam losses during accumulation 

and storage. The number of macroparticles in the 

simulation was 4.25 million. 

One of the more impressive results presented in Ref. [1] 

was the agreement between the extraction kicker 

impedance calculated from the growth rate of the 

instability and that measured in the laboratory. The 

relationship between the impedance and the growth rate is  

Re(Z) =
2 2E0

twissIavg
                          (1) 

where Z is the impedance in /m,  and  are the 

relativistic factors, E0 is the proton mass in eV,  is the 

growth time in turns, twiss is the beta function at the 

location of the impedance, and Iavg is the average beam 

current. There are 14 extraction kickers distributed over a 

length of about 10 m in the SNS ring. The vertical beta 

function at the kickers varies from a minimum of 6.4 m to 

a maximum value of 13.5 m, with an average value of 

9.3 m. The measurement gave an experimental growth 

time of 1036 turns. In estimating the value of 28 k /m 

using Eq. (1), a value twiss = 7 m, close to the average 

beta of the ring, was assumed. If, instead, the average 

value of twiss = 9.3 m for the kickers is used, the 

estimated impedance is 21 k /m, a bit lower than the lab 

value of 25 k /m. However, Eq. (1) was derived under 

the assumptions that we are far from threshold and that 

the energy distribution is a delta function, thus ignoring 

Landau damping. Both these assumptions overestimate 

the growth of a real beam with energy spread. Therefore, 

the experimental growth time should be longer than that 

from Eq. (1), and its use in Eq. (1) should result in an 

impedance prediction that is somewhat lower than the 

actual value. 

 
Figure 4. Vertical n=12 harmonic versus turn number in 

ORBIT extraction kicker instability simulation. 

 

The ORBIT simulation was carried out with a single 

extraction kicker impedance node using the 

experimentally measured impedance values and placed at 

a position among the extraction kickers where the beta 

function satisfies twiss = 9.3 m. The result, shown in Fig. 

4, is an exponential growth time for the n=12 harmonic 

that is completely consistent with the measured time of 

1036 turns. This impressive result is an important 

testimony to the necessity of getting all the details correct 

when performing a quantitative comparison between 

experiment and simulation. In reaching the result of this 

simulation, we made a number of false starts [3-5]. 

Erroneous assumptions included the use of chopped 

beams, the use of (too large) impedances from a previous 

design of the extraction kickers, and the placement of the 

impedance node at the geometric center of the extraction 

kickers rather than at a location with the average beta 

function. With hindsight, mistakes such as these appear to 

be foolish. However, in simulating a complicated particle 

accelerator, there are many details, each of which can 

affect the results. As each of these errors was rectified, the 

simulation improved, until we now achieve the correct 

growth rate for the instability. 

 
Figure 5. Evolution of experimental turn-by-turn vertical 

harmonic spectrum of the extraction kicker instability. 

 
Figure 6. Evolution of simulated turn-by-turn vertical 

harmonic spectrum of the extraction kicker instability. 

 

We have now completed the calculation to 10000 turns. 

The evolution of the simulated turn-by-turn spectrum 

shown in Fig. 6 displays activity over a similar range of 

frequencies as the experimental spectrum shown in Fig. 5, 

although the simulation shows somewhat more spreading 

than the experiment. Also, most of the activity occurs 
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after 5000 turns, which is after the completion of the 

linear growth. Should we wish to pursue this comparison 

of the nonlinear stage further, there are a few uncertainties 

we will need to address. The experimental signals were 

extracted from an FFT of high bandwidth BPM data. The 

simulated signals are harmonics of the beam centroid 

oscillations, in millimeters. Are they directly comparable? 

We will also need to compare the beam loss over 10000 

turns in the experiment, which can vary from shot to shot, 

with that in the simulations, which is calculated using 

ORBIT’s aperture and collimator routines. These are 

possibilities for future work. 

 

CONCLUSIONS 

As we ramp to full power operation in SNS, we are 

simulating much experimental data in order to gain a 

thorough understanding of the machine’s beam dynamical 

behavior and to diagnose problems when they arise. 

Benchmarking has already allowed us to identify 

significant x-y coupling in the original ring extraction 

septum magnet and also improper performance of the 

injection kicker painting waveforms. Significantly, we are 

obtaining good agreement between simulated and 

experimental results. Thus far, our benchmarks of the ring 

injection process have been limited to low and medium 

intensities. In these cases, the main effect of space charge 

is to fill in the hollow central region of the beam. So far, 

the space charge tune shifts are insufficient to cause beam 

broadening through the half integer resonance. We have 

also completed a careful benchmark of the extraction 

kicker impedance instability, and have found that the 

calculated and experimental growth rates are in perfect 

agreement. Comparison of the spectral evolution of the 

experiment and simulation out to 10000 turns shows 

qualitatively similar results. However, the detailed 

evolution in the nonlinear stage of the instability after 

5000 turns is somewhat different. Finally, although not 

presented here, we have begun simulation of a wealth of 

e-p instability data acquired during dedicated high 

intensity shifts. This data includes systematic variation of 

e-p activity with longitudinal beam profile, controlled by 

varying the relative phases of the ring RF cavities. 
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Abstract

The GSI Univeral Linear Accelerator UNILAC can ac-
celerate all ion species from protons to uranium. Hence its
DTL section is equipped with e.m. quadupoles allowing for
a wide range of field strength along the section. During the
last years various campaigns on the quality of high current
beams at the DTL exit as a function of the applied trans-
verse focusing have been performed. Measurements were
compared with up to four different high intensity beam dy-
namics codes. Those comparisons triggered significant im-
provement of the final beam quality. The codes were used
to prepare an ambitious and successful beam experiment
on the first observation of a space charge driven octupolar
resonance in a linear accelerator.

INTRODUCTION

In the last decades many beam dynamics computer codes
were developed [1] in order to simulate emittance growth
along a linac. Several benchmarking studies among codes
have been performed [2, 3, 4] generally assuming idealized
conditions as initial Gaussian distributions, equal trans-
verse emittances, matched injection into a periodic lattice,
and small longitudinal emittance with respect to the rf-
bucket size. In case of an operating linac generally not all
of these conditions are met. To apply simulation codes to a
realistic environment a benchmark activity was started aim-
ing at simulations of beam emittance measurements per-
formed at a DTL entrance and exit, respectively. The stud-
ies were performed at the GSI UNILAC [5]. For the sim-
ulations four different codes were used: DYNAMION [6],
PARMILA [7], TraceWin [8], and LORASR [9].

The first benchmarking was done with moderate mis-
match with respect to the periodic DTL solution. The zero
current transverse phase advance σo has been varied from
35◦ to 90◦. A detailed description of this first campaign is
given in [10]. A second campaign suggested in [11] aimed
at exploration of the 90◦ stop-band by varying σo from
60◦ to 130◦. In this campaign the mismatch was minimized
in order to mitigate the effects of the envelope instability.
Ref. [12] is dedicated to this campaign.

EXPERIMENT SET-UP AND PROCEDURE

Intense beams are provided by a MUCIS source at low
charge states with the energy of 2.2 keV/u. An RFQ fol-

lowed by two IH-cavities (HSI section) accelerates the ions
to 1.4 MeV/u using an rf-frequency of 36 MHz. A sub-
sequent gas-stripper increases the average charge state of
the ion beam. Final acceleration to 11.4 MeV/u is done
in the Alvarez DTL section operated at 108 MHz. The
increase of rf-frequency by a factor of three requires a
dedicated matching section preceding the DTL. It com-
prises a 36 MHz re-buncher for longitudinal bunch com-
pression, a 108 MHz re-buncher for final bunch rotation,
a quadrupole doublet for transverse compression, and a
quadrupole triplet for final transverse beam matching.

The Alvarez DTL comprises five independent rf-tanks.
Transverse beam focusing is performed by quadrupoles in
the F-D-D-F mode. Each drift tube houses one quadrupole.
The periodicity of the lattice is interrupted by four inter-
tank sections, where D-F-D focusing is applied. Accelera-
tion is done -30o from crest in the first three tanks and -25o

from crest in the last two tanks.
Figure 1 presents the schematic set-up of the experi-

ments. Beam current transformers are placed in front of

Figure 1: Schematic set-up of the experiments.

and behind the DTL as well as horizontal and vertical
slit/grid emittance measurement devices. The total accu-
racy of each rms emittance measurement including its eval-
uation is estimated to be 10%. A set-up to measure the
longitudinal rms bunch length is available in front of the
DTL [13]. It measures the time of impact of a single ion on
a foil. This time is related to a 36 MHz master oscillator.
The resolution is 0.3◦ (36 MHz). Prior to the high inten-
sity measurements a scan with very low beam current was
done, demonstrating that no emittance growth occurs in ab-
sence of space charge forces. Afterwards the HSI was set
to obtain 7.1 mA of 40Ar10+ in front of the DTL. Horizon-
tal and vertical phase space distributions were measured in
front of the DTL. The longitudinal rms bunch length was
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measured at the entrance to the DTL. The DTL quadrupoles
were set to the required zero current transverse phase ad-
vance σo. Due to space charge the phase advances in all
three dimensions were depressed. The transverse depres-
sion reached from 14% (130◦) to 43% (35◦). Afterwards
the quadrupoles and re-bunchers preceding the DTL were
set to obtain full transmission and to minimize low energy
tails of the beam. For each value of σo horizontal and verti-
cal beam emittances were measured at the exit of the DTL
with a resolution of 0.8 mm in space and 0.5 mrad in angle.

Each emittance measurement delivers a two dimensional
matrix of discrete slit-positions and discrete angles. The
data are processed by the measurement & evaluation pro-
gram PROEMI [14]. Simulations deliver a set of six dimen-
sional particle coordinates. This ensemble is projected onto
a pixel-grid having the same characteristics as the slit/grid
device used for the measurements. The grid is read by the
measurement evaluation program PROEMI such that data
reduction was done in the same way as for measured data.

INPUT FOR SIMULATIONS

The reconstruction of the initial distribution was done
in two steps. First the rms Twiss parameters were deter-
mined. In the second step the type of distribution was
reconstructed. The transverse rms measurements and the
longitudinal rms measurements of the initial distribution,
done at different locations along the beam line (Fig. 2) were
combined in a self-consistent way based on envelope track-
ing of an rms equivalent KV-distribution [15]. The recon-

Figure 2: Matching section to the DTL including the ref-
erence points used for reconstruction of the initial phase
space distribution.

struction of the type of distribution is based on evaluation
of the brilliance curve, i.e. the fractional rms emittance as
a function of the fraction [10]. Different amounts of halo
have been found in the two transverse plane. For proper
modelling of the initial distribution, both brilliance curves
must be reproduced simultaneously. This was achieved by
using a distribution function as

f(R) =
a

2.5 · 10−4 + R10
, R ≤ 1 (1)

and f(R) = 0 for R > 0 with

R2 = X2 + X ′2 + Y 1.2 + Y ′1.2 + Φ2 + (δP/P )2 , (2)

where a is the normalization constant and the constant in
the denominator results from the cut off condition at R = 1.
By defining the radius R using different powers for differ-
ent sub phase spaces the halos within the planes could be

Figure 3: Mismatch between beam rms Twiss parameters
and periodic Twiss parameters at injection into the DTL as
a function of the phase advance σo for the two campaigns.

modelled. Since for the longitudinal phase space distribu-
tion no measurement but on the rms bunch length is avail-
able, a Gaussian distribution cut at 4σ is assumed. This
can be approximated by setting the respective powers in
the definition of R to a value of 2. It must be mentioned
that the applied method is not sensitive for eventual cor-
relations among different planes. Such correlations have
been assumed to be zero.

MEASUREMENTS WITH MODERATE
MISMATCH

The reconstructed initial distribution together with the
applied setting along the matching section to the DTL was
used to estimate the amount of mismatch [16] at the DTL
entry using the DYNAMION code. As shown in Fig 3
the mismatch has been very small for intermediate σo and
moderate in one plane for low and for high values of σo.
For the applied σo from 35◦ to 90◦ full beam transmis-
sion was observed through the DTL in the experiment. The
codes predicted losses of about 2%. Figure 4 displays fi-
nal horizontal phase space distributions at the DTL exit
as obtained from measurements and from simulations for
three different values of σo. The simulated final distribu-
tions look quite similar. Simulations could reproduce the
wings attached to the core measured at highest phase ad-
vances. But the codes did not show the asymmetric dis-
tributions measured at lowest phase advances. The simu-
lated longitudinal phase spaces showed filamentation and
emittance growth due to slight rf-bucket overflow at the
DTL injection. Final transverse rms emittances are pre-
sented in Fig. 5 to Fig. 7 as a function of the transverse
phase advance σo. The measurements and the simula-
tions revealed lowest emittances at σo ≈ 60◦. In general
good agreement among the codes was found for the sum
of the two transverse emittances but codes slightly under-
estimate the emittance growth. This is reasonable since the
codes assume a machine without errors causing additional
growth [17]. However, within single planes considerable
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Figure 4: Top to bottom: horizontal phase space distribu-
tions at the DTL exit. Left: σo = 35◦; center: σo = 60◦;
right: σo = 90◦. The scaling is ± 24 mm (horizontal axis)
and ± 24 mrad (vertical axis), respectively.

differences among the codes have been found.

Figure 5: Horizontal rms emittance at the end of the DTL
as a function of σo.

RMS MATCHED DTL-INJECTION

In order to minimize the mismatch to the DTL a ded-
icated computer code was created working in two steps.
In the first step the periodic solution at the entrance to the
DTL is calculated. Acceleration is neglected and the gap
voltage and phase are adjusted such that the transverse de-
focusing is equal to the accelerating case. The DTL starts at
a symmetry point of the periodic envelope and accordingly
all three α-parameters, i.e. envelope slopes, are assumed
to be zero. In the following an iterative procedure as de-
picted in Fig. 8 is applied. Initial values for the β-functions
are used to track the envelope through one period. This is
done by numerically solving the coupled system of differ-
ential equations from Ref. [15] describing the propagation
of the beam’s rms envelopes with space charge. As a solver
the routine rkqs from [18] has been used. The next iteration

Figure 6: Vertical rms emittance at the end of the DTL as a
function of σo.

Figure 7: Mean value of horizontal and vertical rms emit-
tance at the end of the DTL as a function of σo.

uses the mean of initial and final β-function as starting con-
dition. Convergence is reached in less than 30 iterations.
The second step of matching determines the settings of the
focusing elements of the matching section (Fig. 2). Using
the rms parameters of the reconstructed distribution at the
entrance to the section as initial condition for the tracking
equations, the final rms parameters at the DTL entrance de-
pend on the focusing strengths fi of the two bunchers and
the five quadrupoles of the section. The final rms parame-
ters together with the periodic solution define the mismatch
Mi in each plane [16]. Matched injection is achieved if M
is zero in each of the three planes. Defining

F (f1...f7) = M3
x(...) + M3

y (...) + M3
z (...) (3)

as a function of the seven focusing strengths in the match-
ing section, the matching is optimized for the setting f1...f7

that minimizes F . Minimization of F is done with the rou-
tine powell from [19]. It turned out that the sum of the
third powers gives the best results w.r.t. convergence and
final mismatch. During all experiments Mi = 0 has been
reached within less than three minutes.
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Figure 8: Flux diagram to obtain the periodic solution of
the beam envelope inside the periodic DTL.

The emittance growth scan was repeated with matched
injection by re-measuring rms emittance growth rates at
three different phase advances. It was demonstrated that the
application of the matching routine reduced the emittance
growth significantly. Fig. 9 plots the measured growth rates
as well as results from simulations using the DYNAMION
code. In addition to reduced growth, matching leads to

Figure 9: Relative growth of mean value of horizontal and
vertical rms emittance at the end of the DTL as a function
of σo. Data are shown for moderate mismatch and for the
case of minimized mismatch.

an improved agreement between measurements and simu-
lations. In order to further investigate this correlation all
recent UNILAC experiments were evaluated w.r.t. accu-
racy of code predictions as a function of mismatch. The
agreement improves with the quality of the matching to the
DTL. This is plotted in Fig. 10, where the relative devia-
tion between the measured emittances and the code predic-
tions is plotted versus the mean transverse mismatch. For a

Figure 10: Relative deviation between final transverse rms
emittances as measured and predicted by the codes versus
the mean of horizontal and vertical mismatch to the DTL.

mean mismatch of less then 20% the codes accuracies are
always better than 20%, while for larger mismatches the
codes might deliver final rms emittances that differ of up to
80% from the experimental values.

OCTUPOLAR RESONANCE IN A LINAC

The parabolic term of the space charge density rises
a field term of third order, i.e. a octupolar term. Since
matched beam envelopes perform quasi-periodic oscilla-
tions, this term acts as a periodic third-order perturbation.
The perturbation is resonant if the envelope phase advance
per period, i.e. 360◦, is four times higher than the single
particles phase advance. Accordingly, a resonance is ex-
pected to occur at a depressed transverse phase advance of
90◦. Simulations using the PARMILA and DYNAMION
codes suggested to perform the measurement at the UNI-
LAC [11]. To exclude any inter-tank mismatch along the
DTL just the first tank was used and the zero current phase
advance σo was varied from 60◦ to 130◦. A characteristic
feature of this resonance is the formation of four wings in
the transverse phase space distributions being attached to
the beam core.

Measured and simulated transverse phase space distribu-
tions at the tank exit are plotted in Fig. 11, as well as the
corresponding rms emittances. Distributions correspond-
ing to phase advances far away from the resonance have
elliptical shapes. At σo ≈ 100◦, i.e. at a depressed phase
advance of 90◦, instead the measurements and the simu-
lations clearly revealed four arms, which are typical for
a resonant octupolar interaction. A detailed description
of the campaign on the octupolar resonance can by found
in [11, 12] pointing out that the observed emittance growth
is not caused by the well-known envelope instability but by
the octupolar space charge potential term.

We summarize that the codes are reliable tools for ma-
chine optimization and for the preparation of beam exper-
iments. However, qualitative accuracy strongly depends
on the quality of beam matching. Good matching is re-
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Figure 11: Upper and lower: phase space distributions at the exit of the first DTL tank as obtained from measurements
and from the DYNAMION code for phase advances σo of 80◦, 100◦, and 120◦. Left (right) side distributions refer the
horizontal (vertical) plane. The scale is ±15 mm and ±15 mrad. Fractional intensities refer to the phase space element
including the highest intensity. Center: Mean of horizontal and vertical normalized rms emittance behind the first DTL
tank as a function of σo.

quired for useful predictions on the sum of transverse emit-
tances. Considerable deviations within single planes were
observed also for well matched beams.
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Abstract 
In this paper, we present benchmarking results for high-

class 3D electromagnetic (EM) codes in designing RF 
cavities today. These codes include Omega3P [1], 
VORPAL [2], CST Microwave Studio [3], Ansoft HFSS 
[4], and ANSYS [5]. Two spherical cavities are selected 
as the benchmark models. We have compared not only the 
accuracy of resonant frequencies, but also that of surface 
EM fields, which are critical for superconducting RF 
cavities. By removing degenerated modes, we calculate 
all the resonant modes up to 10 GHz with similar mesh 
densities, so that the geometry approximation and field 
interpolation error related to the wavelength can be 
observed. 

 

INTRODUCTION 
Numerical EM simulations are very important for 

designing and optimizing new cavity structures, 
investigating the RF breakdown fields of cavity operation, 
and studying beam dynamics in RF cavities. Hence, it is 
very important to understand the accuracy, limitation, and 
capability of an EM code before applying an EM code in 
analyzing such problems. For many advanced problems in 
superconducting RF cavities, high accuracy is not only 
demanded for the calculation of resonant frequencies but 
also for the surface electromagnetic fields. For example, 
multipacting is still an important factor that limits the 
performance of a superconducting cavity. To correctly 
predict the process of multipacting in a cavity, the second 
emission yields of each impact, which is dependent on the 
impact energy, has to be calculated accurately. Therefore, 
an accurate calculation of the surface EM fields is a 
natural requirement for simulating the multipacting 
process. Another example is the Lorentz force detuning 
[6] resulting from the interaction of the rf magnetic field 
with the rf wall current in superconducting cavities. 
Because the superconducting cavity wall is relatively thin, 
at high accelerating fields, the cavity shape could be 
significantly deformed by the inward radiation pressure 
on the iris wall and the outward radiation pressure on the 
equator. It hence is a simulation challenge to simulate the 
frequency shift due to this effect. Since the radiation 
pressure is directly calculated from the surface EM fields, 
the key for an accurate simulation relies on the correct 
prediction of the surface EM fields. 

Several EM codes, either developed by commercial 
companies or non profit research institutes, are utilized 

for simulations related to RF cavities. Most of these codes 
provide good benchmarking results against a simple 
pillbox cavity for the accuracy of frequency and EM 
fields. However, a real RF cavity is usually much more 
complex than the pillbox structure, and normally featured 
with curved 3-D surface. On the other hand, due to 
measurement errors and unpredictable operating 
complexity, it is often difficult to conduct benchmarking 
comparison between different simulation codes using 
measured experimental data. In a word, the ideal 
benchmarking model should have 3-D curved boundaries 
and can be solved analytically. Spherical cavities are such 
candidates for the benchmarking study. In this paper, we 
compare the integrity of results from different EM codes 
using same spherical cavity models. 

 

ANALYTICAL SOLUTIONS 
In this paper, we use r, �, and � to denote the radial 

distance, zenith angle, and azimuth angle in a spherical 
coordinate system, respectively. As shown in Fig.1, we 
use two different spherical models for the benchmarking: 
one is a simple cavity bounded by the perfect conductor at 
r=a; the other model is formed by subtracting two cones 
from a concentric sphere (d<r<b). For convenience, 
throughout this paper, we call the first cavity single 
sphere, and the second cavity double sphere. We have 
chosen a=b=10 cm and d=5 cm. 

 
 

Figure1: Two spherical cavities. 
 
The electromagnetic fields inside a spherical cavity can 

be obtained by solving Helmholtz equations in spherical 
coordinates using the Borgnis technique as shown in Ref 
[7]. For simplicity, we assume that the EM fields, 
rotationally symmetric, are independent of the azimuthal 
angle �. Under this assumption, if we choose the radial 
direction as the longitudinal direction in a spherical 
cavity, the EM fields can be classified into TM and TE 
modes, whose general solutions of EM fields are shown 
in Equations. (1) and (2), respectively:   ______________________________________________  
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where μ is the vacuum permeability; � is the electric 
permittivity; � is the angular frequency; U and V, the 
electrical and magnetic Borgnis functions [7], have 
different forms for these two cavities.  
    After analyzing the analytical solutions of both single 
sphere and double sphere, we found out the following 
facts. The maximum surface electric fields of TM modes 
for the single sphere only occur at the two poles, which 
are two points. We characterize the numerical accuracy of 
the surface EM fields by comparing the peak values on 
the surface. Therefore, in order to avoid the singularity in 
numerical simulation, we have chosen not to use the TM 
modes of the single sphere for benchmarking surface 
electric fields. As to TE modes, the surface electric fields 
vanish in both models. Hence, in order to benchmark the 
analytical results of maximum surface electric fields 
against simulations, we need to solve TM modes of the 
double spherical cavity. For benchmarking of maximum 
magnetic fields, we have chosen TE modes in the single 
sphere due to its relatively simple analytical computation. 
In the following, we will solve these two families of 
modes of our benchmarking interest. 

TE modes of the single sphere 
According to the Borgnis technique, in this case, U=0 

and: 

( ) (cos )1/ 2V B r J kr Pn n n θ=
+

   (3) 

where Bn is a constant, and k is the wave number. 
Substituting Eq. (3) to (2), we can obtain the fields 
expressions with the only undefined parameter Bn. The 
metal boundary condition on the spherical surface leads to 
Eq. (4): 

| 0V
r a

=
=

     (4) 

,which can be transformed to the dispersion equation: 

( ) | 0
1 / 2

y J y
n y ka

=
+ =

     (5) 

By solving Eq. (5),  we can obtain the resonant 
frequencies of the mode TEn0p: 

0
0 0

y
np

n p a
ω

μ ε
=     (6) 

 where ynp is the pth root of Eq. (5).  
For TE modes, the only component of electric filed is

Eϕ : 

(cos )
0 ( )

1 / 2

j B dP
n nE J kr

n dr

ωμ θ

ϕ θ
= −

+
  (7) 

 so the stored energy of the whole cavity can be 

calculated by integrating Eϕ  throughout the whole 

spherical volume: 

1 2| |
02

W E dvε
ϕ

= �     (8) 

On the surface of the sphere, all other field components 
vanish except  

' 1

1/ 2
| ( ) (cos )n

r a n n

B
H kJ ka P

a
θ

θ
= +

= −   

      (9) 
which is only dependent on �.  

For the purpose of benchmarking, we define the 
normalized surface magnetic filed as 

|H
r ah
W

θ ==      (10) 

By substituting Eqs (7)-(9) to the above expression: 

' ( )2 11 / 2 (cos )
(cos )10 2[ ( ) ]

1 / 2

J ka
nh P

na dP
nJ kr dv

nr d

θ
μ θ

θ

+=

�
+

 
(11) 

Using numerical techniques implanted in MATLAB [8], 
the maximum values of h for different modes can be 
determined. The computing precision of MATLAB is 10-

16, which is enough for benchmarking. We list the 
solutions for the first 10 modes in Table 1. 
 

Table 1: The first 10 TEn0p modes 

Frequency (Hz) n p hmax(A/m/J1/2) 

2.1439607465E+09 1 1 -19492.383 

2.7499453139E+09 2 1 -21793.147 
3.3341835523E+09 3 1 -25108.575 
3.6859842956E+09 1 2 19492.383 
3.9041824976E+09 4 1 -28186.443 
4.3395438284E+09 2 2 21793.147 
4.4639808826E+09 5 1 -31009.186 
4.9703668154E+09 3 2 25108.575 
5.0160366334E+09 6 1 -33617.568 
5.2027328095E+09 1 3 -19492.383 

TM modes of the double sphere 
To solve TM modes of the double sphere cavity, we 

arbitrarily choose �1=tan-1(8/15) and �2=�-�1. The Borgnis 
function V=0, and  
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[ ( ) ( )][ (cos )
1 / 2 1 / 2

( cos )]

U A r J kr B r N kr CP

DP

θ
ν ν ν

θ
ν

= +
+ +

+ −

      

(12) 
where A, B, C, D are constants. For this cavity, field 

expressions contain both Bessel and Neumann functions, 
and v is not an integer any more. Field components can be 
derived by substituting Eqn. (7) in (1). The boundary 
conditions at four external surfaces are:  Er =0 at �= �1 
and �2; E� =0 at r=d and b, these conditions lead to the 
following two equations:  

| 0
,

1 2

U
θ θ θ

=
=

    (13) 

,
| 0
r b d

U

r
=

∂
=

∂
     (14) 

The condition of the existence of non zero A, B, C, and 
D to satisfy Eq () leads to the two eigen equations: 

1 2 1 2
(cos ) ( cos ) ( cos ) (cos ) 0

v v v v
P P P Pθ θ θ θ− − − =  

(15) 
 

1 1'
[ ( ) ( )][ ( )

1 / 2 1 / 2 1 / 22 2

1' '
( )] [ ( ) ( )]

1 / 2 1 / 2 1 / 22

1 '
[ ( ) ( )]

1 / 2 1 / 22

J ka k aJ ka N kb
a b

k bN kb J kb k bJ kb
b

N ka k aN ka
a

ν ν ν

ν ν ν

ν ν

+ +
+ + +

= +
+ + +

+
+ +

      

(16) 
For a given v, the only variable in this equation is k, 

which is the wave number. Hence, we can obtain the 
resonant frequency of any TMv0p mode by solving Eq. 
(16).  
      Furthermore, we define the normalized surface 
electric field on the two spherical surfaces as: 

1

|
r r b

E
e

W

==       (17)  

and  

2

|
r r d

E
e

W

==       (18) 

      

Table 2: The frequency and normalized maximum surface 
magnetic filed of the first 6 TEn0p modes 

Frequency (Hz) e1max(V/m/J1/2) e2max(V/m/J1/2) 

8.377783223E+08 -22032489 -6016071 
1.832902930E+09 19975209 7675141 
2.713403917E+09 15231237 9805581 
3.123146964E+09 8868395 -2162046 
3.518547956E+09 10047403 11835720 
3.598480132E+09 19323910 -4314285 

 

Using the similar technique as the single sphere, the 
maximum values of e1 and e2 can be derived after some 
algebra. Results calculated from analytical solutions using 
MATLAB for the first six modes are listed in Table 2. 

BENCHMARK RESULTS 
Since only azimuthally uniform modes are of interest, 

we can simulate partial volumes with proper 
configuration of boundary conditions. This not only 
improves the computing efficiency, but helps us to 
suppress the degenerated modes. As shown in Fig. 2, we 
simulated a sector of 18 degree azimuthally for both 
cavities. For TE modes of the single sphere, we further 
cut it at its equatorial symmetry plane, generating a 
simulated volume of 1/40 of the whole sphere. By setting 
two side planes as electric boundaries and alternating the 
equatorial plane as electric or magnetic boundary, we can 
solve all TE modes. For the double sphere we did not cut 
the 18 degree sector into half, so the simulated model is 
1/20 of the whole double sphere. By setting two side 
planes as magnetic boundaries, we can obtain all TM 
modes. 

                                         
Figure 2: Simulation volumes for (a) single sphere; (b) 
double sphere    

 
We have simulated modes of these two cavities up to 

10 GHz using Omeg3P 7.2.1, VORPAL 4.0, CST 
Microwave Studio (MWS) 2009 and 2008, HFSS 11.0, 
and ANSYS 11.0. Omega3P, HFSS, and ANSYS utilize 
Eigen solvers for EM problems based on the Finite 
Element Method (FEM), The Eigen solver of CST MWS 
uses the Finite Integration Method and meshing is done 
by a Perfect Boundary Approximation® method. 
VORPAL implements the finite-difference-time-domain 
integration of the EM field on a Yee mesh. Among all 
these codes, Omega3P, VORPAL, MWS, and ANSYS are 
capable of parallel computation. In the following, we 
summarize the simulation conditions of each code.  

Omega3P 
We automatically meshed both cavities with 

unstructured 10-point tetrahedral meshes with a mesh size 
of 2mm using CUBIT [9]. For the single sphere cavity, 
we ran the code with one CPU for 2 hours on a local 
server. The double sphere was simulated on Bassi at 
NERSC, with rather massive parallel computing 
environment, in about 20 minutes with 56 CPUs. The 
accuracy is recorded by the given residual number, 
typically less than 1e-7. 

Electric (a) (b) 
Magnetic 
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VORPAL 
The single sphere is simulated as 1/20 of the whole 

sphere without a cut at its equator.  VORPAL time-
domain simulations are split into 3 runs to cover different 
frequency range. The filter-diagonalization method 
(FDM) [10] is used to extract the frequency and construct 
the field pattern of each TE mode. For a 2mm uniform 
mesh size, each VORPAL run takes about 3 hours with 16 
CPUs on a local Linux cluster. The time for FDM 
analysis is negligible with integrated frequency analysis 
tools in VORPAL VIEW. The benchmarking against the 
double sphere is still in progress. 

ANSYS 
   Both cavities were run on a local windows server in 
parallel processing mode with four Intel Xeon CPUs and 
took about 1 hour for each cavity. A uniform 2mm 
tetrahedral mesh was constructed in ANSYS models. 

MWS 
The simulation was divided in several runs on a PC 

with 1 CPU. The average mesh size of 2mm was fixed by 
setting the upper frequency limit. We used the AKS 
solver for the lower frequency band and the JDM solver 
for the higher frequency band. The CPU time varied from 
a few minutes to 6 hours depending on the solver settings. 
The accuracy of each solution is checked after the 
calculation by using Maxwell equations. 

HFSS 
The simulation was also split into several runs, with 

each run only covering 10 modes. The mesh scheme was 
based on a 2 mm average mesh length for both the 
volume and the sphere surface. Adaptive meshing was 
used during the iterations. The CPU time varied from a 
few minutes to about 1 hour depending on the converging 
speed of different modes. For sufficient accuracy, the 
maximum deviation in the mode frequency per simulation 
pass was set at 0.01%. 

(a)                            (b) 
 

                  
Figure 3: Examples of strap-like surface magnetic fields: 
(a) single sphere; (b) double sphere. 

 
To exclude non physical (poor accuracy) or 

degenerated modes from simulations, the rule of thumb is 
to choose only those modes with strap-like pattern for the 
amplitude of surface EM fields. Fig. 3 shows the 
magnetic field distribution of a desired TM mode of the 

single sphere. For each mode from different simulation 
codes, we checked their field distribution and selected 
only those meeting our criteria for benchmarking.  

To quantify the accuracy of simulation results, we 
define relative errors as the following: 

          ��� �!!"! 	 #$%&$'$%($
$%($ #                                (19) 

where XS can represent the simulation result of 
resonant frequency or the maximum EM field on surface; 
XA represents the corresponding analytical result. Fig. 4 
presents results of resonant frequencies for both the single 
and double sphere. For the double sphere, HFSS could not 
provide solutions for modes higher than about 6 GHz 
within a reasonable CPU time. The comparison indicates 
that solutions from Omega3P are consistently more 
accurate than those from other codes. Its accuracy is well 
below 10-5. With increasing frequency, the mesh number 
per wavelength decreases, therefore relative errors for 
most codes increase as expected. An interesting exception 
is that relative errors achieved with ANSYS kept rather 
constant at about 2x10-5. 

 

  

Figure 4: Relative errors of resonant frequencies 
achieved with various codes for (a) single sphere and (b) 
double sphere. 

 

 

Figure 5: Relative errors of the maximum surface (r 
=10cm) magnetic fields of the single sphere.  
 
    Relative errors for surface EM fields are plotted in Fig. 
5 and Fig. 6. Omega3P has overall the best accuracy, 
ranging from 10-4 to 10-2 for the magnetic fields and from 
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10-5 to 10-2 for the electric fields. Results of ANSYS are 
not consistent, better for the single sphere, and on the 
inner surface of the double sphere, but not as good on its 
outer surface. VORPAL is still comparable with MWS, 
but HFSS shows very poor accuracy for all cases. 

 

     

 
Figure 6: Relative errors of the maximum surface 

electric fields for the double sphere. (a) Inner surface; (b) 
outer surface. 

 

CONCLUSION 
The accuracy of a numerical simulation is affected by 

many factors, such as the meshing, algorithms, EM solver 
types, and interpolation techniques etc. In addition, each 
different code has its own unique advantages and 
disadvantages. The benchmarking results in this paper do 
not intend to favor a specific code to another. However, 
by choosing a unique analytical model, common 
simulation settings for all different codes, and most 
importantly, the same cavity geometry, the results provide 
better understanding of the performance and limitations of 
different EM codes, especially when calculating surface 
fields, which are of high importance for many cavity 
related phenomena. 
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SIMULATION STUDIES & CODE VALIDATION
FOR THE HEAD-TAIL INSTABILITY WITH SPACE CHARGE

Vladimir Kornilov and Oliver Boine-Frankenheim
GSI, Planckstr. 1, 64291 Darmstadt, Germany

Abstract

The head-tail instability represents a potential intensity
limitation for bunched beams in the synchrotrons of the
FAIR project. Parametrical studies with numerical simu-
lations over very long time scales are necessary in order
to understand the effect of direct space charge, nonlinear
synchrotron oscillations and image charges, which are all
important in the FAIR synchrotrons. Existing analytic ap-
proaches either neglect space charge or describe simplified
models, which require a numerical or experimental vali-
dation. For our simulation studies we use two different
computer codes, HEADTAIL and PATRIC. In this work we
verify models for wake-field kicks and space-charge effect
using the analytic solution for head-tail mode frequencies
and growth rates from the barrier airbag model.

INTRODUCTION

Modern synchrotrons, as SIS-100 and SIS-18 of the
FAIR [1] complex, will operate with ion bunches under
conditions of strong space charge,∆Qsc � Qs, or mod-
erate space charge,∆Qsc & Qs, where∆Qsc is the shift
of the betatron tune due to space charge andQs is the syn-
chrotron tune. Transverse head-tail instability, which is one
of the main concerns for the high-intensity operation, can
be strongly modified by the effect of space charge. Clas-
sical theories, such as the model of Sacherer [2], do not
include interactions of a head-tail mode with any incoher-
ent tune spreads. Recent works [3, 4] propose approaches
to treat head-tail modes with space charge. However, nu-
merical simulations appear to be indispensable for a com-
prehensive stability analysis in different beam parameter
regimes and with various collective effects taken into ac-
count.

A study for head-tail modes with space charge requires
extensive parametrical scans of long time scale (tens of
thousands of turns) runs. In the case of the weak head-tail
instability it is not possible to scale up e.g. the impedance
and hence reduce the run time, since mode coupling ex-
cites strong head-tail modes above the associated thresh-
old. For reliable stability predictions it is thus necessary to
use code modules, in this case primarily space-charge and
wake-field implementations, which have been validated ac-
curately, and are applicable for long time scale runs. In
the present work we use two different particle tracking
codes,PATRIC [5] and HEADTAIL [6], in order to take
the advantage of different kinds of implementations and
thus treat the task. ThePATRIC code, a part of numeri-

cal development effort at GSI, was optimised for relatively
short-term effects with well-resolved betatron oscillations
and exact self-consistent space charge solvers, while the
HEADTAIL code, created at CERN, was designed histori-
cally for longer-term phenomena, including electron-cloud
effects, with an option of very fast once-per-turn modus.
For the code validation in the range of moderate and strong
space charge we suggest to use the model of an airbag
bunch in barrier potential. This bunch model, being rather
artificial, has a simple analytical solution [7], can be easily
implemented in a simulation and, as we demonstrate here,
gives very useful insight into physics of head-tail modes
with incoherent interactions.

PHYSICAL MODEL

An analytical solution for head-tail modes in bunches
with space charge has been derived in Ref. [7]. The model
assumes the airbag distribution in phase space and the
square-well (barrier) potential and thus a constant line den-
sity. The longitudinal momentum distribution has then two

opposing flows of particle
[

δ(v0 − vb) + δ(v0 + vb)
]

, the

synchrotron tune in this bunch isQs = vb/2τbRf0, where
τb is the full bunch length in radian,R is the ring radius
andf0 is the revolution frequency. The model considers
“rigid slices”, i.e. only dipole oscillations without trans-
verse emittance variation are included. It is also assumed
that all betatron tune shifts are small compared to the bare
tune |∆Q| � Q0. The resulting tune shift due to space
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Figure 1: Tune shifts of five head-tail modes versus space
charge parameter q as given by the airbag theory Eq. (1),
thedashed line is the incoherent betatron tuneQ0 −∆Qsc.
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charge (without wake) is given by

∆Q = −∆Qsc

2
±
√

∆Q2
sc

4
+ k2Q2

s , (1)

where ”+” is for modesk ≥ 0, ∆Qsc is defined as a pos-
itive value. These space-charge tune shifts are illustrated
in Fig. 1, where we introduce a space charge parameter
q = ∆Qsc/Qs.

The solution for weak head-tail instability is ob-
tained in Ref. [7] assuming the wake potentialW (τ) =
W0 exp(−ατ) with a sufficiently short range compared to
the bunch length,ατb � 1. For the modek = 0, which is
not affected by space charge, the tune shift is given by

∆Q = ∆Q0(α/ζ + i) , (2)

where we define∆Q0 as the growth rate for the mode
k = 0,

∆Q0 = − ζ

α2

κW0

2Q0

, (3)

here ζ = ξQ0/η is the normalized chromaticity,
∆Qξ/Q = ξ∆p/p, and

κ =
I0qion

2πγmβcω2
0

, (4)

whereβ, γ are relativistic parameters,I0 is the beam cur-
rent,qion is the ion charge andω0 is the angular revolution
frequency.

For modesk 6= 0 this theory predicts

∆Q = −∆Qsc +
Λ0 ±

√

Λ2
0 + 4k2Q2

sΛs

2Λs

, (5)

where

Λ0 = ∆Q0(α/ζ + i) + ∆Qsc ,

Λs = 1 −
[ ∆Q0π

2ζQsτb

]2

.

SPACE CHARGE SIMULATIONS

In order to verify the space-charge implementation for
long-time simulations with a particle tracking code, we
have introduced the barrier-airbag bunch distribution in
bothPATRIC andHEADTAIL codes. For space charge, the
frozen electric field model was used, i.e. a fixed potential
configuration which follows the mass center for each sin-
gle slice. This approach is justified for the “rigid-slice”
regime, which is also a basis assumption for the airbag
theory [Eq. (1)] we compare with. A homogeneous and
round transverse bunch profile (K-V distribution) was used
in simulations in this work, a linear rf force was assumed.

A good agreement between theory and simulations with
space charge has been achieved with both codes. Figures
2 and 3 show the coherent bunch spectrum, which is the
Fourier transform of the total transverse bunch offset, for
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Figure 2: Dipole bunch spectrum from simulations (the
HEADTAIL code, airbag bunch) with moderate space charge
q = 3. The bare tune isQ0=2.25,Qs = 0.01, the black
dashed line is the incoherent tune(Q0−∆Qsc), red dashed
lines are head-tail modes from Eq. (1)
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Figure 3: Dipole bunch spectrum from simulations (the
PATRIC code, airbag bunch) with strong space charge
q = 8. The legend and the tunes correspond to Fig. 2.

moderateq = 3 and strongerq = 8 space charge. Predic-
tion of the airbag theory is laid over in red.

In our parametric studies we have found that even for
moderate and weak space charge it is not enough to exe-
cute only one space-charge kick per turn. At least one kick
per approximately 1 rad phase advance is necessary for an
accurate description of space-charge effect. In the example
presented here,Q0 = 2.25, this means at least 16 kicks per
turn, and for the SIS-100 tuneQ0 = 18.7 this means 120
kicks per turn.

In order to test the relevance of the airbag theory for real-
istic bunches we have performed simulations with a Gaus-
sian bunch, i.e. Gaussian line density profile and Gaus-
sian momentum distribution. For comparisons between
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bunch profiles, the line density of the airbag-bunch is taken
to be equal to the density in the middle of the Gaussian
bunch. Especially for strong space charge a surprisingly
good agreement between the airbag theory and simulation
results for the Gaussian bunch is found, see Fig. 4. The fre-
quency shift of head-tail eigenmodes due to space charge
seems to be a very robust effect, which does not depend on
the details of the bunch form and distribution, especially
for strong space charge.
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Figure 4: Dipole bunch spectrum from simulations for a
Gaussian bunch with strong space chargeq = 20. Red
dashed lines are head-tail modes for the airbag bunch,
Eq. (1). To clarify the notation we note that the tune
shifts without space charge are∆Q/Qs = 1 for k = 1,
∆Q/Qs = 2 for k = 2, etc.

INSTABILITY SIMULATIONS

For wake-field verifications the exponential wake poten-
tial W (τ) = W0 exp(−ατ) has been implemented in the
codes. The wake momentum kick for a bunch sliceτ0 (or
zj) is calculated [8] as

∆x′ =
2πκ

R

∫ τ0

−τb

λ(t, τ)

λ0

x(t, τ)W (τ0 − τ)dτ =

=
2πqionκ

λ0R2

∑

i>j

NixiW (zj − zi) , (6)

whereλ(t, τ) is the bunch line density for the timet in the
bunch positionτ , λ0 is the peak line density,x is the trans-
verse slice offset,x′ = dx/ds, Ni is the particle number in
theith slice, andκ is given in Eq. (4).

The analytic solution for the exponential wake poten-
tial with the airbag bunch [Eqs. (2)-(5)] predicts the mode
k = 0 to be the most unstable head-tail mode. As we il-
lustrate in Fig. 5,k 6= 0 modes always have smaller growth
rates than∆Q0. Here we normalize Im(∆Q) by the growth
rate of thek = 0 mode. In this example thek = −1
mode becomes more unstable than thek = 0 mode at
∆Q0 ≈ 0.003, which is due to the fact that the model
breaks down. As we can see in Fig. 6, after∆Q0 ≈ 0.002

(where∆Q0/Qs ≈ 0.2) the modek = −1 does not ap-
proach thek = 0 mode anymore, although in reality they
should cross and produce mode coupling, but the latter is
not included in this theory. The observation that space
charge suppresses the largest growth rate amongk 6= 0 is
not general and depends on parametersατb, Qs, etc. Here
we takeατb = 40 (in the simulations presented below as
well), for other parameters space charge can cause an in-
crease in the largest growth rate amongk 6= 0. Finally,
it should be noted that in a real bunch with space charge
the k < 0 modes are strongly damped by any betatron-
and synchrotron tune spread, additionally these modes are
damped by the non-resonant dipole behaviour [9].

In the simulations we can observe only the dominant
k = 0 mode, but it is possible to resolve real tune shifts
also for k 6= 0, at least for small wake amplitudes. Our
first comparison between simulations and the theory is for
the case without space charge, see Fig. 6. Particle tracking
simulations reproduces fairly well weak head-tail instabil-
ity from the theory, both growth rates and real tune shifts.
Only close to∆Q0 ≈ 0.002 discrepancies appear, because
the airbag approach breaks down, as we discuss above.

The next step is to combine the wake-field effect with
space charge. Results of this parametric scan are pre-
sented in Fig. 7, where a constant space charge tune shift
∆Qsc = 3Qs was assumed. This is related to an increas-
ing impedance, not increasing beam intensity. Also here
we successfully reproduce the theory results for the head-
tail instability with space charge. In agreement with the
theory the simulations demonstrate that space charge does
not affect thek = 0 mode and strongly changes other head-
tail modes.

Another test for the relevance of the airbag theory for
realistic bunches is to perform simulations with the expo-
nential wake for a Gaussian bunch. Space charge intensity
q = 5 in the middle of the bunch is assumed,ατb = 10 is
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taken. Simulations with and without space charge showed
a dominatingk = 0 mode which is not affected by space
charge. Figure 8 demonstrates that if growth rates and
real tune shifts from simulations are multiplied by a fac-
tor 1.89, a good agreement with the airbag theory Eqs. (2)
is achieved. This means that head-tail modes in a Gaus-
sian bunch correspond, accurate to a constant factor, to
the airbag theory, although the Gaussian bunch has totally
different linear density and momentum distribution. Obvi-
ously, this scaling factor depends on bunch parameters and
wake-field properties. Frequencies ofk 6= 0 modes were
difficult to resolve in this case, which may be related to
the distribution type. However, one would suspect that this
scaling factor is not effective fork 6= 0 modes due to effect
of space charge. The appropriate way to clarify this issue
may be simulations for parameters wherek 6= 0 modes are
the most unstable. This should be investigated in further
studies.

Finally it is worth to mention that in our verification
study we have proved that it is enough to apply the wake-
field kick once per turn. Still, in the case with space charge
numerous kicks are necessary for the space-charge module.

WAKE FIELD IN LONG BUNCHES

The validation of the wake-field module with the ex-
ponential wake potentialW (τ) = W0 exp(−ατ) is not
complete, since the most important case in e.g. SIS-
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synchrotrons — long bunches and long-range wake fields
— is not included. In order to do this we again con-
sider a problem which has an analytical solution. Take
a coasting beam without effects of chromatic tune spread
(zero chromaticity, or a space-charge induces large gap be-
tween coherent frequency and incoherent spectrum) and
the resistive-wall impedance in the thick-wall regime. The
latter implies that the skin depthδsk =

√

2c/Z0σrwΩcb is
small compared to the pipe wall thickness. This impedance
is given by

Re
(

Z⊥

rw

)

=
Lrw

2πb3
Z0 δsk , (7)

where Z0=376.7 Ohm,b is the pipe radius andΩcb =
Qcbω0 is the coherent frequency of the coasting beam.
Since Z⊥

rw is large for small frequencies as1/
√

Ω, the
eigenmode with the smallest frequency is the most un-
stable. As the coasting-beam unstable spectrum is repre-
sented by slow wavesΩcb = (n−Q0)ω0, the resistive-wall
impedance mostly excites the eigenmode with

Qcb = 1 − Qf (8)

and with the mode indexn, which is the closest integer
above the bare tuneQ0. HereQf is the fractional part of
Q0. The growth rate of a coasting-beam mode is

Im(∆Qcb) =
I0qion

4πcγmQ0ω0

Re
(

Z⊥

)

. (9)
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In our verification simulations we consider a coasting
beam with Gaussian momentum distribution, wake-field
kicks are implemented according to Eq. (6). The resistive-
wall wake function which corresponds to the impedance
Eq. (7) is given by

Wrw(z) = −cLrw

b3

(

β

π

)3/2√

Z0

z σrw

. (10)

In our parametric study for coasting beams we compare
the theory of the impedance Eq. (7) and the slow-wave
Eqs. (8) and (9), on the one hand, with simulation results
for the wake field Eq. (10), on the other hand. Figure 9
demonstrates this comparison, where the growth rate is nor-
malized by the parameter∆Qrw0, which is the value of
Im(∆Qcb) calculated forΩcb = ω0, or formallyQf = 0.
For this good agreement it was essential to include previous
turns in the wake module Eq. (6), which seems to be obvi-
ous, since the “head” (talking in bunch terms) is strongly
kicked by the “tail” from the previous turn in a coasting
beam. Furthermore, the wake function Eq. (10) is a long-
range potential, basically non-saturating. However, even
for small(1 − Qf) it was enough to include three previous
turns to achieve an adequate description.

The coasting-beam mode type we could verify with the
resulting beam-offset structure. Figure 10 shows an exam-
ple of the dipole moment pattern (which is equal to the
beam-offset for the dc beam) of an unstable beam from a
HEADTAIL simulation. The dashed line is the fixed-location
signal∆x(z), which is the natural output of our simula-
tions, and the solid line is the snapshot signal∆snap

x (z) =
e−iQ0z/R∆x(z), which we would see at a certain time. The
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Dashed line is the analytic result Eq. (9) for the mode
Eq. (8) and for the impedance Eq. (7). Circles: simulations
with the wake field Eq. (10).
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Figure 10: Transverse offset structure over the circumfer-
ence of an unstable coasting beam from an exemplary sim-
ulation. Dashed line is the fixed-location signal, the solid
line is the corresponding snapshot signal.

betatron tune isQ0 = 2.532 here, accordingly, we observe
then = 3 mode.

CONCLUSIONS

Space-charge and wake-field modules, suitable for long
time scale simulations of the weak head-tail instability,
have been verified with the airbag-barrier model [7], which
has an analytical solution for the exponential wake poten-
tial.

Simulations for moderate and strong space charge
demonstrated a good agreement betweenPATRIC and
HEADTAIL simulations and the theory. It was found that
betatron oscillations should be well resolved in the parti-
cle tracking for a correct description of space-charge ef-
fects. Simulations with a Gaussian bunch showed that the
airbag theory Eq. (1), although considering a simple bunch
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model, describes rather accurately effects of space charge,
especially for strong space charge.

Instability simulations reproduced fairly well the theory
predictions concerning growth rates and real tune shifts,
both with and without space charge. Simulations with
a Gaussian bunch demonstrated that the airbag theory
Eqs. (2)-(5) can be very helpful even in understanding ef-
fects of space charge for the head-tail instability in real-
istic bunches. Our wake-field validation with a coasting
beam has proved that the method can be surely used for
long bunches and long-range wake potentials.
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PROGRESS WITH UNDERSTANDING AND CONTROL OF NONLINEAR 
BEAM DYANAMICS AT THE DIAMOND STORAGE RING 

R. Bartolini, Diamond Light Source Ltd, Oxfordshire, OX11 0DE, UK and John Adams Institute, 
University of Oxford, OX1 3RH, UK. 

Abstract 
The Diamond light source started operation for users in 

January 2007. With the successful commissioning of the 
nominal optics, delivering a 2.75 nm emittance beam at 3 
GeV, we now routinely provide the users with a 250 mA 
beam with a lifetime of 20 h, exceeding the minimum 
specified current-lifetime product of 3000 mAh. 

 Driven by the necessity to guarantee a correct 
implementation of the nonlinear optics, a significant 
experimental and theoretical effort is ongoing to 
understand and improve the nonlinear beam dynamics in 
the storage ring. The necessity to control the nonlinear 
beam dynamics is even more urgent with the installation 
of a large number of small gap (5 mm) in-vacuum 
insertion device and the need to control the injection 
efficiency with Top-Up operation. We report here the 
present status of the analysis of the nonlinear beam 
dynamics and the main experimental results. 

INTRODUCTION 
Diamond is a third generation light source which 

entered in operation in January 2007 [1-2]. The storage 
ring lattice is a Double Bend Achromat (DBA) where the 
achromatic condition is broken and dispersion leaks in the 
straight sections in order to reduce the natural emittance 
of the machine. The storage ring consists of 24 DBA cells, 
with ten quadrupoles and seven sextupoles per cell, 
making a total of 48 dipoles, 240 quadrupoles and 168 
sextupoles. The sextupoles are combined function 
magnets which also have skew quadrupole and dipole 
correctors in the horizontal and vertical plane. These 
magnets all have independent power supplies, allowing a 
large degree of freedom in the choice of both the 
optimisation and the correction of the linear and nonlinear 
optics. The ring is also equipped with a set of 7 BPMs per 
cell providing a total of 168 BPMs, each with turn-by-
turn capabilities.  

The sextupoles were carefully optimised in order to 
provide sufficient dynamic aperture and momentum 
aperture for injection and a Touschek lifetime of at least 
10 h for the nominal operating current of 300 mA in a 2/3 
fill. Extensive numerical simulations were performed to 
ensure that the injection efficiency and the Touschek 
lifetime were maintained even with the complement of 
IDs planned for Phase-I and Phase-II. Currently this 
includes ten in-vacuum IDs at 5 mm minimum gap, two 
superconducting multipole wigglers and an APPLE II 
device. Two customised optics are also planned in two 
long straight sections, providing two vertical mini-beta 
sections with two virtual horizontal focuses.  

Striving for the lowest emittance achieved so far in a 
medium energy machine (2.75 nm), the correct operation 
of the ring requires a very strict control of the optics of 
the storage ring. During the commissioning the correct 
implementation of the linear optics was achieved with the 
use of the LOCO package [3] and its implementation in 
the MATLAB Middlelayer [4]. The residual -beating 
was reduced to less than 1% peak-to-peak and the 
nominal emittance of 2.75 nm was measured with very 
good correction of the linear coupling. The correction is 
achieved with LOCO by fitting the quadrupoles to match 
the model and measured orbit response matrix. The 
required quadrupole gradient corrections are below 2% 
peak-to-peak and are compatible with the measurements 
of the quadrupole gradient performed prior to the 
installation of these magnets.  

While the correct implementation of the linear optics is 
nowadays not unusual in modern third generation light 
sources, the analysis and correction of the nonlinear 
model of the storage ring of most modern light sources 
still stops short of an equivalently good solution [5]. In 
this context, Diamond has put in place a significant 
experimental and theoretical effort to provide tools and 
strategies that allow a correct implementation of the 
nonlinear model of the storage ring. In this paper we 
report the current status of the investigation and the main 
experimental results. 

CHARACTERISATION OF THE 
NONLINEAR BEAM DYNAMICS 

The nonlinear dynamics of the storage ring is optimised 
in order to provide sufficient aperture for injection and 
adequate Touschek lifetime for the electron beam in the 
various operating conditions. This is achieved by 
extending the dynamic aperture and the momentum 
aperture of the ring. Numerical tracking is ultimately used 
to validate the optimisation and currently available codes 
such as Tracy-II [6] or elegant [7] have automated 
numerical computation of the ring apertures.  

It is desirable however to provide dynamical quantities 
that characterise the nonlinear behaviour of the ring that 
can be used at the design stage, that can give insight on 
the beam dynamics and provide further guidelines to the 
optimisation. When these quantities can be accessed 
experimentally in the machine, they provide a valuable to 
tool to compare the nonlinear model of the ring with the 
real nonlinear behaviour of the beam in the storage ring. 
The dynamical quantities typically used are the detuning 
with amplitude and the nonlinear resonance driving terms, 
which can be computed to the desired perturbative order 
with codes such as Tracy-II and Mad-X/PTC [8]. A 
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crucial problem in nonlinear beam dynamics is related to 
the fact that these quantities are not necessarily well 
correlated with the dynamic and momentum apertures of 
the ring which is the ultimate goal of the optimisation. It 
is well known that, in general, the dynamic aperture and 
the momentum aperture cannot be simply improved by 
targeting detuning with amplitude, one or even a few 
resonant driving terms. Therefore the optimisation has to 
be validated numerically. Nevertheless these quantities 
allow the comparison of the nonlinear model to the ring. 

Another very interesting numerical tool that allows a 
quick analysis of the resonance net around the working 
point in the tune diagram is the Frequency Maps (FMs) 
introduced in accelerator physics by J. Laskar [9]. This 
allows drawing the region occupied by the beam in 
frequency space. The diffusion coefficients allow a clear 
visual understanding of the strength of a given resonance 
crossed by the beam. FMs can also be measured 
experimentally and the diffusion strength can be 
somehow substituted with the measured losses thus 
allowing a valuable comparison of the real machine with 
the model. 

Finally, the measurement of the spectral lines of the 
betatron oscillations and their connection to the resonance 
driving terms [10-11] has been proposed to compare the 
behaviour of the real machine with the nonlinear model. 
The spectral lines can be associated with the amplitude 
and strength of a given resonance driving term and give a 
complementary handle to control the implementation of 
the model to the real machine. 

FREQUENCY MAPS AND DYNAMIC 
APERTURE STUDIES AT DIAMOND 

The nonlinear beam dynamics activity at Diamond has 
aimed at achieving a good implementation of the 
nonlinear model of the storage ring in order to guarantee 
sufficient injection efficiency and Touschek lifetime. 
Crucial to this work was the installation of two pinger 
magnets in Sept. 2007 and the possibility of acquiring 
turn-by-turn data from all BPMs in the ring. The pingers 
can independently kick the beam in the horizontal and in 
the vertical plane to large amplitudes, scanning the whole 
dynamic aperture available. They were used to determine 
the dynamic aperture (DA) and to measure the frequency 
map (FM) of the storage ring. 

The comparison between the measured DA and the 
prediction from the model is reported in Fig. 1. 
Considering that the yellowish regions in the model DA 
are likely to be lost over long term tracking, we can only 
claim a qualitative agreement in the shape of the DA, 
especially in the horizontal plane. The measurements 
show a significant disagreement which reaches a factor 
two in the vertical plane. This degree of disagreement is 
not unusual, even for modern third generation light 
sources [5]: it points to the fact that our present 
knowledge of the nonlinear model does not fully capture 
the complexity of the nonlinear motion of the beam in the 
storage ring. In fig. 2 we report a measurement of the 

momentum aperture obtained from a scan of the lifetime 
as a function of the RF voltage, in a condition where the 
beam lifetime is Touschek dominated. Again the 
agreement is qualitatively good but the simulations fail to 
reproduce the exact voltage for which the maximum 
lifetime is attained. The model gives maximum lifetime 
for a voltage which is about 15% smaller than the 
measurements corresponding to 0.5% underestimate of 
the momentum aperture.  

 
Fig. 1: Comparison of the measured dynamic aperture 

with the prediction from the model. The colour code 
illustrates the diffusion strength. Tracking is performed 
with Tracy-II. 

 
Fig. 2: Comparison of the measured and model lifetime 

as a function of the RF voltage. 
 
The reason for this disagreement is still the object of 

investigation. On the one hand we are trying to include in 
the model all possible known error sources, on the other 
hand we are investigating the appropriate modelisation of 
the magnetic elements trying to include thick lense 
multipoles, fringe fields, edge focussing effects and their 
momentum dependence. In particular we have included a 
better description of the magnetic length of the magnets 
by using the individual data coming from magnetic 
measurements and we have introduced octuplolar 
components in the quadrupoles which was considered to 
be the main source of error. While these additional 
ingredients have improved the match between model and 
real machine, as shown later for the FMs, it is worth 
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pointing out that even when including the best knowledge 
of the nonlinearities in the ring we still obtain slightly 
different values for the chromaticities which are (3, 1.5) 
in the model while we measure (2, 2) in the machine. 
Errors in the calibration tables for the sextupole magnets 
are also a possible source of disagreement between the 
machine and the model. 

In Fig. 3 we report the measurements of the frequency 
map obtained by scanning the aperture with the pinger 
magnets and measuring the corresponding betatron tunes. 
In Figs. 4-6 we report the corresponding FMs obtained 
from numerical tracking in the model. Different 
refinements of the nonlinear model were used. Fig. 4 
corresponds to the bare lattice with the nominal sextupole 
lengths. In Fig. 5 we used the correct magnetic length for 
the sextupoles obtained from magnetic measurements. 
Fig. 6 includes the octupolar errors in the quadrupoles. It 
is clear that a better description of the model improves the 
agreement but there are still significant deviations which 
are not explained. Work is ongoing to include all the 
remaining mutlipolar errors in the quadurpoles, the main 
errors in the dipoles and sextupoles and a better 
calibration table of the sextupole gradient. 

 

 
Fig. 3: Measured Frequency Map on the bare lattice 

without Insertion Devices.  
 

 
Fig. 4 Model Frequency map. Bare lattice without 

Insertion Devices. 

 
Fig. 5: Model Frequency Map as in Fig. 4, adding to 

the model the correct magnetic length of the sextupoles as 
per magnetic measurements. 

 
Fig. 6 Model Frequency map as in Fig. 5 adding to the 

model the octupolar errors in the quadrupoles as per 
magnetic measurements. 

SPECTRAL LINES MEASUREMENTS 
It has been shown in the past that Fourier analysis of 

the betatron oscillations can provide a wealth of 
information about the nonlinear dynamics of the beam in 
the storage ring [10]. The basic idea is to connect the 
amplitude and phase of the Fourier coefficients of the 
spectral lines with the amplitude and phase of the driving 
terms of a given resonance. A more complete 
investigation in the framework of the map pointed out that 
a full reconstruction of the nonlinear model is possible at 
least if turn-by-turn data with sufficiently high precision 
are available [11]. More recently a new algorithm has 
been proposed for the reconstruction of the nonlinear 
machine model based entirely on the comparison of the 
amplitude and phase of the spectral lines [12]. The model 
reconstruction has been demonstrated in tracking data and 
a first experimental investigation has show that it is 
indeed possible to correct simultaneously several 
resonance driving terms [13]. The procedure introduced in 
[12] mimics closely the approach that LOCO takes to 
correct the linear optics of the ring where the role of the 
orbit response matrix is taken by the Fourier coefficients 
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of the spectral lines excited by nonlinear resonance 
driving terms, measured at all BPMs, and the role of the 
quadrupoles is now taken by the sextupoles. A fit 
procedure aims at defining the sextupole values which 
match the spectral lines measured on the machine with the 
one obtained from numerical tracking from the model. We 
have recently substantially improved the fit algorithm by 
taking into account the phase information by considering 
the real and the imaginary part of the spectral lines. When 
applied to tracking data this information allows a faster 
and more robust reconstruction. Its application to 
experimental data will be carried out in the near future. 

Several experiments with pinged beams were 
performed at Diamond. They showed that the amplitude 
of the spectral lines related to nonlinear resonances can be 
measured with very good precision and corrected to 
restore the original pattern of the amplitude along the 
ring. In the experiment we targeted the amplitude of the 
Qx – Qy spectral line measured in the vertical plane and 
the amplitude of the –2Qx spectral line measured in the 
horizontal plane. These are related to the driving terms of 
the resonances Qx  2Qy and 3Qx respectively. We have 
verified experimentally that targeting a single spectral line 
can produce a good correction of the driving term as 
shown in Fig. 7. However this does not necessarily 
improve the DA and momentum aperture of the ring and 
can produce unrealistic sextupole gradients (black line in 
Fig. 9) If two spectral lines are taken into account the 
correction can have beneficial effects on the performance 
of the ring and an improvement of the Touschek lifetime 
of 10% was measured. 
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Fig. 7: Measurement and correction of the spectral line 

Qx – Qy measured in the vertical plane: red – measured, 
blue - model, before correction (top) after one iteration 
(middle) after two iterations (bottom). 

 
This technique has some limits: firstly it is based on the 

assumption that the first order perturbative theory 
adequately describes the nonlinear beam dynamics, 
secondly it relies on very precise measurements of the 
turn-by-turn data. Decoherence of the excited oscillations 
reduces the number of turns available and the machine 
tune stability has also to be controlled carefully if 
meaningful results are to be extracted. Nevertheless the 
indication provided by the experiment shows that this 

technique holds great potential for the characterisation of 
the nonlinear beam dynamics in storage rings. 
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Fig. 8: Measurement and correction of the spectral line 

Qx – Qy measured in the vertical plane (top) and of the 
-2Qx measured in the horizontal plane (bottom). Before 
correction (red), after correction (black). 
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Fig. 9: Sextupoles gradient variation required by the fit 

procedure outlined in the text; black for the case where 
one resonance was targeted; red for the case where two 
resonances were targeted. 
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DESIGN AND CONTROL OF ULTRA LOW EMITTANCE LIGHT SOURCES* 

Johan Bengtsson# 
BNL, Upton, NY 11973, U.S.A.

Abstract 
In the quest for brightness, the horizontal emittance 
remains one of the main performance parameters for 
modern synchrotron light sources. A control theory 
approach that takes the nonlinear dynamics aspects into 
account, using a few simple (linear) optics guidelines, at 
an early stage generates robust designs.  Modern analytic- 
and computational techniques enable the optics designer 
to avoid the fallacy of the traditional approach guided by 
the Theoretical Minimum Emittance (TME) cell: the 
"chromaticity wall".  In particular, by using an interleaved 
computational approach with the nonlinear dynamics 
analyst/model.  We also outline how to implement the 
correction algorithms for a realistic model so that they can 
be re-used as part of an on-line model/control server for 
commissioning- and operations of the real system. 

TRADE-OFFS: GLOBAL OPTIMIZATION 
 
The (natural) horizontal emittance x  originates from the 

equilibrium: 
diffusiondamping   

of three different processes: radiation damping, quantum 
fluctuations, and IntraBeam Scattering (IBS).  One can 
show that (fundamental limit is IBS): 

PR
x 2

1
~  

where R  is the bend radius, and P the radiated power. 
 
The design of a synchrotron light source is essentially a 
matter of balancing the conflicting entities schematiized 
in Fig. 1 (optimized for Insertion Device (ID) beam lines) 
[1]. 
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Figure 1: Synchrotron Light Source Optimization. 

Traditionally, the approach has been driven by the so-
called Theoretical Minimum Emittance (TME) cell [2-3].  

However, the approach is misguided (reductionalist), 
since it only considers the linear optics, i.e., ignores how 
to control the resulting (linear) chromaticity, and hence 
does not lead to realistic/robust designs.  In particular, it 
creates an artificial “chromaticity wall” [4].  It also leads 
to lattices with dispersion at the cavity; which potentially 
increases the effective transverse beam size due to syncro-
betatron coupling (by i.e. operating with finite (linear) 
chromaticity). 
 
To capture the control aspects of the nonlinear dynamics 
from the start of the NSLS-II, we have provided the 
following (linear) optics guidelines [5]: 
 max chromaticity per cell, 
 min peak dispersion, 
 max values for the beta functions. 

For an intuitive (systems) approach, see e.g. the MAX-IV 
conceptual design [6]. 

WHAT’S KNOWN 
The first dedicated third generation light sources were 
commissioned in the early 80s, i.e., they have been 
optimized for over 20 years.  Basically: 
 The horizontal emittance (isomagnetic lattice) is 

given by 

 
3
b

2
3 [GeV]

1084.7[nm·rad] 
NJ

FE

x

x   

where bN  is the number of dipoles, 3 zx JJ , 

and 1F .  No dipole gradients => 1~xJ . 

 Generalized Chasman-Green lattices: DBA, TBA, 
QBA, 7-BA [6]. 

 Effective emittance => chromatic cells. 
 Increasing bN reduces x but also reduces the peak 

dispersion, which makes the chromatic correction 
less effective => “chromaticity wall”. 

 Damping wigglers (DWs): damping rings and 
conversion of HEP accelerators [7-8]. 

 Mini-Gap Undulators (MGUs), Three-Pole-Wigglers 
(TPWs) inside the DBA [9]. 

WHAT’S NEW 
The NSLS-II design is conservative, i.e., it is based on 
well known techniques, but the approach is also novel 
because it combines these in a unique way: 
 Use of damping wigglers to reduce horizontal 

emittance and as high flux X-ray sources => 
achromatic cells and weak dipoles. 

 Medium energy ring (3 GeV) with ~30 DBA cells. 
 Vertical orbit stability requirements. 
 Generalized higher order achromat. 

#bengtsson@bnl.gov 
* Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886.
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CHALLENGES 
Given the design goals and approach, challenges related 
to non-linear dynamics issues are: 
 Medium energy: control of Touschek lifetime and 

momentum aperture. 
 30 DBA cells: control of tune footprint. 
 Control of impact of DWs and IDs -> include leading 

order nonlinear effects from DWs in the Dynamic 
Aperture (DA) optimizations. 

 Optics requirements for IDs and top-up injection are 
contradictory: introduce alternating straights with 
high- and low horizontal beta functions => reduced 
symmetry (30 => 15). 

 DBA: momentum dependence of optics functions => 
sufficient number of chromatic sextupole families. 

 
There are also technical challenges: 
 Weak dipoles: introduce TPWs (adjacent to the 

dipoles) => control of peak beta functions and 
horizontal dispersion. 

  Vertical orbit stability: sub micron => pushing the 
state-of-the-art [10-11]. 

LATTICE PARAMETERS 
The main lattice parameters are summarized in Tab. 1, 
where values specific to the NSLS-II are in bold type. 

Table 1: NSLS-II Lattice Parameters 

Energy  0E  3 GeV 

Circumference  C  791.5 m 

Beam Current  bI  500 mA 

Bending Radius  R  25.0 m 

Dipole Energy Loss  0U  286.5 keV 
Emittance: 
  yx  ,  bare/w. 8 DWs 

(2.1, 0.01)/(0.6,0.01)
nm·rad 

Momentum Compaction 0.00037 
RMS Energy Spread: 
bare/w. 8 DW 

0.05/0.1% 

Working Point  yx  ,  (32.4,16.3) 

Chromaticity  yx  ,  (-100, -42) 

Peak Dispersion  x̂  0.45 m 

Beta Function  yx  , : 

long/short straight 
(18, 3)/(3, 3) m 

ROBUST DESIGN AND CONTROL 
Typically, the approach has been to first design the linear 
optics, and then attempt to control (fix) the DA, aka 
perturbative point-of-view.  In other words, a “top-up” 
(reductionist) rather than “top-down” (systems) approach, 
see e.g. refs [12-14].  Clearly, a prerequisite for a robust 
design and effective commissioning is a realistic model, 
see Fig. 2. 
 

Challenge: for a streamlined approach, how to re-use the 
design model for model based (on-line) control? 
 See section MODEL BASED CONTROL. 
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Real
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Figure 2: Prerequisite for Robust Design and Control: 

a Realistic Model. 

For a systematic approach one may view the design 
process as “Closed-Loop” Control, see Fig. 3 applied to: 
 lattice design, 
 control of DA, 
 guidelines for engineering tolerances, ring magnets, 

and insertion devices, 
 correction algorithms, 
 aka TQM (Total Quality Management) in industry. 
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Figure 3: Closed-Loop Control Paradigm. 

Similarly, a Use Case approach is a rational method to 
capture and refine the often elusive requirements for: 
 model based control [15]. 

By treating the control system as an abstraction and 
analyzing how abstract “actors” (e.g. individuals, groups, 
other sub-systems, etc.) interact with the system, one 
avoids the typical gridlock between different stake 
holders (“What’s the requirement?” vs. “What’s the best 
you can do?”).  Instead, by focusing the effort on “what” 
rather than “how”, the process provides for a sequence of 
successive refinements that generates a set of quantitative, 
measurable requirements: aka a spiral approach. 
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Control System

Accelerator
Control

Operations Equipment
Experts

 
Figure 4: Use Case Approach. 
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MODELING CONSIDERATIONS 
Of course, these methods assume that a realistic model 
has been provided.  In particular, the following aspects 
must be addressed: 
 A confinement problem governed by the Lorentz 

force:  BvEqdtpd


 . 

 The single particle dynamics is described by the 
relativistic Hamiltonian for a charged particle in an 
external electro-magnetic field (aka volume 
preserving flow) => Symplectic integrators. 

 The residual beam size is in dynamic equilibrium 
between “cooling” from radiation damping 
(described by classical radiation), and “heating” due 
to diffusion from quantum fluctuations (i.e. recoil 
form the emitted photons) => Modified symplectic 
integrator. 

 Need to model a realistic magnetic lattice, i.e., that 
includes mechanical misalignment- and magnetic 
field errors, and related correction algorithms. 

 Must be able to compute- and optimize the global 
properties of a realistic lattice: the optics, diffusion 
coefficients, driving terms, tune foot print, etc. 

 No theory of stability (for the general nonlinear case) 
=> Perturbation theory.  Hence, “analytic” results 
must be validated by numerical simulations. 

 Control nonlinear effects by the: lattice symmetry, 
driving terms/resonances (Lie generators), and tune 
foot print; obtained either from Taylor maps, Lie 
series, and map normal form (analytically) or 
frequency maps (numerically). 

 
Challenge: How to combine the numerical methods for 
modeling of a realistic lattice with the analytical 
techniques for analysis of its properties? 
 Introduce a polymorphic number class for 

transparent floating point- and TPSA (Truncated 
Power Series Algebra) [16] calculations with object-
oriented programming [17] => a Lagrangian object, 
aka PTC (Polymorphic Tracking Code) [18]. 

 
Challenge: How to re-use the beam dynamics model and 
related correction algorithms developed during the design 
phase as an on-line model for the commissioning? 
 Implement a well designed software library that can 

be re-used by for instance the Controls Group. 

MODEL 
The Hamiltonian is (equations of motion for a medium 
size ring) 
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The map is obtained by splitting the Hamiltonian into two 
integrable parts (         xgxfxgxf ,::  ) 

kickdrift HHH   

which leads to 
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aka a 2nd order symplectic integrator.  In particular, it can 
be generalized to 4th order. 
For insertion devices, the vector potential can be obtained 
from the magnetic field (numeric model or 
measurements) by 

          0,,   sAdzzBsAdzzBsA z

s
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The corresponding kick kickM  map is provided for 

instance by RADIA [19]. 
For an analytic model (to leading order) 
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with  2222 2 uxyz kkk  . 

Assuming that the corresponding Taylor map has been 
obtained (to an arbitrary order) from the beam dynamics 
model, the map can be factored (Lie series) 

   
RAAM ::::1 34 ff ee  

The (Lie) generators (driving terms) provide a means to 
control the DA [20].  They can also be measured from 
turn-by-turn data and Fourier analysis [21] => “closing-
the-loop” between model and the real lattice [22]. 
The map can also be (recursively) transformed into 
normal form [23] 

     RAM :,::::,:1  JgJKJg eee   
from which we obtain the global properties of the lattice, 
e.g. the tune shift 

   
 J

JK
J








2
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The information flow for the corresponding computer 
model is shown in Fig. 5. 
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Figure 5: The NSLS-II “Wind Tunnel”, i.e., a Virtual 
Accelerator (aka Polymorphic Tracking Code). 

DYNAMIC APERTURE 
The requirements are: 
 on-momentum Dynamic Aperture (DA): 11 mm 

(robust top-up injection), 
 off-momentum DA: 2.5% (Touschek life time), 
 Tune footprint for the bare lattice (w/ DWs): ~0.05 

(to accommodate engineering tolerances, IDs, etc.). 

The last requirement is based on a (conservative) estimate 
of the tune footprint for stable beam in existing medium 
energy light sources, i.e., about ~0.1. 

Note, due to the high number of DBA cells (30), as 
compared to existing medium energy synchrotron light 
sources, the control of the amplitude dependent tune shift 
per cell needs to be about 3 times better for a similar 
nonlinear performance.  Hence, tight engineering 
tolerances are required. 

The DA is essentially determined by the tune footprint 
and the sextupolar resonances (to 2nd order in the 
sextupole strength, aka 4th order resonances). 

 
Figure 6: Tune Footprint (w/ DWs). 

The resulting tune footprint and frequency maps after 
optimization are summarized in Figs 6 and 7.  In 
particular, the introduction of DWs requires [24]: 
 optics correction (local/global control of symmetry 

and working point), 
 and sextupole re-optimization (due to the residual 

local optics perturbations from the DWs). 

The analytic model for the amplitude dependent tune shift 
and residual nonlinear chromaticity need to include terms 
to 6th order in the sextupole strength: 

   4, JOJ   

 

 

Figure 7: Impact of Engineering Tolerances and DWs. 

MODEL-BASED CONTROL 
Assuming that a realistic model of the system has been 
provided, and that a robust design has been delivered, 
which will be implemented, the question arises: 
 How to control the real system? 

Since a model-based approach is required, ideally, the 
model and controls algorithms developed during the 
design work would be re-used on-line.  In particular, by 
pursuing a client/server approach [25]. 
 
Challenge: 
 How to migrate from high level application 

prototypes developed for beam studies into thin 
(simple) clients suitable for day-to-day operations. 

By providing a software architecture that provides both 
[26-27]: 
 a flexible environment for rapid prototyping with a 

scripting language, 
 and a model server with thin clients, 

see Fig 8. 
 
High level controls applications are ideally implemented 
and tested before commissioning, but one problem is that 
there is typically quite some lag time until hardware, etc. 
become available.  It is thus desirable to have a simulator 
for the entire accelerator.  A transparent approach is 
summarized in Fig. 9 [27-28]. 
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Figure 8: A Client/Server Architecture. 
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Figure 9: A Transparent Accelerator Simulator. 

CONCLUSIONS 
 By using modern methods, a self-consistent, realistic 

computer model has been implemented, i.e., where 
the same model is used for numerical simulations 
and by analytic techniques. 

 The model has been used to guide the NSLS-II 
design.  In particular, it has provided an effective 
framework to control the dynamic aperture, to 
provide guidelines for engineering tolerances, and 
magnet- and insertion device design.  In other words, 
“closing-the-loop” between conceptual design and 
the performance of the final hardware. 

 The model is also being used by the Controls Group, 
as a simulator for the accelerator, by interfacing with 
the control system, for e.g. testing of high level 
applications & controls algorithms.  Furthermore, it 
also provides a transparent implementation of a 
model server with thin clients for the commissioning 
of the accelerator. 
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NOVEL METHODS FOR SIMULATING RELATIVISTIC SYSTEMS
USING AN OPTIMAL BOOSTED FRAME∗

J.-L. Vay† , W. M. Fawley, C. G. Geddes, E. Cormier-Michel, LBNL, Berkeley, CA, USA
D. P. Grote, LLNL, CA, USA

Abstract

It can be computationally advantageous to perform com-
puter simulations in a Lorentz boosted frame for a certain
class of systems. However, even if the computer model re-
lies on a covariant set of equations, it has been pointed out
that algorithmic difficulties related to discretization errors
may have to be overcome in order to take full advantage
of the potential speedup. We summarize the findings, the
difficulties and their solutions, and show that the technique
enables simulations important to several areas of accelera-
tor physics that are otherwise problematic, including self-
consistent modeling in three-dimensions of laser wakefield
accelerator stages at energies of 10 GeV and above.

INTRODUCTION

In [1], we have shown that the ratio of longest to shortest
space and time scales of a system of two or more compo-
nents crossing at relativistic velocities is not invariant un-
der a Lorentz transformation. This implies the existence
of an “optimum” frame of reference minimizing a measure
of the ratio of space and time scales. Since the number
of computer operations (e.g., time steps), for simulations
based on formulations from first principles, is proportional
to the ratio of the longest to shortest time scale of interest,
it follows that such simulations will eventually have differ-
ent computer runtimes, yet equivalent accuracy, depending
solely upon the choice of frame of reference. The scaling
of theoretical speedup was derived for a generic case of two
crossing identical rigid particle beams, and for three parti-
cle acceleration related problems: particle beams interact-
ing with electron clouds [2], free electron lasers (FEL) [3],
and laser-plasma accelerators (LWFA) [4]. For all the cases
considered, it was found that the ratio of space and time
scales varied as γ2 for a range of γ, the relativistic factor
of the frame of reference relative to the optimum frame.
For systems involving phenomena (e.g., particle beams,
plasma waves, laser light in plasmas) propagating at large
γ, demonstrated speedup of simulations being performed
in an optimum boosted frame can reach several orders of
magnitude, as compared to the same simulation being per-
formed in the laboratory frame.

We summarize the difficulties and limitations of the
method, the solutions that were developed, and the simu-

∗Work supported by US-DOE Contracts DE-AC02-05CH11231 and
DE-AC52-07NA27344, US-LHC program LARP, and US-DOE SciDAC
program ComPASS. Used resources of NERSC, supported by US-DOE
Contract DE-AC02-05CH11231.

† jlvay@lbl.gov

lations that we have performed to date. We show that the
technique enables simulations important to several areas of
accelerator physics that are otherwise problematic. For the
first time, it allows for direct self-consistent simulations of
laser wakefield accelerator stages at 10 GeV and beyond
using current supercomputers in a few hours, while the
same calculations in the laboratory frame would take years
using similar resources and are thus impractical. It also al-
lows simulations of electron cloud effects in high energy
physics accelerators (modeled so far with codes based on
quasistatic approximations) using more standard Particle-
In-Cell methods. This renders these types of simulations
accessible to a wider range of existing computer codes, al-
leviates the added complication due to pipelining when par-
allelizing a quasistatic code, and removes the approxima-
tions of the quasistatic method which may not be applicable
in some situations. For free electron lasers, the new tech-
nique offers the possibility of calculating self-consistently
configurations that are not accessible with standard FEL
codes due to the limitations of the approximations that they
are based on. Finally, the method may offer a unique way
of calculating self-consistently, and in three-dimensions,
coherent synchrotron radiation effects which are of great
importance in several current and future accelerators.

DIFFICULTIES

Even if the fundamental electrodynamics and particles
equations are written in a covariant form, the numerical al-
gorithms that are derived from them may not retain this
property and special techniques have been developed to
allow simulations in boosted frames. As an example, we
considered in [5] an isolated beam propagating in the lab-
oratory frame at relativistic velocity. When applying the
effect of the beam field on itself using the Newton-Lorentz
equation of motion, the contribution from the radial elec-
tric field is largely canceled by the contribution from the
azimuthal magnetic field. However, we showed that the so-
called ‘Boris particle pusher’ [6] (which is widely used in
PIC codes), does make an approximation in the calculation
of the Lorentz force which leads to an inexact cancellation
of the electric component by the magnetic component. The
magnitude of the error grows with the beam relativistic fac-
tor and in practice, it is unacceptably large for simulations
of ultra-relativistic charged beams, where the cancellation
needs to be nearly complete. The issue was resolved by
changing the form of the Lorentz force term in the Boris
pusher, and solving analytically the resulting implicit sys-
tem of equations (see [5] for details).
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An additional practical complication of numerical sim-
ulation in a boosted frame is that inputs and outputs are
often specified (or desired) in the laboratory frame. For ex-
ample, in LWFA simulations, laser and plasma parameters
have to be transformed from the laboratory to the new rel-
ativistic boosted frame, so that the electromagnetic waves
will be Doppler-shifted, and the background plasma, with
higher density, is now drifting. In the PIC code Warp [9],
the laser is injected at a plane that is fixed in the laboratory
frame and drifting in the boosted frame. Likewise, the ini-
tial phase-space distribution of a particle beam is generally
known in the laboratory. For calculations in boosted frames
of large γ, deriving the initial beam conditions at a given
time can be easy if the initial conditions are simple (e.g.,
initial Gaussian beam in vacuum), or more difficult and/or
computationally costly if injecting the beam in a particle
accelerator for example, where its longitudinal extent in the
boosted frame can cover several lattice periods. In order to
circumvent this difficulty, a procedure was implemented in
Warp which injects the beam through a transverse plane
that is fixed in the laboratory, but drifting in the boosted
frame, similarly to the laser injection method. Due to long
range space charge forces, it is still necessary to provide
a reasonable estimate of the beam distribution near the in-
jection plane; this is accomplished by the use of “frozen”
drifting macroparticles.

After the relativistic PIC algorithm evolves the system in
the boosted frame, the results must be transformed back to
the laboratory frame. We have found it convenient in Warp
to record quantities at a number of regularly spaced “sta-
tions”, immobile in the laboratory frame, at a succession of
discrete times, for both detailed time histories and labora-
tory time-averages. Since the space-time locations of the
diagnostic grids in the laboratory frame generally do not
coincide with the space-time positions of the macroparti-
cles and grid nodes used for the calculation in a boosted
frame, some interpolation is performed during the data
gathering process.

Finally, in simulations of laser-plasma acceleration
stages (see below), we observed a short wavelength insta-
bility with a growth rate that rises with the velocity of the
boosted frame and the inverse of the grid resolution, which
we have controlled through the use of low dispersion elec-
tromagnetic solvers [7] and low-pass digital filtering. The
details of the instability and its cures will be detailed in a
future paper [8].

Together with mitigation of numerical artifacts as
just described, these techniques allow simulations using
boosted frames, with orders of magnitude speedup over the
same simulations performed using a laboratory frame, as
shown below. Additional details of the input and output
procedures can be found in [10].

EXAMPLES OF APPLICATION

Laser wakefield acceleration

Laser driven plasma waves offer orders of magnitude
increases in accelerating gradient over standard accelerat-
ing structures (which are limited by electrical breakdown),
thus holding the promise of much shorter particle acceler-
ators. Yet, computer modeling of the wake formation and
beam acceleration requires fully kinetic methods and large
computational resources due to the wide range of space
and time scales involved [13]. For example, modeling 10
GeV stages for the LOASIS (LBNL) BELLA proposal [14]
in one-dimension demanded as many as 5,000 processor
hours on a NERSC supercomputer [15]. As discussed in
[1], the range of scales can be greatly reduced if one adopts
the common assumption that the backward-emitted radia-
tion can be neglected, enabling, for the first time, the full-
PIC simulation of the next generation of laser systems.

Warp simulations at plasma density ne = 1019 cm−3

were performed in 2-1/2D and 3D using reference frames
moving anywhere between γf = 1 (laboratory frame) and
10. These simulations are scaled replicas of 10 GeV stages
that would operate at actual densities of 1017 cm−3 [16, 17]
and allow short run times to permit effective benchmarking
between the algorithms. Agreement within a few percent
was observed on the beam peak energy and average en-
ergy between calculations in all frames, showing that the
boosted frame simulations gain speed without sacrificing
accuracy. A speedup of 100 was measured between the
calculation in the frame at γ = 10 and the calculation in
the laboratory frame.

The boosted frame model was then used to conduct full
scale simulations of 10 GeV stages at plasma densities of
1017 cm−3 in 2-1/2D and 3D simulations. Simulations at
1018 cm−3 were also conducted to establish scaling. Rela-
tivistic factors of the boosted frame were 130 and 40 re-
spectively, i.e. close to the relativistic factor associated
with the wake velocity in the laboratory frame. The 3D run
at full scale took almost 4 hours with γf = 130 using 512
cores on the cluster Lawrencium at LBNL. This provided
direct simulation of next generation experiments and possi-
ble laser-plasma collider stages. Good agreement with the
scaled energy gain was obtained. Such simulations are im-
practical in the laboratory frame, with projected time of 15
years on the same resources using the 2γ2

f formula for the
estimated speedup, and scaling from standard PIC runs.

Electron cloud driven instabilities

Several existing and planned future particle accelerators
have limitations due to the electron cloud instability that
may negatively impact the beam quality and in some cases
even lead to severe beam loss. A calculation of electron
cloud driven instability [2] for an ultra-relativistic beam
was performed with the Warp code framework in (a) stan-
dard PIC mode using the new particle pusher in a Lorentz
boosted frame; (b) in quasistatic mode [11] using linear
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maps to push beam particles into the accelerator lattice.
The two runs were in good agreement and completed us-
ing similar computer resources and runtimes. The speedup
factor of the PIC boosted frame calculation compared to
a PIC calculation in the laboratory frame was estimated
at 500. For many calculations of electron cloud instabil-
ity, the boosted frame approach may not resolve any addi-
tional physics not included in the quasistatic approach. We
note, however, that the quasistatic method requires signif-
icant special coding to take into account eventual longitu-
dinal motion of electrons [11], as well as a special paral-
lelization scheme [12] for parallelization along the axis of
beam propagation, which are not standard to PIC codes. By
contrast, the boosted frame method includes naturally the
longitudinal dynamics and requires more modest modifica-
tions to an existing standard PIC code or framework (none
for parallelization, if the PIC code is already parallel).

Free electron lasers

In a short wavelength free-electron laser, a high energy
electron beam interacts with a static magnetic undulator. In
the optimal boost frame with Lorentz factor γ, the down-
shifted FEL radiation and up-shifted undulator have iden-
tical wavelengths and the number of required time-steps
(presuming the Courant condition applies) decreases by a
factor of 2γ2 for fully electromagnetic simulations. Ex-
amples of boosted-frame simulations have been compared
[18] to results obtained with the eikonal (i.e, SVEA) and
wiggler-period averaged code Ginger [19]. It was con-
cluded that if the necessary FEL physics can be studied
with an eikonal code, it will run much faster than a full
electromagnetic code in whatever frame. However, if there
are important physical phenomena that cannot be resolved
properly by an eikonal code, a boosted-frame electromag-
netic code is a very attractive alternative to a brute force
full electromagnetic calculation in the laboratory frame.

Coherent synchrotron radiation

Another application for which the Lorentz-boosted
frame method might be useful is that of modeling coherent
synchrotron radiation (CSR) [20] emitted by high current,
high brightness relativistic electron beams. Because full
scale electromagnetic simulation of CSR in the laboratory
frame is difficult due to the wide range of scales (chicane
lengths of order meters, radiation wavelengths of orders
microns), in order to make the calculation tractable most
CSR simulation codes apply simplifications such as ignor-
ing transverse variation of CSR across the electron beam.
We have begun preliminary work of simulating CSR emis-
sion with the boosted frame method with Warp, examining
the behavior of a high current, short electron beam tran-
siting a simple dipole magnet. Our early results show that
upon exit from the undulator the electron beam shows the
characteristic energy loss variation with longitudinal posi-
tion that one expects from previous theoretical analyses of
CSR. Further studies are currently underway.

CONCLUSION
The non-invariance of the range of scales of a physical

system implies that the computational cost of a certain class
of computer simulations depends strongly on the choice of
the simulation frame of reference. Algorithmic difficulties
arise due to the loss of covariance upon discretization of
the Maxwell-Vlasov system of equations, and the need to
transform input/output data between the laboratory frame
and the Lorentz boosted frame. So far, the difficulties that
have arisen have been overcome and no “show-stopper” has
been identified at this time. First principles simulations in
boosted frames have been performed successfully with the
code Warp in application to laser wakefield acceleration,
electron cloud driven instabilities and free electron lasers,
with speedups ranging between a few and several orders of
magnitude. Our recent progress show that first principles
modeling in a Lorentz boosted frame is a viable alternative
or complement to using reduced descriptions like the qua-
sistatic [11] or eikonal [19] approximations, or performing
simulations with scaled parameters [17], and in many cases
includes physics that is not accessible to the other descrip-
tions. This includes direct three-dimensional simulations
of laser wakefield accelerator stages at 10 GeV and beyond,
electron cloud effects in high energy physics accelerators,
physics that is inaccessible to standard free electron lasers
codes, and coherent synchrotron radiation.
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MODELING TECHNIQUES FOR DESIGN AND ANALYSIS OF 
SUPERCONDUCTING ACCELERATOR MAGNETS* 

P. Ferracin, LBNL, Berkeley, CA 94720, USA

Abstract 
Superconducting magnets for particle accelerators are 
complex devices requiring the use of sophisticated 
modelling techniques to predict their performance. A 
complete description of the magnet behaviour can only be 
obtained through a multi-physics approach which 
combines magnetic models, to compute magnetic fields 
and electro-magnetic forces, mechanical models, to study 
stresses arising during assembly, cool-down and 
excitation, and electrical-thermal models, to investigate 
temperature margins and quench phenomena. This 
approach is essential in particular for the next generation 
of superconducting accelerator magnets, which will likely 
implement strain sensitive conductors like Nb3Sn and will 
handle forces significantly larger than in the present LHC 
dipoles. The design of high field superconducting 
magnets has benefited from the integration between CAD, 
magnetic, and structural analysis tools allowing a precise 
reproduction of the magnet 3D geometry and a detailed 
analysis of the three-dimensional strain in the 
superconductor. In addition, electrical and thermal models 
have made possible investigating the quench initiation 
process and the thermal and stress conditions of the 
superconducting coil during the propagation of a quench. 
We present in this paper an overview of the integrated 
design approach and we report on simulation techniques 
aimed to predict and improve magnet behaviour. 

INTRODUCTION 
The R&D on the next generation of superconducting 

magnets for particle accelerators is currently focused on 
quadrupoles and dipoles for future luminosity and energy 
upgrades of the LHC [1]. Other possible applications 
include neutrino factories and cable test facilities [2]. 
These magnets will operate at field approaching 15 T, i.e. 
beyond the limits of NbTi superconductor, and with 
stored energies and electro-magnetic (e.m.) forces 
significantly larger than in the magnets presently used in 
the LHC. At the moment, Nb3Sn, the only practical 
superconductor capable of generating fields higher than 
10 T, appears as the best candidate for this future 
generation of superconducting magnets. However, Nb3Sn 
is a brittle and strain-sensitive superconductor whose 
current carrying capability depends on its strain status 
[3,4]. As a result, the performance of Nb3Sn magnets can 
be strongly affected by the mechanical stresses in the 
windings during magnet operation. It is therefore 
mandatory to understand and predict the strain in the 
superconductor, and devise a support structure capable of 
minimizing the stresses in the coils from magnet 
assembly to excitation. 

The computation of the mechanical status of the 
superconducting material is a very complex task, 
considering all the stages involved in the fabrication of 
Nb3Sn coils, like cabling, winding, heat treatment to 650 
°C, and epoxy impregnation (Fig. 1). These steps are then 
followed by magnet assembly, pre-loading, cool-down 
and powering, which further contribute to the final strain 
conditions of the Nb3Sn superconductor. 

 

 
Figure 1: Nb3Sn coil after winding (left), after reaction 
(center), and after impregnation (left). 
 

We present in this paper an overview on modelling 
works performed in the LBNL Superconducting Magnet 
Program and aimed at design Nb3Sn superconducting 
magnets, predict their behaviour, and analyze and 
improve quench performance. We start with a description 
of the tools and techniques adopted, and we then discuss 
how the models can be used to optimize coil and magnet 
lay-outs, improve fabrication process, and predict and 
minimize coil stress from assembly to quench. 

INTEGRATED MODELING: TOOLS AND 
TECHNIQUES 

The design and analysis of superconducting magnets 
can be seen as one single process that integrates different 
tools to provide a full characterization of the magnet 
components during assembly, cool-down, magnet 
excitation and quench. We present in this section an 
overview of codes and techniques utilized for 
superconducting magnet design, starting from simplified 
scaling laws to full 3D magnet models. A complete 
description of the integrated design approach applied to 
accelerator magnets can be found in [5].  

Coil and Magnet 2D Design 
The first step of magnet design consists in a 

preliminary estimate, through analytical tools or scaling 
laws, of the amount of conductor required for a given 
field and aperture [6-8]. Then, the definition of a 2D 
cross-section of superconducting cable, coil and support 
structure constitutes the second design step. In this phase, 
a 2D analysis of the magnetic and mechanical behaviour 
of the magnet can be performed with programs like 
Poisson [9], Roxie [10], Opera 2D [11] and ANSYS [12] 
(Fig. 3). The output of such programs gives field, 
harmonics and short-sample predictions for the magnet 
performance, as well as stress in all magnet components. 

___________________________________________  
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.   
Figure 3: 2D finite element model for magnetic (Roxie, 
left) and mechanical (ANSYS, right) analysis. 

Coil 3D Design 
With the optimized coil cross-section coordinates, it is 

then possible to proceed and complete the cable windings 
through return and lead ends, using computer programs 
such as Bend [13] and Roxie. The resulting full 3D model 
of the coil, including each individual turn (Fig. 4), can be 
then uploaded in CAD programs, like ProE [14], for the 
coil parts fabrication, or in Opera 3D and ANSYS for 
magnetic and mechanical analysis (Fig. 5).  

 
Figure 4: 3D coil model generated by the program Bend. 
 

 

 
Figure 5: 3D coil model imported in ProE (left) and 
ANSYS (right). 

Magnet 3D Design 
At this point, the final step consists in the 

implementation of the full 3D magnet geometry. The 
CAD models are used to define assembly and loading 
procedures, and to generate drawings for part fabrication. 
Opera 3D and Roxie models compute conductor peak 
fields in the coil ends, and optimize iron geometry and 
field quality in the end regions (Fig. 6). Finally, an 
ANSYS 3D model can focus on the design of the support 
structure, with particular emphasis on the coil axial 

support system. The integration of all these programs will 
have as an output a full description of the magnetic, 
mechanical and thermal condition of the superconductor, 
and will provide fundamental information to analyze 
magnet performance, identify quench triggering 
mechanisms, and define corrective strategies to improve 
training and minimize stress in the superconductor. 

 

  
Figure 6: 3D finite element model for magnetic (Vector 
Field, left) and mechanical (ANSYS, right) analysis. 

COIL AND SUPPORT STRUCTURE 
DESIGN 

In Nb3Sn magnets, the risk of conductor degradation 
due to high stress requires that already from the initial 
phases of the design, aimed at defining the 2D coil and 
magnet cross-sections, one of the main objectives must be 
minimizing the accumulated stress on the conductor. At 
the same time, the support structure must provide enough 
coil pre-load after cool-down so that turns do not separate 
from coil parts when the e.m. forces start to act on the 
windings. We present in this section the results of a 
conceptual design study focused at the optimization of the 
coil and support structure cross-sections of quadrupoles.  

Coil Cross-Section Optimization  
In a shell-type coil, the e.m azimuthal forces are 

directed towards the mid-plane, where the accumulated 
stress reaches its peak at high field. In a multi-layer coil 
configuration, the choice of the number of turns per layer 
can play a significant role in reducing the accumulated 
stresses.  

 

 
Figure 7: 2D computations of azimuthal stress with e.m. 
forces. Red (blue) contours indicate area of low (high) 
compressive stress. 

 
In Fig. 7 we plotted the stress at maximum field of two 

different coil designs considered for the LHC Accelerator 
Research Program (LARP) quadrupole magnet HQ 
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[15,16]. In the first design (left cross-section), the first 
layer is characterized by a larger number of turns that the 
second layer. The consequent larger accumulated e.m. 
force determines a peak stress of -243 MPa. By 
redistributing the number of turns between the two layers 
(right cross-section) the total e.m. force is shared and the 
accumulated stress reduced by 30 MPa.  

It is important to notice that both designs reach a 
similar maximum gradient, but the first one is clearly 
more efficient in term of amount of conductor. In this 
case, conductor efficiency was sacrificed to improve 
stress profiles. 

Magnet Cross-Section Optimization  
Once the coil design is chosen, the following step 

regards the optimization of the support structure. By 
providing pre-load to the coil during assembly and cool-
down, and counteracting the e.m. forces during excitation, 
the structure may have a significant impact on the 
conductor peak stresses. An example is depicted in Fig. 8 
and Fig. 9 where the accumulated stress in the coil at 
maximum field in the LARP quadrupole magnets TQ and 
LQ are shown. Although both quadrupoles implemented 
the same coil and operated at the same gradient, a 
modification of the geometry of the components 
surrounding the coil implemented in LQ contributed to a 
20 MPa reduction of accumulated stress [17].  
 

  
Figure 8: Cross-section of the LARP quadrupole magnet 
TQ (left) and 2D computations of azimuthal stress with 
e.m forces (right). 

 

  
Figure 9: Cross-section of the LARP quadrupole magnet 
LQ (left) and 2D computations of azimuthal stress with 
e.m forces (right). 

OPTIMIZATION OF COIL FABRICATION 
PROCESS 

The use of finite element magnetic-mechanical models 
can play an important role also in the optimization of the 

coil fabrication process. The models can be focused on 
investigating the effect of different coil part materials, 
which must be compatible with the high-temperature heat 
treatment, at the same time contributing to minimize coil 
strain during magnet operation. As an example, we 
present in this section the results of the study, reported in 
[18-20], regarding the winding poles of the LARP 
quadrupole magnet TQ.  

 

 
Figure 10: 3D mechanical computations of the deformed 
shapes (with displacements enhanced by a factor of 50) of 
the TQ coils after cool-down (left) and at 15 kA (right). 
  

 
 

 
Figure 11: 3D mechanical computations of the pole turn 
axial strain as a function of the axial position with bronze 
pole (top) and titanium alloy pole (bottom).  
 

Nb3Sn coils are usually wound around solid pieces, 
called poles, which then participate to the full reaction 
and impregnation process. For fabrication purposes, the 
winding poles are segmented in several pieces with a 
length of approximately 200-300 mm. The first set of 
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cos(theta) coils for the TQ quadrupole (TQ01 series) were 
wound around segmented aluminium bronze poles. 
During the TQS01 magnet tests, it was observed that 
quench-origins clustered around the area in between 
adjacent pole pieces. The numerical simulations indicated 
that, after cool-down, the segments tend to separate, thus 
creating gaps which increase during excitation (see 
deformed shape in Fig. 10). As a result, peaks of axial 
strain in the pole turn arise in correspondence of the gaps, 
indicating that the cables around the poles experience 
high tensions during magnet powering (see Fig 11, top). 

This phenomenon was attributed to the friction between 
the iron components surrounding the coils, characterized 
by a low thermal contraction coefficient, and the bronze 
pole pieces, which feature a high thermal contraction 
coefficient. The friction induces high tension in the 
bronze poles, which then separate when the e.m. forces 
were applied. For the second set of coils (TQ02 series) it 
was therefore decided to change the pole material from 
bronze to titanium alloy (Ti6Al4V), characterized by a 
low thermal contraction coefficient: the titanium pole 
segments remain in compression during all magnet 
operations, thus eliminating gaps and high strain in the 
pole turns (see Fig. 11, bottom). 

STRAIN AND DISPLACEMENTS IN COIL 
END REGIONS 

Nb3Sn magnets operating at fields approaching 15 T are 
subjected to very high axial e.m. forces which stretch the 
coils along the longitudinal direction. If not 
counterbalanced, these forces may generate mechanical 
motions and tensional strain resulting in potential 
degradation of magnet performance. For these reasons, 
the LBNL Superconducting Magnet Program has started 
implementing in the magnet design a coil axial support 
system based on end plates and aluminium rods (see Fig. 
12) with the goal of preventing separation between turns 
and pole pieces in the end regions. In parallel, 3D models 
have been focused on mechanical solutions to mitigate the 
effect of the axial forces.  

 

 
Figure 12: Coil axial supports implemented in the 
quadrupole SQ (left) and the dipole SD (right). 
 

The importance of the axial support can be seen in Fig. 
13, where the model results indicate how the deformation 
of the turns in the end regions of the TQ quadrupole coils 
can be significantly reduced by providing sufficient pre-
load after cool-down.  

  

  

  
 

Figure 13: 3D mechanical computations of the deformed 
shapes (with displ. enhanced by a factor of 50) of the TQ 
coils without (left) and with (right) axial support after 
cool-down (top), at 12 kA (centre), and at 15 kA (bottom). 

 
In order to investigate the impact of axial support and 

prove its effectiveness, in 2007 the LARP program 
launched a series of tests with the subscale quadrupole 
magnet SQ02 [21]. The magnet was tested with (SQ02b) 
and without (SQ02c) axial end load. The training 
performance is plotted in Fig. 14: the magnet reached its 
expected current limits when fully supported, but it 
showed a clear degradation in quench performance (in the 
order of 5 to 10%) when no axial load was applied: the 
degradation was progressive over consecutive quenches, 
i.e., the quench current gradually decreased from 10.2 kA 
to 9.7 kA in seven quenches.  

 

 
Figure 14: Training performance of SQ02b (at 4.5 K and 
1.8 K, with axial support), and SQ02c (at 4.5 K and 1.8 
K, without axial support). The dashed lines represent the 
expected current limits based on strand measurements. 
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A 3D analysis, reported in [22], pointed out a high 
tensile strain (about 4500 strain) in the cable at the end 
of the straight section as a probable cause of the 
performance degradation (Fig. 15). 
 

 
Figure 15: Computed strain during excitation along the 
cable on a path moving from the centre of the straight 
section to the end, in the SQ02c conditions. 

MODELING OF QUENCH INITIATION 
AND PROPAGATION 

In addition to the increase of strain analyzed in the 
previous section, the effect of axial e.m. force may 
include a relative sliding between the pole turns and the 
winding poles (see deformed shapes in Fig. 16, left). In 
the presence of friction, any sliding between two surfaces 
results in energy dissipation.  

 

  
Figure 16: 3D mechanical computations of the deformed 
shapes (with displ. enhanced by a factor of 50) of the 
SQ02 coils (left) and frictional energy dissipation [J/m2] 
(right) during excitation. 

With a 3D finite element model, it is possible to 
compute the energy dissipation during excitation, and 
gain useful insight on the areas subjected to premature 
quenching. This study, reported in [23,24], was performed 
to analyze the performance of the SQ02 magnet. The 
results, plotted in Fig. 16, show that, from 0 to 3 kA the 
release of frictional energy near the end peaks at about 70 
J/m2 (top figure). During the following current steps, the 
dissipated energy progressively increases to a maximum 
of 160 J/m2 (bottom figure) and its location gradually 
moves towards the straight section. The quench locations 
recorded during the SQ02a where consistent with the 
energy dissipation pattern predicted by the model. 
 

 

 

 

 
Figure 17: 3D computations of the thermal (K, left) and 
mechanical (MPa, right) status of the SM coil during 
quench propagation as a function of time. 
 

If the energy dissipated by a conductor motion is 
enough to determine an increase of the local temperature 
of the superconductor beyond its critical level, a quench is 
originated and starts propagating. After the analysis of 
quench-triggering mechanisms, the computations can be 
focused towards a detailed representation of the thermal 
and mechanical status of a superconducting coil during 
the propagation of a quench. The goal is to determine the 
peak temperatures reached by the superconductor and to 
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extend the analysis to the mechanical response to a 
quench: the temperature profile evaluated by a thermo-
electrical model can be transferred to a 3D mechanical 
model and the evolution of the coil stresses during the 
quench propagation investigated. 

This analysis, reported in [25] was applied to the SM 
magnet and is summarized in Fig. 17. The plots on the left 
of the figure show the propagation of the normal zone 
(gray area) from quench initiation to 480 ms, when the 
hot spot temperature reaches a maximum of 300 K. The 
plots on the right of the figure represent the corresponding 
stress distribution in the coil. In the hot spot area the coil 
starts with a longitudinal tension of about 40 MPa before 
quench propagation. After the quench is initiated, the 
hotter regions attempt to expand and push against the 
colder surroundings. The hot spot experiences 
compression in every direction after the quench, with a 
maximum compression of about -140 MPa. The study can 
be used to determine that maximum hot spot temperature 
allowed in Nb3Sn superconducting coils before the 
induced thermal strain degrade the superconductor. 

CONCLUSIONS AND NEXT STEPS 
The use of the strain-sensitive Nb3Sn superconductor in 

the next generation of high-field magnets for particle 
accelerators will require an in-depth knowledge of the 
coil mechanical status, which can be obtained only with 
integrated magnetic, mechanical and thermal design and 
analysis. We described how a combined use of different 
tools and techniques allows a full representation of 
magnet geometry and operation conditions. We then 
pointed out the importance of focusing the analysis tools 
on optimizing coil and support structure to minimize coil 
stress, investigate the strain status of the superconductor 
from assembly to quench aftermath, and identify and 
correct quench initiation and training mechanism. 

 

  
Figure 17: Deformation of strands in the cable edge (left) 
and cable bending around winding pole (right). 
 

As a next step, we believe that a finer modelling of the 
mechanical status of the superconductor down to the 
filament level will constitute a fundamental step to 
improve our understanding of the behaviour of Nb3Sn 
superconducting magnets. To reach this goal, it will be 
necessary to include in the simulations strand geometries 
resulting from the coil fabrication process, in particular 
cabling, winding, reaction and potting (Fig. 17) and 
implement 2D and 3D models of the Rutherford cable 
(Fig. 18) capable of reproducing the deformed shape of 
filaments and strands [26]. 

  
Figure 17: 2D model of a deformed strand (left), and 3D 
models of a Rutherford cable (right).  
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Abstract

Numerical simulations are frequently used in the de-
sign, optimization and commissioning phase of accelera-
tor components. Strict requirements on the accuracy as
well as the complex structure of such devices lead to chal-
lenges regarding the numerical simulations in 3D. In order
to capture all relevant details of the geometry and possibly
strongly localized electromagnetic effects, large numerical
models are often unavoidable. The use of parallelization
strategies in combination with higher-order finite-element
methods offers a possibility to account for the large numeri-
cal models while maintaining moderate simulation times as
well as high accuracy. Using this approach, the magnetic
properties of the SIS100 magnets designated to operate
within the Facility of Antiproton and Ion Research (FAIR)
at the GSI Helmholtzzentrum für Schwerionenforschung
GmbH in Darmstadt, are calculated. Results for eddy-
current losses under time-varying operating conditions are
reported.

INTRODUCTION

For the operation of the heavy-ion synchrotron SIS100
as a part of the FAIR project at GSI, the magnetic flux den-
sity in the aperture of the dipole magnets is required to be
ramped at rates as high as 4 T/s in order to keep up with
the acceleration of the particles. As a consequence, eddy-
current effects arising at the end regions of the dipole mag-
nets with respect to the beam orbit, become an important
issue in the magnet design and optimization process.

Despite the laminated structure of the iron yoke, eddy
currents and, in turn, resistive losses appear in the con-
ductive iron sheets. In the actual design, not only the su-
perconductive current coils are operated at the appropriate
temperature of 4.5 K, but also the the ferromagnetic yoke
and the mechanical support. As a consequence, the eddy-
current losses induced by fast ramping appear in the cold
mass of the system. These losses increase the load of the
cryogenic system and therefore the power consumption of
the facility significantly. Hence, one of the design goals is
to reduce the Joule losses inside the magnet to an accept-
able level. Several design optimizations aimed at this issue
have already been proposed, e.g. in [1], [2], whereas the
Nuclotron magnet [3], [4] served as a starting point for the

∗Work supported by GSI Helmholtzzentrum für Schwerionenfor-
schung GmbH, Darmstadt under contract F&E, DA-WEI1

§ koch@temf.tu-darmstadt.de
‡ thomas.weiland@temf.tu-darmstadt.de
¶Herbert.DeGersem@kuleuven-kortrijk.be

Figure 1: Full-length prototype dipole magnet for the
SIS100 including cooling tubes and mechanical assembly
(photograph: J. Guse, GSI (www.gsi.de)).

design. These optimizations are based on experiments as
well as numerical simulations in 2D and 3D.

While the original Nuclotron magnet is 1.4 m long [4],
the length of the current prototype of the SIS100 dipole
shown in Fig. 1 is increased to 2.8 m [5]. Therefore, the
number of dipole magnets required to cover the circumfer-
ence of the synchotron is, in turn, lowered by a factor close
to two when compared to a virtual installation of the short
magnet. As the major fraction of the eddy currents arises at
the end regions of the iron yoke, the resulting overall losses
are reduced accordingly. The increased length, however,
provides additional challenges regarding numerical simu-
lations when using volume-based discretization methods
such as the finite element (FE) method. It leads to larger
numerical models which in turn require a longer simula-
tion time and more computational resources. One way to
deal with the large numerical models is the use of paral-
lelization techniques. Simulations related to the full length
prototype shown in Fig. 1 are carried out using the finite
element method in combination with higher-order shape
functions. The eddy-current losses in the different parts
of the yoke assembly are calculated.

NUMERICAL MODELING

Transient Magnetoquasistatic Formulation

Even though the desired ramping of the aperture field is
fast when considering the amount of energy dissipated in
the electrically conductive iron yoke, the time variation of
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the resulting fields still justifies the application of the mag-
netoquasistatic approximation the Maxwell equations. Dif-
ferent formulations based on potentials or field quantities
can be derived as reviewed, e.g., in [6], [7]. Among these,
the formulation in terms of the magnetic vector potential
�A is well suited for the problem under consideration. It is
introduced in order to represent the magnetic flux density
�B according to

�B = ∇× �A . (1)

This leads to the second order partial differential equation

∇×
(
ν∇× �A

)
+ σ

∂

∂t
�A = �Js , (2)

where ν = 1/μ denotes the reluctivity, μ the permeability,
σ the electric conductivity and �Js the source current den-
sity. Note that �A is interpreted as the modified magnetic
vector potential and therefore features an implicit gauge in
the conductive regions [8]. The quanties of interest within
this application, the electric field strength �E and the mag-
netic flux density �B, are conveniently obtained from the
solution for �A along with its temporal derivative by

�E = −∂ �A

∂t
(3)

and Eq. 1. In contrast to the very similar formulation in
terms of the �E itself, the source current density �Js in Eq. 2
is not required to be differentiated in time. This is es-
pecially important as non-smooth excitation functions are
provided for this type of magnet simulations.

Spatial Discretization

In order to solve the formulation in Eq. 2 numerically,
tetrahedral meshing is applied. The computational domain
is limited to the dipole magnet and the considered parts
of the mechanical assembly. At a sufficient distance to the
structure, closed boundary conditions are applied. By using
vectorial FE shape functions �wj ensuring tangential conti-
nuity of the approximated quantity, the magnetic vector po-
tential is approximated in terms of the local Ritz approach

�A ≈
∑

j

aj �wj . (4)

In case of a lowest order approximation six vectorial shape
functions, each of which associated with one edge of a
tetrahedron, are used to represent the magnetic vector po-
tential �A. This approximation is capable of modeling a lin-
ear variation of the vectorial quantity �A itself as well as a
constant flux density �B resulting from the application of
the curl operator according to Eq. 1 consistently. The sub-
sequent higher order set of shape functions, being quadrat-
ically exact in �A and linearly exact in the curl of �A features
20 shape functions per element and, in turn, the same num-
ber of degrees of freedom aj in Eq. 4. Choosing the same
set of shape functions as test functions �wi as part of the

standard Galerkin procedure turns Eq. 2 into the weak for-
mulation. Discretization of the latter by means of the shape
functions �wj results in the semi-discrete representation of
Eq. 2:

Kνa + Dσ
d
dt

a = js . (5)

In this differential-algebraic equation, Kν denotes the stiff-
ness matrix, Dσ the damping matrix, a collects the degrees
of freedom aj for the magnetic vector potential and the ele-
ments of js describe the excitation current density weighted
by the test functions �wi. The entries of the matrices and
vectors mentioned are given by

(Kν)i,j =
∫

Ω

(∇× �wj) · ν · (∇× �wi) dV , (6)

(Dσ)i,j =
∫

Ω

�wj · σ · �widV , (7)

(js)i =
∫

Ω

�Js · �widV , (8)

where Ω denotes the computational domain and the char-
acteristic material coefficients ν and σ are assumed to be
tensor-valued.

Temporal Discretization and Linearization

The differential-algebraic representation of the magne-
toquasistatic formulation in terms of the magnetic vector
potential in Eq. 5 is discretized in time using the implicit
Euler scheme. For constant time steps Δt indexed by n,
with tn = t0 + nΔt, the algebraic nonlinear system of
equations reads

Kνa(n+1) +
1

Δt
Dσa(n+1) =

1
Δt

Dσa(n) + j(n+1)
s︸ ︷︷ ︸

f (n+1)

, (9)

whereas a(n+1) = a(tn+1), a(n) = a(tn) and j(n+1)
s =

js(tn+1). The fix-point formulation of Eq. 9 is given by
F(a(n+1)) = 0 with

F(a(n+1)) = Kνa(n+1) +
1

Δt
Dσa(n+1) − f (n+1) . (10)

It is nonlinear with respect to the entries of Kν due to fer-
romagnetic saturation. In order to advance from the time
instance tn to tn+1 the nonlinear system needs to be solved.
Based on Eq. 10 linearization is carried out by means of a
Newton-Krylov method. The search direction d(n+1,k+1)

within each nonlinear step k is found by solving the system

J(n+1,k)
F d(n+1,k+1) = −F(a(n)) (11)

with the Jacobian JF of F using a Krylov-subspace itera-
tion. Here, the Jacobian is given in matrix form by

J(n+1,k)
F = K(n+1,k)

νd
+

1
Δt

Dσ (12)
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Figure 2: (a) Simplified model of the SIS100 magnet yoke
and the coil; (b) Strongly enlarged view of the laminated
structure of the yoke based on iron plates and insulation
sheets (relation of thickness is not to scale).

while the entries of the matrix Kνd follow from replacing
ν in Eq. 6 by the differential reluctivity tensor νd, as de-
scribed, e.g., in [9]. As a consequence, the sparsity pattern
of the Jacobian JF is identical to the one of a standard sys-
tem matrix in linear magnetoquasistatic modeling. From
the search direction the new nonlinear iterate a(n+1,k+1) is
obtained by

a(n+1,k+1) = a(n+1,k) + αd(n+1,k+1) (13)

with the relaxation factor α = 1 corresponding to full New-
ton step. A solution candidate a(n+1,k+1) for a(n+1) is ac-
cepted, if the criterion

rnlin =

∥∥F(a(n+1,k+1))
∥∥

2∥∥f (n+1)
∥∥

2

< εnlin (14)

in terms of the relative nonlinear residual rnlin is met for a
prescribed tolerance εnlin. Within each nonlinear step k+1
the system in Eq. 11 is solved using Krylov-subspace itera-
tions. These iterations are terminated once the appropriate
residual tolerance εk+1 for the current nonlinear step k + 1
is reached. Using an adjustable stopping criterion εk+1 as
described in [10] can significantly reduce the total num-
ber of Krylov iterations per time step. An implementation
according to [11] based on the NOX package of the TRILI-
NOS framework [12] is used for the numerical simulations
reported in this paper.

Homogenization of the Laminated Yoke Material

A schematic view of the SIS100 dipole reduced to
the ferromagnetic yoke and the current coil is shown in
Fig. 2(a). Due to the high ramp rate required for the appli-
cation in the synchrotron, the yoke is built from laminated
steel plates as indicated in Fig. 2(b). It is, however, cum-
bersome if not impossible to resolve the very thin insulation
layers between adjacent iron sheet within a 3D numerical
simulation. Therefore, the packing factor γp, commonly
employed to classify laminated steels, is used to construct
a homogeneous, anisotropic material to be considered in
the simulation. For a straight yoke the co-ordinates can be

aligned with the main axes of the anisotropy. As a conse-
quence, diagonal tensors

ν = diag (νxx, νyy, νzz) ; σ = diag (σxx, σyy, σzz) (15)

for the reluctivity ν and the conductivity σ are sufficient to
model the homogenized yoke material as described in [13].

While in general (case A) all entries of the reluctivity
tensor in Eq. 15 are dependent on the value of the magnetic
flux density as well as on the packing factor γp, a simpli-
fication can be introduced at moderate saturation levels up
to 1.6 T [14]. Namely, the reluctivity νzz is observed to be
constant with respect to the saturation level and it is only
related to the packing factor by νzz = ν0(1−γp). This type
of modeling the anisotropic yoke material is referred to as
case B in the following. Details and a comparison of both
material models with respect to the eddy-current losses in
the yoke can be found in [13].

BENCHMARK MODEL

The results reported in the following sections are ob-
tained by using an in-house simulation tool based on the
FEMSTER library [15] for the FE layer and the TRILINOS
framework [12] for the linear algebra infrastructure as well
as parallelized matrix and vector classes in terms of MPI
[16]. Pre- and postprocessing as well as automatic mesh
generation is carried out in CST STUDIO SUITETM [17].

Simulation Setup

In order to validate the simulation tool in terms of a com-
parison of the results for the eddy-current losses to the ones
obtained by other codes, a simplified benchmark model of
the SIS100 dipole was defined [14], [18]. The according
geometry is shown in Fig. 2(a). Further parameters for the
magnetoquasistatic simulations of the simplified model can
be summarized as follows:

• Length of the iron yoke �z = 1200 mm;
• Outer dimensions of the rectangular cross-section of

the yoke: 276 mm × 186 mm;
• Aperture size 146 mm × 56.4 mm;
• Conductivity tensor of the laminated steel: σxx =

σyy = 3.2 · 106 S/m, σzz = 0;
• Maximum excitation current: Imax = 48 kA;
• Coil excitation: triangular cycle 0 . . . 48 kA. . . 0 of

1 s duration (∂B/∂t = 4 T/s);
• Homogeneous, anisotropic, nonlinear yoke material

for different values of the packing factor γp (case A,
case B);

• Constant time step Δt = 0.01 s.

Convergence of the Eddy-Current Losses

On the basis of the discretized model several simulations
are carried out. In a first set, the eddy-current losses are
calculated for different values of the packing factor γp in
the range of 0.93 to 0.98. The losses are evaluated in each
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Figure 3: (a) Time dependence of the volume-integrated eddy-current losses in the magnet yoke in a triangular excitation
cycle for different values of the packing factor γp. (b) Convergence of the loss energy integrated over the length of the
excitation cycle for different levels of discretization: For lowest order shape functions (p = 1) and for shape functions
allowing for a linear variation (p = 2) of the curl of the primary unknown. (c) Convergence of the relative discretization
error of the power losses with respect to a reference solution obtained using 106 degrees of freedom (dofs) in combination
with linear shape functions (p = 2).

time step and integrated spatially over the entire yoke vol-
ume. Fig. 3(a) shows the results on the time-axis. While
the curves agree at the beginning of the cycle, the losses
increase differently due to beginning ferromagnetic satu-
ration starting approximately at t = 0.2 s. For higher
packing factors the resulting eddy-current losses become
larger. However, a high value is required in order to avoid
adversely affecting the magnetic length of the dipole.

A second set of simulations addresses the discretization
error of the numerical simulation which is quantified in
terms of the loss energy over one excitation cycle, here.
In order to compare the results to the ones reported in
[18], the simplified homogenization strategy (case B) is im-
plemented in the simulation tool. Using automatic mesh
generation, several discrete representations of the magnet
model are created. These are equipped with either lowest
(p = 1) or second order (p = 2) FE shape functions. For
each selected combination of a FE mesh and one of the
sets of shape functions, a transient nonlinear simulation is
carried out. The results of the integrated, time-averaged
losses are shown in Fig. 3(b) with respect to the according
number of degrees of freedom (dofs). Very large numeri-
cal models are required in order to obtain reliable results
from the simulation, in particular for the case of lowest
order shape functions. This becomes even more evident
when determining the relative error which is illustrated in
Fig. 3(c). Here, a simulation involving approximately 106

dofs based on second order FE shape functions provides the
reference solution for the eddy-current losses. The higher
approximation order of the linear shape functions leads to
an improved convergence in terms of the discretization er-
ror. As a consequence, a fixed accuracy can be achieved us-
ing fewer degrees of freedom when compared to the curve
related to the lowest order shape functions. Furthermore,
the high accuracy required for the application can only be

reached using the higher order shape functions as, e.g., a
discretization involving ten million lowest order degrees
of freedom only achieves an accuracy of around 1%. The
slope of the curves agrees with the theoretically expected
values for the respective order of approximation.

Comparison to Different Simulation Code

Using the simplified homogenization model (case B) for
the laminated iron yoke, the results for the eddy-current
losses can directly be compared to results from the liter-
ature. The first two results columns of Table 1 show the

Table 1: Time-integrated eddy-current losses for different
values of the packing factor γp using a nonlinear (case A)
as well as a constant reluctivity (case B) in z-direction.

packing case A case B
factor γp Fig. 3(a) Fig. 3(b) cf. [14], [18]

0.93 7.68 J 8.77 J 8.66 J
0.96 9.86 J 11.58 J 11.30 J
0.98 12.51 J 15.05 J 13.90 J

time-integrated losses in the magnet yoke for the two dif-
ferent material models obtained by using the in-house sim-
ulation tool. For comparison, the third column contains the
values reported in [14], [18]. The difference in the results
for the two material models increases for higher packing
factors and reaches up to 20% for γp = 0.98. However,
when comparing the last two columns of Table 1 for case B,
a good agreement within 2.5% is observed for lower pack-
ing factors. The remaining differences can be assigned to
the boundary conditions, which were not exactly specified
in advance. Further contributions might be found in the
temporal discretization as well as in the coil modeling.
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Figure 4: (a) CAD model of the full-length SIS100 dipole (�z = 2.8 m) containing yoke, end plates and brackets ensuring
mechanical stability. The new model uses a modified, lower coil design in order to reduce the eddy-current losses in the
end regions. (b) Realistic excitation cycle resulting in a maximum aperture field of 2.1 T. (c) Eddy-current losses with
respect to time for the separate parts of the yoke assembly.

SIMULATION RESULTS FOR THE
FULL-LENGTH DIPOLE MAGNET

Using the in-house simulation software described above,
a new set of simulations is carried out on the basis of more
realistic parameters for the yoke geometry and for the exci-
tation signal. A design featuring a long yoke offers advan-
tages regarding the magnitude of the eddy-current losses
as well as the homogeneity of the magnetic flux density
in the aperture region. The geometry used for the simula-
tions reported in the following is outlined in Fig. 4(a). End
plates and brackets made from stainless steel, included for
mechanical stability, are considered in the simulations as
these parts are supposed to contribute to the overall losses
in the magnet. In contrast to prior simulations, a more real-
istic operation cycle, as shown in Fig. 4(b), is considered.
Further parameters, as far as differing from the previous
setup, are as follows:

• Length of the iron yoke �z = 2800 mm;
• Thickness of endplates and brackets; d = 15 mm;
• Isotropic conductivity of stainless steel used for end

plates and brackets: σsteel = 2.0 · 106 S/m;
• Isotropic permeability of stainless steel: μsteel,r =

1.01;
• Coil excitation: as indicated in Fig. 4(b);
• Homogeneous, anisotropic, nonlinear yoke material,

packing factor γp = 0.98 (case A).

Due to the increased length of the magnet yoke, a larger
number of tetrahedra is required for the numerical model
when compared to the benchmark model. The superior
convergence of higher-order shape functions (p = 2) is
exploited in order to achieve the desired accuracy in an
acceptable time. As the parallelization of the simulation
tool is implemented on the basis of MPI, shared-memory as
well as distributed-memory computing environments can
be used. The results for the eddy-current losses shown in
Fig. 4(c) are obtained on a workstation featuring two quad-
core processors. A typical transient nonlinear simulation

of this type takes approximately 36 hours, the major part
of which is spent on the solution of the linear systems of
equations. In Fig. 4(c) the time-characteristic of the eddy-
current losses in the different parts of the yoke assembly are
illustrated. The losses in the ferromagnetic yoke form the
major contribution to the overall losses in this setup. Due to
the high packing factor and the resulting anisotropic prop-
erties, relaxation effects arise and in turn lead to different
magnitudes of the two maxima [19]. Also for the brackets,
relaxation effects typical for the isotropic case equivalent
to a packing factor γp,steel = 1 are observed in terms of
an almost vanishing second maximum in the loss charac-
teristic. As the end plates are thin and feature a smaller
electrical conductivity as the laminated steel, the magni-
tude of the resulting losses is very small when compared
to the remaining contributions. Furthermore, the respective
relaxation time is short with respect to the considered sim-
ulation interval. Therefore, the loss characteristic is similar
to the one expected for an equivalent linear RL-network re-
lated to the respective part of the model. Table 2 shows

Table 2: Eddy-current losses in the separate parts of the
yoke assembly for two different levels of discretization
both using FE shape functions of second order (p = 2).

Discretization 433 246 dofs 791 072 dofs

yoke 12.97 J 12.73 J
end plates 1.19 J 1.18 J
bracket 1.95 J 1.95 J
total 16.11 J 15.85 J

the integrated losses over the excitation cycle depicted in
Fig. 4(b) for two different discretizations. The second col-
umn corresponds to the results of Fig. 4(c). In Fig. 5 the
magnitude of the z-component of the magnetic flux den-
sity, which is responsible for the eddy currents, is shown in
the end-region of the magnet. The sub-figures correspond
to time-instances at the beginning (Fig. 5(a)), in the middle
(Fig. 5(b)) and at the end of the acceleration phase.
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Figure 5: Magnitude of the z-component of the magnetic flux density responsible for the eddy-currents at the end regions
of the yoke assmbly in logarithmic color scale at different time instances: (a) t = 0.42 s, (b) t = 0.68 s, (c) t = 0.82 s.

CONCLUSION

Transient, nonlinear simulations required to predict the
eddy-current losses in the SIS100 dipole are carried out by
means of a 3D finite element simulation tool. The results
are compared to a different, independent simulation code
on the basis of a benchmark model. A good agreement
in terms of the calculated eddy-current losses is observed.
The developed simulation tool is well suited for the sim-
ulation of large and geometrically complicated structures.
Thanks to the parallelized simulation framework, it is fur-
ther scalable to even larger numerical models while main-
taining moderate computational times as well as high accu-
racy by using higher-order finite element shape functions.
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Abstract

Numerical simulations to design high-energy particle ac-
celerators give rise to large-scale ill-conditioned highly-
indefinite linear systems of equations that are becoming
increasingly difficult to solve using either a direct solver
or a preconditioned iterative solver alone. In this paper,
we describe our current effort to develop a parallel hybrid
linear solver that balances the robustness of a direct solver
with the efficiency of a preconditioned iterative solver. We
demonstrate that our hybrid solver is more robust and ef-
ficient than the existing state-of-the-art software to solve
these linear systems on a large number of processors.

INTRODUCTION

Numerical simulations to design high-energy particle
accelerators [10] give rise to large sparse linear systems
of equations that are becoming increasingly difficult to
solve using standard techniques [9]. Although signifi-
cant progress has been made in the development of high-
performance direct solvers [2, 4, 11], the dimension of
the systems that can be directly factored is limited due
to large memory requirements. Preconditioned iterative
solvers [3, 14, 16] can reduce the memory requirements,
but they often suffer from slow convergence.

To overcome these challenges, a number of parallel hy-
brid solvers have been developed based on a domain de-
composition idea called the Schur complement method [5,
6]. In this method, the unknowns in interior domains are
first eliminated using a direct method, and the remaining
Schur complement system is solved using a preconditioned
iterative method. These hybrid solvers often exhibit great
parallel performance because the interior domains can be
factored in parallel, and the direct solver is effective to fac-
tor the relatively-small interior domain. In addition, the
preconditioned iterative solver is shown to be robust to
solve the Schur complement systems, where most of the
fill occurs, in a number of applications [5, 6]. In particular,
for a symmetric positive definite system, the Schur comple-
ment has a smaller condition number than the original ma-
trix [15, Section 4.2], and fewer iterations are often needed
to solve the Schur complement system. Hence, these hy-
brid solvers have the potential to balance the robustness of
the direct solver with the efficiency of the iterative solver.

Unfortunately, for a highly-indefinite linear system from
the accelerator simulation, these existing hybrid solvers of-
ten suffer from slow convergence when solving the Schur

∗ ic.yamazaki@gmail.com
† xsli@lbl.gov
‡ egng@lbl.gov

complement system. This is true especially on a large num-
ber of processors because these solvers are designed to
achieve good scalability of time to compute the precondi-
tioners, but the quality of the preconditioner often degrades
as more processors are used.

To overcome these drawbacks, we have been developing
a new implementation of the Schur complement method
which provides the robustness and flexibility to solve large
highly-indefinite linear systems on a large number of pro-
cessors [12, 17]. In this paper, we demonstrate the effec-
tiveness of our hybrid solver to solve these linear systems
on hundreds of processors using a linear system whose di-
mension is greater than those used in our previous papers.
We also point out how our impelemtnation has been mod-
ified since the last publication in order to solve such large
linear systems with millions of unknowns.

SCHUR COMPLEMENT METHOD
The Schur complement method is a non-overlapping do-

main decomposition method, which is also referred to as
iterative substructuring. In this method, the original linear
system is first reordered into a 2 × 2 block system of the
following form:(

A11 A12

A21 A22

)(
x1
x2

)
=

(
b1
b2

)
, (1)

whereA11 andA22 respectively represent interior domains
and separators, andA12 andA21 are the interfaces between
A11 and A22. By eliminating the unknows associated with
the interior domains A11 in the bottom part of (1), we ob-
tain the block-triangular system(

A11 A12

0 S

)(
x1
x2

)
=

(
b1
b̂2

)
, (2)

where S is the Schur complement defined as

S = A22 −A21A
−1
11 A12, (3)

and b̂2 = b2 − A21A
−1
11 b1. Hence, the solution of the lin-

ear system (1) can be computed by first solving the Schur
complement system

Sx2 = b̂2, (4)

then solving the interior system

A11x1 = b1 −A12x2. (5)

Note that interior domains are independent of each other,
and A11 is a block-diagonal matrix. Hence, the relatively
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small interior domains can be efficiently factored in par-
allel using a direct solver. On the other hand, a large
amount of fill can be introduced in S. In order to reduce the
memory requirement, the Schur complement system (4) is
solved using a preconditioned iterative method. We note
that within the iterative method, the matrix-vector product
with the Schur complement S can be computed by apply-
ing the sequence of the sparse matrix operations (3) on the
vector, and hence, S does not have to be stored explicitly
for this phase of the solver.

PARALLEL IMPLEMENTATION
To obtain high-performance, our implementation takes

full advantage of the state-of-the-art software. Specifi-
cally, the 2 × 2 block system (1) is computed using PT-
SCOTCH [8], which implements a parallel nested bisec-
tion algorithm.1 Then, to compute the LU factors of the
interior domains in parallel, our hybrid solver uses either
a “1-level” or “2-level” configuration, where each inte-
rior domain is factored using either a single processor or
multiple processors, respectively. Currently, we use a se-
rial direct solver SuperLU [4] or a parallel direct solver
SuperLU DIST [11] for the 1-level or 2-level configura-
tion, respectively. To preserve the sparsity of the LU fac-
tors, each interior domain is permuted using METIS [7] or
PT-SCOTCH. Then, the Schur complement system (4) is
solved using a Krylov subspace method from PETSc [13]
combined with an ILU preconditioner. Finally, the solution
of the interior system (5) is computed using the previously
computed LU factors of the interior domains.

Since computing the ILU preconditioner of the Schur
complement is often the computational and memory bottle-
neck, we give a brief description of how the preconditioner
is computed. In our current implementation, the precondi-
tioners are the exact LU factors of a sparsified Schur com-
plement. Specifically, let us denote the `-th interior domain
and corresponding interfaces by A(`)

11 , and A(`)
12 and A(`)

21 ,
respectively, such that the coefficient matrix of the 2 × 2
block system (1) with k interior domains can be written as

(
A11 A12

A21 A22

)
=


A

(1)
11 A

(1)
12

A
(2)
11 A

(2)
12

. . .
...

A
(k)
11 A

(k)
12

A
(1)
21 A

(2)
21 . . . A

(k)
21 A22

 .

(6)
In the 1-level configuration, the `-th processor stores the
nonzeros of A(`)

11 and A
(`)
21 in row-wise order, and the

nonzeros of A(`)
12 in column-wise order. If the 2-level con-

figuration is used, then the rows of A(`)
11 and A(`)

12 , and the
columns of A(`)

21 are evenly distributed among the proces-
sors assigned to the `-th interior domain. Furthermore, the

1In the previous implementation [12], HID of HIPS [5] was used to
compute the block system using a single processor.

rows of A22 are evenly distributed among the processors
that solve the Schur complement system (4).

With the block structure (6) and the LU factorization
of the interior domain A(`)

11 , which is denoted by A(`)
11 =

L
(`)
11 U

(`)
11 ,2 the Schur complement is computed as

S = A22 −
k∑

`=1

A
(`)
21 (A

(`)
11 )

−1A
(`)
12

= A22 −
k∑

`=1

((U
(`)
11 )−T (A

(`)
21 )

T )T ((L
(`)
11 )

−1A
(`)
12 )

= A22 −
pA∑
p=1

E(`)(:, j
(p)
1 : j

(p)
2 )F (`)(j

(p)
1 : j

(p)
2 , :),

where pA is the number of processors used to solve the
whole system, E(`) = ((U

(`)
11 )−T (A

(`)
21 )

T )T , F (`) =

(L
(`)
11 )

−1A
(`)
12 , the p-th processor owns the j(p)1 -th through

j
(p)
2 -th columns of A(`)

21 and the corresponding rows of
A

(`)
12 , and E(:, j1 : j2) and F (j1 : j2, :) are the matrices

consisting of the j1-th through j2-th columns of a matrix E
and the corresponding rows of F , respectively. In other
words, after E(`) and F (`) are computed by the processors
assigned to the `-th interior domain, the j(p)1 -th through
j
(p)
2 -th columns ofE(`) and the corresponding rows of F (`)

are sent to the p-th processors. Then, the p-th processor
computes the corresponding outer-product updates of the
Schur complement S, and sends the rows of the updates
to the processor that owns the corresponding rows of A22.
Subsequently, the rows of S are evenly distributed among
the processors that solve the Schur complement system.
We note that the matrices E(`) and F (`) are computed with
regards to the sparsity of interface A(`)

21 and A(`)
12 .

In the above expression, the columns of E(`) and rows
of F (`) are distributed in the same way as those ofA(`)

21 and
A

(`)
12 , respectively. This is not necessary. In our new imple-

mentation, the matricesE(`) and F (`) are distributed to bal-
ance the computational cost to compute the outer-product
updates E(`)(:, j

(p)
1 : j

(p)
2 )F (`)(j

(p)
1 : j

(p)
2 , :) among the

processors assigned to the `-th interior domain. Further-
more, to reduce the costs, the sparsity of the matrices E(`)

and F (`) are enforced by discarding nonzeors with magni-
tudes less than a prescribed drop tolerance σ1. Hence, an
approximation S̃ to the Schur complement S is computed.

After the approximate Schur complement S̃ is computed,
it is preprocessed to enhance numerical stability, and then
its sparsity is enforced using a drop tolerance σ2. Finally,
SuperLU DIST is used to compute the LU factor of S̃,
which is used as the preconditioner. To preserve the spar-
sity of the LU factor, S̃ is permuted based on a parallel
nested bisection of the supernobal graph of S̃. See [17], for
the preprocessing techniques used on S̃.

2The matrix A
(`)
11 is scaled and permuted to enhance numerical stabil-

ity and preseve the sparsity of L(`)
11 and U

(`)
11 . For clarity, the scaling and

permutation are not shown in the expression.
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NUMERICAL EXPERIMENTS

We present preliminary results of our hybrid solver to
solve a highly-indefinite linear system on hundreds of pro-
cessors. Our test matrix tdr455k is from a simulation of
an international linear collider [1, 10], and its dimension
is 2, 738, 556. To solve the Schur complement system,
we used the unrestarted GMRES from PETSc [13]. The
GMRES iteration was started with the zero vector, and the
computed solution was considered to have converged when
the `2-norm of the initial residual was reduced by at least
twelve order of magnitude. This is the solution accuracy
enforced in the actual simulations. All the experiments
were conducted on the Cray XT4 machine at the National
Energy Research Scientific Computing Center.

To demonstrate the effectiveness of our hybrid solver,
we compare its performance with that of a direct solver
SuperLU DIST [11], and that of a state-of-the-art hybrid
solver HIPS [5]. The primary difference between our hy-
brid solver and HIPS is the way the preconditioner is com-
puted for solving the Schur complement system. HIPS
computes the preconditioner based on an ILU factorization
of S̃, where the sparsity of the preconditioner is enforced
based on both numerical values and locations of nonzeros.
Specifically, the fill is allowed only between separators ad-
jacent to the same domain. Furthermore, HIPS factors each
interior domain using a single processor, and the number
of interior domains needs to be at least as large as the num-
ber of processors used to solve the whole linear system.
This allows HIPS to achieve good parallel scalability of
time to compute the prconditioner. However, for a highly-
indefinite system, we found that HIPS often suffers from
slow convergence. This was especially true on a large num-
ber of processors since a large number of interior domains
must be generated, which increases the size of the Schur
complement.

To compare the performance of our hybrid solver with
that of SuperLU DIST, Figure 1 shows the total solution
times as functions of the number of processors used to
solve the linear system. In the figure, “1-level” and “2-
level” are the two configurations of our hybrid solver,
which use a single processor and multiple processors to
factor each interior domain, respectively. In our numeri-
cal experiments with the 1-level configuration, we set the
number of interior domains to be equal to the number of
processors used to solve the linear system. On the other
hand, for the 2-level configuration, the number of interior
domains was fixed to be 16, and the processors were evenly
distributed among the interior domains.

By looking at the left plot of Figure 1, we see that the
solution time with our hybrid solver scaled better than that
with SuperLU DIST, (i.e., the hybrid solver could reduce
the solution time using up to 512 processors, while Su-
perLU DIST did not scale beyond 128 processors). Fur-
thermore, we see that the solution times with the 1-level
configuration scaled similarly to that with the 2-level con-
figuration. This is because with the small drop toler-

ances (σ1, σ2) = (10−6, 10−5), the number of GMRES
iterations was nearly independent of the number of inte-
rior domains, and GMRES converged within 20 iterations
even when the number of interior domains needed to be
increased for the 1-level configuration to run on more pro-
cessors (see Table 1). In comparison, HIPS required 151
iterations on 16 processors, and it failed to converge within
1, 000 iterations on 32 processors even though the drop tol-
erances were set to be zero. Furthermore, even when HIPS
converged, our hybrid solver solved the linear system faster
since it takes full advantage of the state-of-the art software.

Number of domains
(σ1, σ2) 16 32 64 128 256

(10−6, 10−5) 11 15 15 17 16
(10−5, 10−4) 32 60 116 205 290

Table 1: Number of iterations with our hybrid solver.

We note that larger drop tolerances reduce the memory
requirement of our hybrid solver. For example, in Figure 1,
less memory was needed in the right plot since the drop
tolerances were increased by an order of magnitude from
those in the left plot. Specifically, in the left plot, about
15% of the nonozeros were discarded from the matrices E
and F , and about 50% of the nonzeros were discarded from
the approximate Schur complement S̃. On the other hand,
in the right plot, about 30% of the nonzeros were discarded
from E and F , and about 75% of the nonzeros were dis-
carded from S̃. Unfortunately, with large drop tolerances,
the number of GMRES iterations may increase as more in-
terior domains are generated. For example with the drop
tolerance (σ1, σ2) = (10−5, 10−4), the number of itera-
tions increased from 32 to 290 when the number of interior
domains increased from 16 to 256 (see Table 1). As a re-
sult, with the 1-level configureation, the solution time did
not scale beyond 64 processors (see Figure 1). On the other
hand, with the 2-level configuration, we can increase the
number of processors while keeping the size of the Schur
complement the same. Subsequently, with the 2-level con-
figuration, the solution time was reduced using up to 256
processors in Figure 1.

Unfortunately, with the drop tolerance (σ1, σ2) =
(10−5, 10−4), the 2-level configuration could not reduce
the solution time using 512 processors from that using 256
processors (see Figure 1). This is because with the 2-level
configuration, the size of the Schur complement is fixed,
and we used only 16 processors to solve the Schur comple-
ment system even when more processors were available.
As a result, the time to solve the Schur complement system
became the dominant part of the total solution time as the
number of processors increased. However, the total solu-
tion time was still reduced from that of SuperLU DIST by
a factor of 2.3 on 512 processors.
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Figure 1: Solution times required by SuperLU DIST and our hybrid solver.

CONCLUSIONS
For a large-scale particle accelerator simulation, solving

large highly-indefinite linear systems becomes the memory
bottleneck. We have described our current effort to address
this challenge with a new parallel hybrid solver. The pre-
liminary results have demonstrated that our hybrid solver
improves the parallel scalability of a state-of-the-art direct
solver. Furthermore, in comparison to a state-of-the-art hy-
brid solver, our hybrid solver is more robust and efficient to
solve these linear systems on a large number of processors.
As a result, our hybrid solver has the potential to enable a
large-scale particle accelerator simulation by using a large
number of processors and reducing the memory required by
a processor. We are working to improve the parallel perfor-
mance of our solver and conducting further experiments to
solve larger systems using thousands of processors.
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Figure 2 demonstrates the performance of a time domain 
FIT simulation using the latest hardware. This algorithm 
falls into the “memory-bandwidth” limited category and 
therefore benefits directly from recent CPU developments 
[3]. GPU computing even further accelerates this example 
[4]. Figure 3 highlights the speed-up when one, two or 
four GPUs are used over a reference system with the 
latest generation of CPUs.  

 

 

Figure 3: Speed-up of GPU computing. Reference is the new CPU 
generation [3]. 

Again, the speed-up is possible due to the higher memory 
bandwidth on the GPU hardware platform, which allows a 
greater throughput of the memory bandwidth limited 
algorithm.  
Frequency domain techniques on the other hand require a 
matrix inversion within the solution process. This tends to 
require much more floating point operations per memory 
access. Therefore they benefit from multiple cores/CPUs 
even on systems with lower memory bandwidth.  
 

 

Figure 4: Typical speed-up of a direct methods-of-moments (MoM) 
solver vs. number of threads used on 8 core machine 

Figure 4 shows the speed-up of multi core usage for a 
direct methods-of-moments (MoM) solver. It can be 
observed that an excellent speed-up of more than 6 on a 8 
core machine can be achieved.  

 
 

SOFTWARE ACCELERATION 
TECHNIQUES 

The message passing interface protocol (MPI) [5] is a 
standard library used for parallel processing across 
multiple compute nodes via a standard interconnect 
protocol, e.g. Internet Protocol (IP). It is used in [2] to 
implement a Domain Decomposition scheme. Unlike the 
distributed computing scheme, see figure 1, MPI 
introduces some overhead in the simulation. In its time 
domain implementation the nodes need to exchange 
information about field components across the domain 
boundaries in each time step. Therefore the cluster 
computing becomes most efficient if the overhead - the 
time to synchronize the nodes - is small compared to the 
time to update the fields in the volume of one domain.  

 

 
Figure 5: Efficiency of MPI based cluster computing for different 
discretizations vs. number of used cluster nodes 

Figure 5 visualizes the efficiency of cluster computing, 
when multiple compute nodes are used. In addition it 
includes multiple discretizations in terms of mesh cell 
count for the same example. In theory the efficiency 
drops as the overhead gets larger with multiple nodes, 
highlighted in blue. If the model is large enough, one can 
get close to this limit, making it an effective scheme for 
simulations with distributed memory.  

 

For independent simulations, multiple computers in the 
network can be used to simulate different  

• Port excitations (time-domain solver) 
• Frequency samples (frequency domain solver) 
• Parameter combinations during parameter sweep 

or optimization 
in parallel. Figure 6 illustrates the process of submitting a 
simulation from the frontend machine to the main 
controller. Since all the setup is done on the frontend it 
detects N independent simulations and asks the main 
controller for N individual jobs. The main controller 
checks the status of the connected solvers and distributes 
the simulations. After the solver is finished it reports back 
to the main controller. The frontend at the end 
automatically merges the results of the individual 
simulations, in order to make this process seamless for the 
user. The overall simulation performance therefore is an 
almost perfect linear speed-up with the number of 
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Abstract 

   New emerging multi-core technologies can achieve high 
performance, but algorithms often need to be redesigned 

to make effective use of these processors.  We will 

describe a new approach to Particle-in-Cell (PIC) codes 

and discuss its application to Graphical Processing Units.  

INTRODUCTION 

High Performance Computing (HPC) has been 

dominated for the last 15 years by distributed memory 

parallel computers and the Message-Passing Interface 

(MPI) programming paradigm.  The computational nodes 

have been relatively simple, with only a few processing 

cores.  This computational model appears to be reaching a 

limit, with several hundred thousand simple cores in the 
IBM Blue Gene.  The future computational paradigm will 

likely consist of much more complex nodes, such as 

Graphical Processing Units (GPUs) or Cell Processors, 

which can have hundreds of processing cores, with 

different and still evolving programming paradigms, such 

as NVIDIA’s CUDA.  One anticipates that the next 

generation HPC computers, unlike Blue Gene, will consist 

of a relatively small number (<1,000) nodes, each of 

which will contain hundreds of cores.  High performance 

on the node will in most cases require new algorithms.  

Between nodes, however, it is likely that MPI will 

continue to be effective. 
      Particle-in-Cell (PIC) codes [1-2] are one of the 

most important codes in plasma physics and other 

sciences, and use substantial computer time at some of the 

largest supercomputer centers in the world.  Such codes 

integrate the trajectories of many charged particles, each 

interacting via electromagnetic fields they themselves 

produce.  In anticipation of future requirements, we have 

been developing algorithms for PIC codes on this new 

class of multi-core nodes.  As much as possible, we would 

like these new algorithms to be general enough that they 

would run well on most of the new emerging 
architectures.  We decided to start with NVIDIA GPUs, 

because they are powerful, inexpensive, and widely 

available. 

     These GPUs consist of 12-30 multiprocessors, each 

of which has 8 processor cores.  The control logic 

performs the same operation on 32 cores at a time.  There 

is a large (up to 4 GBytes) global memory, which has very 

high aggregate bandwidth (up to 140 GBytes/sec), far 

higher than the memory bandwidth of a traditional 

processor.  The memory latency (400-600 clocks) is quite 

high, however.  To hide this latency, the NVIDIA GPUs 

support thousands of threads simultaneously, and can 

switch threads in one clock period.  To use this 

architecture, there are two challenges to any algorithm.  

The first is that the high global memory bandwidth is 

achieved only when adjacent threads read adjacent 
locations in memory (stride 1 access, or in the vocabulary 

of NVIDIA, data coalescing).  This is due to the fact that 

memory is read 64 bytes at a time, and if all 64  bytes are 

used, memory bandwidth is maximized.  The second is 

that there is no cache.  However, each multiprocessor has 

a small (16 KB), fast (4 clocks) memory which can be 

shared by threads running on that multiprocessor.  It is 

best to read and write global memory only once (with 

stride 1 access), storing the data that has to be read more 

than once or does not have stride 1 access, in small pieces.  

From this we concluded that ordered, streaming 

algorithms are optimal for this and similar architectures. 
      PIC codes codes have 3 major components.  The 

first is a deposit step, where particles contribute charge or 

current field elements to grid points located near the 

particle’s position.  The deposit generally involves a 

scatter operation. The second is a field solver, where some 

subset of Maxwell’s equation is solved to obtain values of 

electric and/or magnetic field points on a grid from the 

charge or current grid points.  The third is a particle push 

step, where particles interpolate electric or magnetic fields 

at a particle’s position by interpolating from nearby field 

elements.  The push generally involves a gather operation.  
Normally, most of the time is spent in the deposit and 

push steps, since there are usually many more particles 

than grids.  PIC codes typically have low computational 

intensity.  That is, the number of floating point operations 

(FLOPs) compared to the number of memory accesses is 

small,  around 2 or 3, so that optimizing memory 

operations is very important.   Parallel algorithms for 

distributed memory parallel computers have been 

available for many years [3], and such codes have 

effectively used 1,000-100,000 processors. 

      PIC codes can implement a streaming algorithm by 

keeping particles constantly sorted by grid.  This 
minimizes global memory access, since all the particles at 

the same grid point read the same field elements:  the field 

elements need to be read only once for the entire group 

(and can be stored in registers).  Cache is not needed, 

since gather/scatter operations are no longer required.  

Most importantly, it is possible to store particles so that 

the deposit and push procedures all have optimal stride 1 

memory access.  The challenge is whether one can sort 

the particles in an optimal way. 

      In this paper, we will discuss an implementation of 

a streaming algorithm for a simple 2D electrostatic 

____________________________________________  
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particle code on the NVIDIA GPUs.  This code involves 

depositing charge, solving a Poisson equation with a 

spectral method, and implementing a particle push with 

electric forces only.   It is based on one of the codes from 

the UPIC Framework [4].  An electromagnetic code 

would differ only in the local operations (depositing 
current in addition to charge , including magnetic forces 

in the push), but not in the structure of the algorithm or its 

parallelization.  The entire code runs on the GPU, in 

contrast to an earlier work which implemented only a 

deposit algorithm [5]. 

 

ORDERED CHARGE DEPOSIT 

In a traditional PIC code, the particle coordinates are 

stored as (or ultimately translated to) grid units, where the 

integer part of a coordinate refers to the nearest grid point, 

and the deviation from the grid point is used as a weight 

in the interpolation.  In the charge deposit, one would first 

extract the integer part of the coordinate, and then add the 

weights to the nearest grid points.  The most commonly 

used interpolation is linear, which in 2D would involve 

the four nearest grid points.   Two arrays are used as the 

data structures, a particle array part and a charge array q.  

In Fortran, they would be declared as follows: 
 

  dimension part(idimp,nop), q(nx+1,ny+1) 

 

where idimp is the number of coordinates describing a 

particle.  In this case there are 4 coordinates, 

corresponding to two positions, x and y, and two 

velocities, vx and vy, respectively.  The size of the grid is 

given by nx and ny, and nop is the number of particles.  

The charge on a particle is given by qm.  The traditional 

deposit loop is: 

 

do j = 1, nop 
   n = part(1,j)                     ! extract x grid point 

   m = part(2,j)                    ! extract y grid point 

   dxp = qm*(part(1,j) - real(n))   ! find weights 

   dyp = part(2,j) - real(m) 

   n = n + 1;  m = m + 1               ! add 1 for Fortran 

   amx = qm - dxp 

   amy = 1.0 - dyp 

   q(n+1,m+1) = q(n+1,m+1) + dxp*dyp     ! deposit  

   q(n,m+1) = q(n,m+1) + amx*dyp 

   q(n+1,m) = q(n+1,m) + dxp*amy 

   q(n,m) = q(n,m) + amx*amy 
enddo 

 

When particles are sorted, a new data structure is 

needed.  Particles can still be stored in a 2D array as 

before, but they are now grouped together, and there could 

be gaps between groups, since the number of particles per 

grid can vary.  The location of where a group of particles 

at a grid starts and the number of particles at that grid are 

stored in a separate array.  The new data structures are 

declared in Fortran as follows: 

 

dimension part(idimp,npmax)     ! npmax > nop 

dimension npic(2,nx*ny) 

 

The element npic(1,k) contains the number of particles 

at grid k, and the element npic(2,k) contains the location 

in the array part where this group starts.  The loop over 
particles now becomes a double loop as follows: 

 

do k = 1, nx*ny           ! new outer loop over grids 

   joff = npic(2,k)         ! memory offset 

   do j = 1, npic(1,k)    ! inner loop over particles at grid 

   x = part(1,j+joff)      ! obtain the x coordinate 

   ... 

   enddo 

enddo 

 

A charge deposit loop for ordered particles can be 

written: 
 

k2 = 0 

do k = 1, nx*ny                 ! outer loop over grids 

k2 = k2 + 1                        ! increment cell address 

sqll = 0.0; squl = 0.0          ! zero out local accumulators 

sqlu = 0.0; squu = 0.0 

joff = npic(2,k) 

do j = 1, npic(1,k)              ! loop over particles at grid 

   dxp = qm*(part(1,j+joff))     ! find weights 

   dyp = part(2,j+joff) 

   amx = qm - dxp 
   amy = 1.0 - dyp 

   squu = squu + dxp*dyp       ! first sum charges locally 

   sqlu = sqlu + amx*dyp 

   squl = squl + dxp*amy 

   sqll = sqll + amx*amy 

enddo 

q(k2) = q(k2) + sqll            ! then deposit sum in array 

q(k2+1) = q(k2+1) + squl 

q(k2+nx+1) = q(k2+nx+1) + sqlu 

q(k2+nx+2) = q(k2+nx+2) + squu 

enddo 

 
Note that the integer part of a coordinate no longer 

needs to be stored, since it is known from the grid 

location.  This improves accuracy with 32 bit arithmetic, 

since all bits are used to store weights.  The contribution 

of all the particles at a grid are first summed locally into 

register variables, then added to the grid.  This reduces the 

number of memory references needed and improves the 

computation intensity of this subroutine from less than 2 

to around 5. 

PARALLEL CHARGE DEPOSITS 

This ordered algorithm does not run safely in parallel, 

however, since a particle at one grid writes to other grids, 
and two threads cannot safely update the same grid at the 

same time.  There are two possible approaches.  A 

traditional approach is to implement an atomic update, 

where the sum s = s + x is performed as a single, 
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uninterruptible operation by locking or protecting the 

memory in some fashion.  CUDA supports atomic updates 

for integers, but not for floating point numbers.  

Protecting memory, however, is slow and not very 

portable in most computer languages.  An alternative 

approach is to have each thread write to its own memory 
locations, which includes additional guard cells that are 

added up later.  Such techniques are common in 

distributed memory algorithms, but require additional 

memory.  We shall adopt the latter approach, which is 

known as domain decomposition. 

      The parallel algorithm will assign each thread ngrid 

grid points, which are defined in an array kcell.  The 

charge density array q now needs to include guard cells 

for an extra row and column.  If ngrid < nx, the number of 

guard cells needed is ngrid+2.  The worst case is ngrid = 

1, and nthreads = nx*ny, when 3 guard cells are needed 

for each grid.   These new data structures are declared in 
Fortran as follows: 

 

dimension q(2*ngrid+2,nthreads) 

dimension kcell(2,nthreads) 

 

The element kcell(1,kth) contains the initial grid index 

and kcell(2,kth) contains the final grid index for thread 

kth. 

 

For a conventional processor, the parallelization can be 

expressed by adding an OpenMP style outer loop: 
 

!$OMP PARALLEL 

!$OMP DO 

do kth = 1, nthreads   ! parallel loop over threads kth 

kmin = kcell(1,kth)    ! minimum cell number for thread 

kmax = kcell(2,kth)   ! maximum cell number for thread 

ngrid = kmax - kmin + 1      ! number of cells for thread 

k2 = 0 

   do k = kmin, kmax 

 

! charge deposit loop for ordered particles as previously 

shown 
 

   q(k2,kth) = q(k2,kth) + sqll       ! deposit sum in array 

   q(k2+1,kth) = q(k2+1,kth) + squl 

   q(k2+ngrid+1,kth) = q(k2+ngrid+1,kth) + sqlu 

   q(k2+ngrid+2,kth) = q(k2+ngrid+2,kth) + squu 

   enddo 

enddo 

!$OMP END DO 

!$OMP END PARALLEL 

 

 
This algorithm will run correctly in parallel.  However, 

it will not run optimally on the GPU.  The reason is that 

adjacent threads do not read adjacent locations in memory 

(stride 1 access is not maintained).  To achieve this, we 

must declare the arrays so that the thread index is the first 

dimension in Fortran arrays (in C, the last dimension): 

 

dimension q(nthreads,2*ngrid+2), kcell(nthreads,2) 

 

More importantly, we also need to partition the particle 

array and its associated data descriptor by thread index as 

well.  We shall also assign the same number of grids to 

each thread: 
 

dimension part(nthreads,idimp,npmax/nthreads) 

dimension npic(nthreads,2,ngrid) 

 

Other than reorganizing the data with the new partition, 

the algorithm remains the same. 

FIELD SOLVER 

The field solver used in this test code solved Poisson’s 

equation, using spectral methods and making use of 

CUDA’s CUFFT library.  The algorithm has three steps.  

First perform a real to complex 2D FFT on the charge 

density q.  Next, multiply the complex charge density qk 

by the quantity -ik/k2 to obtain the complex electric field 
fk. Finally, perform a complex to real 2D FFT to obtain 

the electric field f in real space. 

      We decided to use the cufftExecC2C function which 

performs multiple 1D complex to complex FFTs, and 

build our own 2D real to complex FFT using a well 

known algorithm [6].  The CUDA function requires the 

data to be packed with no gaps between elements.   Since 

the input charge density array has some of the data in 

guard cells, we add the guard cells as we copy to a 

contiguous array.  If we choose the parallel loop index to 

correspond to the index of the output array, this operation 
can be safely run in parallel.  The output of this operation 

is the form: 

 

complex, dimension q(nx/2,ny) 

 

Once the data is copied, we perform multiple FFTs in x 

for each y.  We then transpose the data, while modifying it 

as required by the algorithm[6].  This transpose has stride 

1 only on the input.  NVIDIA has examples of how to 

improve this, but so little time was used here, we did not 

do so.  Finally, we perform multiple FFTs in y for each x.  
The result is an complex array qk of the form: 

 

complex, dimension qk(ny,nx/2+1)  

 

The field solver calculates the two component electric 

field fk in fourier space from qk, and the operation is 

reversed to obtain the 2 component electric field in real 

space: 

 

complex, dimension fk(ny,2,nx/2+1) 

complex, dimension f(nx/2,2,ny) 

 
The final step is to create an electric field array with 

guard cells, described next. 
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PARALLEL PARTICLE PUSH 

The particle push integrates Newton’s equation of 

motion using a leap-frog scheme: 

 

    v(t+dt/2) = v(t-dt/2) + f(x(t))*dt 

    x(t+dt) = x(t) + v(t+dt/2)*dt 

 
where dt is the time step, and  f(x(t)) is the force at the 

particle’s position, found by interpolation.  The push 

subroutine is structured the same as the deposit.  To 

maintain stride 1 memory access, the electric field is 

partitioned just like the charge density: 

 

f(nthreads,2,2*ngrid+2) 

 

The partitioning is done by the field solver as its final 

step.  The 8 components needed to interpolate the electric 

field for the group of particles at a grid are read once and 

stored in register variables, then reused by all the particles 
in the group.  The inner loop of the push subroutine is as 

follows: 

 

do k = 1, ngrid 

   k2 = k2 + 1 

   fxll = f(kth,1,k2)                            ! read forces 

   fyll = f(kth,2,k2) 

   fxul = f(kth,1,k2+1) 

   fyul = f(kth,2,k2+1) 

   fxlu = f(kth,1,k2+ngrid+1) 

   fylu = f(kth,2,k2+ngrid+1) 
   fxuu = f(kth,1,k2+ngrid+2) 

   fyuu = f(kth,2,k2+ngrid+2) 

   joff = npic(kth,2,k) 

   do j = 1, npic(kth,1,k) )     ! loop over particles at grid 

      dxp = part(kth,1,j+joff)              ! obtain coordinates 

      dyp = part(kth,2,j+joff) 

      vx = part(kth,3,j+joff) 

      vy = part(kth,4,j+joff) 

      amx = 1.0 – dxp 

      amy = 1.0 - dyp                         ! find acceleration 

      dx = dyp*(dxp*fxuu + amx*fxlu)  
                      + amy*(dxp*fxul + amx*fxll) 

      dy = dyp*(dxp*fyuu + amx*fylu) 

                      + amy*(dxp*fyul + amx*fyll) 

      vx = vx + qtm*dx                      ! update coordinates 

      vy = vy + qtm*dy 

      dx = dxp + vx*dt 

      dy = dyp + vy*dt 

      part(kth,1,j+joff) = dx               ! write coordinates 

      part(kth,2,j+joff) = dy 

      part(kth,3,j+joff) = vx 

      part(kth,4,j+joff) = vy 

   enddo 
enddo 

PARALLEL PARTICLE SORTING 

After the particles have been pushed, they may need to 

be placed in a new grid group and location in memory.  

We have tried about a dozen algorithms, and finally 

selected one which appeared to be best.  This algorithm 

assumes that most particles remain in the group, in which 

case they are written to the same location they had 

originally.  This maintains stride 1 memory access as 

much as possible. 
      Within a thread, the groups are processed left to 

right.  If a particle is going to a group outside the thread, 

the particle coordinates and destination group number are 

written to a message buffer owned by the thread.  In 

addition, the location of the hole created by the departing 

particle in the original group is recorded in a hole array.  

If a particle is going to a group within the thread, there are 

two possibilities.  For a particle going to a group to the 

right (which has not yet been processed), it is temporarily 

buffered at the end of the particle array in the destination 

group, and the location of the hole in the original group is 

recorded.  Once a group has been processed, any holes in 
the group are filled from the temporarily buffered 

particles, starting from the last written particle and hole.  

Finally, if a particle is going to a group to the left (which 

has already been processed), it is placed either in a hole, if 

there is one, or added to the end of the group of particles. 

       Once all the particles are processed (there is an 

implicit synchronization point here), each thread 

examines the message buffers created by the other threads 

to see if any particles belong in this thread.   To optimize 

this search, an array icell is created, which contains for 

each thread, the index of other possible threads to search.  
For linear interpolation and a uniform partition, this 

number is normally 8.  The array icell changes whenever 

the partition described by the array kcell changes.  The 

incoming particles are either placed in a hole, if there is 

one, or added to the end of the appropriate group.  Finally, 

if any holes in a group are left, they are filled with 

particles from the end of the group. 

      For particles leaving a thread group, this algorithm 

is very similar to the message-passing schemes used by 

distributed memory PIC codes [3,7]. 

PERFORMANCE RESULTS 

Porting this code to the GPU required first translating 
six (kernel) subroutines into C, and replacing the loop 

over threads  

 

for (kth = 0; kth < nthreads; kth++) 

 

with a special CUDA construct: 

 

kth = blockIdx.x*blockDim.x+threadIdx.x; 

 

In addition, memory had to be allocated on the GPU, 

and initial data copied from the host.   Finally, wrapper 

functions were written to enable the kernel subroutines to 
be called from the main Fortran code.  At the end of the 

simulation, the final charge density array was copied to be 

host to check for correctness. 
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      The following benchmarks were run on a Macintosh 

Pro, with a 2.66 GHz Intel Xeon W3520(Nehalem) host 

and a C1060 Tesla card.  Because Mac OS does not 

support the Tesla card, we installed the Fedora 11 Linux 

operating system on this hardware.  The benchmark 

application had a 256x512 grid and 4,718,592 particles, 

with a timestep of pdt=0.025.  It was run in single 

precision, and the time reported is the time per particle per 

time step.  For the benchmark, up to 131,072 threads were 

possible.  However, it turned out that the optimal result 

was obtained for 8,192 threads (so that each thread had 16 
grids), with 128 threads/multiprocessor. 

 

         Intel Nehalem   Nvidia Tesla    Speedup 

Deposit:    8.2 nsec.        0.16 nsec.       51 

Push:      19.9 nsec.        0.56 nsec.       36 

Sort:            -                 1.30 nsec.        - 

Total:      30.0 nsec.       2.27 nsec.        13 

 

The overall speedup for the entire code was about 13.  

Most of the time was spent in the sorting step, particularly 

handling particles moving from one thread group to 

another.  The field solver consumed only a small part of 
the total time in both cases.  It should be noted that the 

new algorithm is more accurate in single precision than 

the original algorithm, as explained in the Ordered Charge 

Deposit section . 

DISCUSSION 

This version of the PIC code made use of global 

memory only.  Access to global memory is the slowest 

part of the hardware, and is important to optimize that 

first.  It is a very general algorithm and should run on any 

processor.  The charge and push subroutines improved 

extremely well, with performance within a factor of 2 of 

the memory bandwidth limit.  Clearly, the sorting step 
needs the most attention.  We expect to improve the 

algorithm in the future by making use of faster local 

memories.   We were somewhat surprised that we could 

effectively use distributed memory algorithms on such a 

device, in avoiding data conflicts and maintaining stride 1 

memory access.  We were impressed that using CUDA 

was so simple. 

      The 2D code used for development here is 

challenging because there are few operations and the 

overall computational intensity with the new algorithm 

improves only from 2 to 4 times.  Our target application, 

however, is a 3D electromagnetic code, and our estimate 

is that the computational intensity with the new algorithm 
should improve from 2 to 30 times, so we expect much 

better results there.  The sorting, even if not improved, 

should become relatively less important. 

 

REFERENCES 

[1] Charles K. Birdsall and A. Bruce Langdon, Plasma 
Physics via Computer Simulation [McGraw-Hill, 
New York, 1885]. 

[2] Roger W. Hockney and James W. Eastwood, 
Computer Simulation Using Particles [McGraw-Hill, 
New York, 1981]. 

[3] P. C. Liewer and V. K. Decyk, “A General Concurrent 
Algorithm for Plasma Particle-in-Cell Codes,” J. 
Computational Phys. 85, 302 (1989). 

[4] V. K. Decyk, “UPIC: A framework for massively 
parallel particle-in-cell codes,” Computer Phys. 
Comm. 177, 95 (2007).  

[5] P G. Stanchev, W. Dorland, and N. Gumerov, “Fast 
parallel Particle-to-Grid interpolation for plasma PIC 
simulations on the GPU,” J. Parallel Distrib. Comput. 
68, 1339 (2008). 

[6] W. H. Press, S. A. Tekolsky, W. T. Vetterling, and B. 
P. Flannery, Numerical Recipes in Fortran 
[Cambridge University Press, 1986], p. 504. 

[7] P. M. Lyster, P. C. Liewer, R. D. Ferraro, and V. K. 
Decyk, “Implementation and Characterization of 
Three-Dimensional Particle-in-Cell Codes on 
Multiple-Instruction-Multiple-Data Parallel 
Supercomputers,” Computers in Physics 9, 420 
(1995). 

 
 
 
 

 

WE2IOPK03 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

100



VIZSCHEMA – A STANDARD APPROACH FOR VISUALIZATION OF 
COMPUTATIONAL ACCELERATOR PHYSICS DATA* 

S. Shasharina#, J. Cary, M. Durant, S. Kruger, S. Veitzer, Tech-X Corporation, Boulder, CO, 
80303, U.S.A.

Abstract 
Even if common, self-described data formats are used, 

data organization (e.g. the structure and names of groups, 
datasets and attributes) differs between applications.  This 
makes development of uniform visualization tools 
problematic and comparison of simulation results 
difficult. VizSchema is an effort to standardize metadata 
of HDF5 format so that the entities needed to visualize the 
data can be identified and interpreted by visualization 
tools. This approach allowed us to develop a standard 
powerful visualization tool, based on VisIt, for 
visualization of large data of various kinds (fields, 
particles, meshes) allowing 3D visualization of large-scale 
data from the COMPASS suite for SRF cavities and laser-
plasma acceleration. 

INTRODUCTION 
Visualization is extremely valuable in providing better 

understanding of scientific data generated by simulations 
and guiding researchers in designing more meaningful 
experiments. Scientific models need to be compared with 
each other and validated against experiments.  
Consequently, most computational scientists rely on 
visualization tools.  However, visualization and data 
comparison is often made difficult by the fact that various 
simulations use very different data formats and 
visualization tools.     

Self-describing data formats are increasingly being used 
for storage of data generated by simulations. Such formats 
allow the code to store and access data within a file by 
name.  The file storage system then takes care of 
developing an index for the data.  In addition, the data can 
be decorated with attributes describing the units, 
dimensions, and other metadata for a particular variable.  
The self-describing formats now in use also help to deal 
with binary incompatibilities.  Because different machine 
architectures use different binary representations for 
numbers, a binary file written by one processor may not 
be readable by another processor.  Self-describing data 
file formats and interfaces ensure that the data is written 
in a universal binary format on all processors, and that 
software reading the data translates it to the appropriate 
architecture-specific format.   

The Hierarchical Data Format (current version is 
HDF5) [1] and the NetCDF [2] format are in common use 
in the fusion, accelerator and climate modeling 
communities.  HDF5 allows one to create a multi-tiered 
data structure inside of a file, so that one can create nested 
structures of groups and datasets.   

 
Examples of HDF5 use include plasma physics codes 

such as VORPAL [3], a 3D plasma simulation code 
developed under development and Tech-X, and 
SYNERGIA [4], a multi-particle accelerator simulation 
tool developed at Fermilab.  Both codes are actively used 
in the COMPASS SciDAC project [5].  Many other 
communities (earth sciences, fusion simulations) also use 
HDF5. 

In spite of the fact that all these codes use self-
describing data format, their files are organized very 
differently.  They often do not share the node structure, do 
not agree on attributes, use different names for physically 
similar variables and store data in different structures.  In 
other words, self-describing formats, though powerful, do 
not impose universally interpretable data structures.   

For example, VORPAL put particles data in one dataset 
with all spatial information coming first: x = data[0,:], y = 
data[1,:], z = data[2.:], followed by momenta: p_x = 
data[3,:], p_y = data[4,:], p_z = data[5:,:],  while 
SYNERGIA intermixes momenta and spatial information: 
p_x = data[0,:], x = data [1,:] etc.  

How one can guess from looking at the data what is 
what? How does one recognize that a particular dataset 
represents a mesh and what kind of mesh is it?  How does 
one indicate that a dataset is mapped to a particular mesh?  
Which data ordering is used (is it grouped by components 
or position indices)?  Using some standards and common 
metadata within these formats could resolve this problem.   

Visualization tools used by different teams are also very 
non-uniform.  For a long time, scientific community used 
IDL [6] and AVS/Express [7].  Lately, many teams are 
moving towards the freely available, open source, high-
quality visualization tools such as VisIt [8]. 

In this paper we present our efforts to develop such a 
standard for computational applications dealing with field 
and particles data.  Our approach is based on first 
identifying the entities of interest to visualization, 
relationships between these entities and then defining 
intuitive and minimalistic ways to express them using 
metadata and common constructs used in self-described 
data formats: groups, datasets, and attributes.    We call 
this data model VizSchema.   

It is then used to implement a VisIt plugin (called Vs) 
which reads visualization entities from HDF5 files into 
memory and creates VisIt data structures thus providing a 
data importing mechanism from VizSchema compliant 
HDF5 files into VisIt.  

In what follows we describe the VizSchema data 
model, Vs plugin, give examples of visualization and 
discuss future directions. ______________________________________________  

*Work supported by DOE grant DE-FC02-07ER54907. 
#sveta@txcorp.com 
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VIZSCHEMA DATA MODEL 
Principles 

In this section we describe the elements of the 
VizSchema.  These elements identify the data structures 
that one needs to expose in order to do visualization.  
They are not about HOW the visualization is performed 
(i.e. the type of light or position of the camera); instead, 
they are WHAT is being visualized (data and geometry) 
and WHAT needs to be exposed for minimal default 
visualization.   

In designing the schema we use the following guiding 
principles: 
• VizSchema assumes that data comes as one of three 

types: variables (data which lives on a mesh 
described outside of the HDF5 node containing the 
data), variables with meshes (data which mixes 
physical values with the spatial information which is 
contained within the same HDF5 nodes) and meshes. 

• These entities are identified by HDF5 markup and 
have particular attributes specific to their types. 

• All the markup for the schema should be contained in 
the attributes so that users could choose the names of 
the data itself (typically contained in groups and 
datasets) as they please.  The markup can be 
generated during I/O or added in a post-processing 
step.  We expect these attributes to start with “vs”.    

• VizSchema attributes can refer to other entities using 
their short or fully-qualified names.  If a short name 
is used, the reader will first search in the same space 
and then enlarge the search until the matching name 
is found.  

• Each vs entity has an attribute vsType, which 
describes its category (variable or mesh, for 
example). 

• Some entities have different kinds (i.e. subtypes), in 
which case a vsKind attribute specifies the kind. 

Although, the schema entities described below use 
HDF5 lingo, mapping to the NetCDF lingo is 
straightforward; one needs just to substitute the term 
“variable” in place of “dataset.”  In the remainder of this 
section we give some details of the VizSchema elements.  

Variables and Variables With Mesh 
We assume that data comes as one of two kinds: a 

variable or a variable with mesh.  A variable represents 
data, which lives on a mesh described outside of the 
variable array, while a variable with mesh contains spatial 
information within itself.  In Particle-in-Cell simulations, 
all fields share the same mesh, so this mesh is described 
once and the values of the electric and magnetic fields do 
not contain the spatial information but rather depend on 
the tool to determine the mesh that they live on.  Such 
fields are typically “variables.”  For particle data, one 
typically outputs their momentum and position in one 
dataset, so here the tool is supposed to generate a point 
mesh from within this dataset.  So, particle data is a 
“variable with mesh.”  The suggested markup gives the 
information to the visualization tool to interpret the data.  

In the following pseudo-code snippet we show the 
variable markup in HDF5: 

 
Dataset "phi" { 
  Att vsType = "variable"  
  Att vsMesh = "mycartgrid"  
  Att vsCentering = "zonal"  
} 
 
The vsType attribute in this example indicates that this 

dataset needs to be visualized and needs a mesh called 
mycartgrid to be defined elsewhere in the file.  The 
optional attribute vsCentering instructs that the data 
should be interpolated to a zone (with the default being 
nodal).  The dimensions of the variable can be derived 
from querying the dataspace and are not needed in the 
explicit metadata.  

Since variables with mesh mix spatial and other data in 
one dataset, there should be a way to specify the data 
structure.  If the dataset’s first N indices specify the 
coordinates (like in VORPAL), one could use the 
following markup:  

 
Dataset "vorpalElectrons" { 
  Att vsType = "variableWithMesh"  
  Att vsNumSpatialDims = N    
} 
 
If the layout of data is different from this order (for 

example, like in SYNERGIA), one needs to use 
vsSpatialIndices, which would indicate which indices of 
the dataset contain spatial information: 

 
Dataset “synergiaElectrons” { 
  Att vsType = “varibaleWithMesh” 
  Att vsSpatialIndices = [1, 3, 5] 
} 
 
Since the data can be ordered in many various ways, 

one also needs to describe the ordering of the data or the 
order of indices starting from the fastest-varying.  For 
example, for the 3D case:  
 
compMinorC = (i0, i1, i2, ic) 
compMinorF = (ic, i2, i1, i0) 
compMajorC = (ic, i0, i1, i2)  
 (same as compMinorF for 1D) 
compMajorF = (i2, i1, i0, ic)  
 (same as compMinorC for 1D) 
 
In component minor order, the indices (i0, i1, i2, ic) are 

such that the component index, ic, appears last. The C 
reference would be array[i0][i1][i2][ic], while the Fortran 
reference would be array(i0,i1,i2, ic).  In component 
major, the indices (ic, i0, i1, i2) are such that the 
component index, ic, appear first. The C reference would 
be array[ic][i0][i1][i2], while the Fortran reference would 
be array(ic,i0,i1,i2). 

When addressing the array in memory, two adjacent 
memory locations can differ by incrementing either the 
first index (Fortran) or the last index (C). Since the data is 
generally written to HDF5 files without changing the 
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order, the component index must be specified. The default 
value of this attribute is compMinorC.  This attribute is 
needed to reorder data as expected by a visualization tool. 

Derived Variable 
It is often useful to define additional variables, which 

are not being dumped by a simulation but present an 
interesting thing to see as well.  That is why, in addition 
to the prime variable described above, we allow defining 
expressions using regular mathematical symbols.  For 
example, one could define a density of electric energy as 
follows: 
Group anygroupname { 
  Att vsType = "variableDefinition"  
  Att vsDefinition = "elecEnergyDensity = 

(E_0*E_0+E_1*E_1+E_2*E_2)"    
} 
 
In defining this, we assume that the visualization tool 

can parse and evaluate such expressions. These 
assumptions are valid for our VisIt plugin 
implementation, which uses Python as its expression 
language. 

Meshes 
There is no uniform classification of meshes across 

tools and experiments. Based on our experience with 
several codes, we determined that the following mesh 
type categorizations are fairly general:  
• Structured grid, which is defined by a list of points 

defined by their coordinates. 
• Rectilinear grid, which is defined by the lists of 

increasing coordinate values for each axis and is a 
specialization of a structured grid 

• Uniform grid (sometimes also called uniform 
Cartesian), which has constant distances between 
nodes in all directions and is a specialization of a 
rectilinear mesh 

• Unstructured grid, which are defined by points and 
cells of various types. 

The VizSchema markup for these mesh types is shown 
by the following examples. The first example describes a 
structured mesh with component-minor ordering. The 
dataset contains the mesh's points as an array ordered in 
X, Y, and Z, with 3 values (x,y,z) at each mesh point, for 
a total of 4 array dimensions: 

 
Dataset "mystructmesh" { 
  Att vsType = "mesh"   
  Att vsKind = "structured"   
  Att vsIndexOrder = "compMinorC"  
  Att vsStartCell = [0, 0, 0]   
} 
 
The second example describes a 2D rectilinear mesh. It 

is a group containing 2 datasets, each of which contains 
the mesh points along one axis (X, Y). The optional 
vsAxis* attributes provide a name for each axis. 

 
Group "myrectgrid" { 
  Att vsType = "mesh”   

  Att vsKind = "rectilinear"   
  Att vsAxis0 = "axis0"   
  Att vsAxis1 = "axis1"   
  Dataset axis0[n0]   
  Dataset axis1[n1]   
} 
The third example describes a 3D uniform mesh. Since 

all the mesh points are uniformly distributed, the 
coordinates of each point do not have to be provided. 
Instead, the VS attributes give the start and end position 
and number of cells along each axis, permitting a 
visualization tool to generate the mesh. 

 
Group "myunigrid" { 
  Att vsType = "mesh"   
  Att vsKind = "uniform"   
  Att vsStartCell = [0, 0, 0]   
  Att vsNumCells = [200, 200, 104]   
  Att vsLowerBounds = [-2.5, -2.5, -1.3]  
  Att vsUpperBounds = [2.5, 2.5, 1.3]   
} 
The final example describes a 3D unstructured mesh. 

Such a mesh is generated from two arrays, one containing 
the coordinates of the mesh points, and the other 
containing entries giving the set of points that compose 
each cell in the mesh. By default, the coordinate array is 
named “points” and the cell array is named “polygons”. 
The optional attributes vsPoints and vsPolygons permit 
arrays with non-default names to contain this information. 

 
Group "mypolymesh" { 
  Att vsType = “mesh”   
  Att vsKind = “unstructured”   
  Att vsPoints = "points"  
  Att vsPolygons = "polygons"  
} 
The list of supported kinds of meshes will be growing 

as we encounter more kinds of simulation data.  Some of 
them will need to have mappings to already existing types 
with the data translations implemented in the Vs plugin. 

Multi-Domain Data 
Quite often simulation data comes from multiple 

domains and uses different names in these domains, while 
it would be natural to treat it as one variable in a 
continuous domain.  For such cases, we use vsMD 
attribute, which instructs visualization tools to connect 
data having the same value of this attribute.  

Here is an example of two domain blocks that will be 
treated as a single multi-domain mesh named "edgeMesh" 
amd the two variables psiPriv and psiSol are declared to 
be an md variable named psi: 

 
Dataset "privMesh" { 
  Att vsType = "mesh"  
  Att vsKind = "structured"  
  Att vsMD = “edgeMesh” 
}  
Dataset "solMesh" { 
  Att vsType = "mesh"  
  Att vsKind = "structured"  
  Att vsMD = "edgeMesh"  
}  
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Dataset "psiPriv" { 
  Att vsType = "variable"  
  Att vsMesh = "privMesh" 
  Att vsMD = “psi”  
}  
Dataset "psiSol" { 
  Att vsType = "variable"  
  Att vsMesh = "solMesh"  
  Att vsMD = "psi"  
} 

Summary Of The Data model 
To summarize, the visualization data model consists of 

variables, variables with mesh and meshes and their 
metadata.  Variables metadata includes their names, their 
meshes, data ordering and centering.   Variables with 
mesh have metadata for their name, data ordering, 
centering and separation of values from the spatial 
information.  Meshes metadata depends on the mesh kind 
and fully describes each kind.    

There are also variables defined as expressions and 
links that allow creating multi-domain variables. 

In addition to the metadata described above, 
visualization needs additional metadata needed for correct 
allocation of the memory. For example, each dataset has 
its internal type (int, for example) and dimensions.  This 
metadata should also be extracted before the visualization 
is possible but does not have to be present in the data 
markup. 

VS PLUGIN 
Based on the data model described above, we 

implemented a C++ data reader class, which reads all the 
needed metadata from HDF5 files into the memory.  This 
reader creates an object that reflects the structure of an 
HDF5 file as it is seen by visualization – lists of variables 
with the meshes that they live on, variables with meshes, 
derived variables and meshes and all their metadata.  
Once such object is created, one uses the reader’s 
methods for reading these entities by their name.   All the 
data is returned as a void* array (consistent with HDF5 
model) for which memory should be allocated based on 
the metadata of this entity.  The interface of the reader 
class is independent of the type of the visualization tool 
and is implemented for HDF5 data. 

Next we created a VisIt plugin using the reader’s API.  
This plugin is available for the download at 
https://ice.txcorp.com/trac/vizschema/wiki/WikiStart.  We 
are in the process of adding it to VisIt repository so it will 
be available upon VisIt installations. 

EXAMPLES 
Several codes adopted VizSchema and now provide the 

compliant output during I/O.  One can also change the 
files after they have been generated using PyTables [9] 
(we have successfully using to change data as the schema 
evolved and also to annotate SYNERGIA files in 
accordance with the schema). 

The plugin code was tested on Linux and OS X and is 
installed on such supercomputers as franklin.nersc.gov.  
Figs. 1-4 show some examples of visualizations done 
using the VizSchema plugin for VisIt.  Fig. 1 is a screen 
capture of OASCR Award for Scientific Visualization at 
the 2008 Scientific Discovery through Advanced 
Computation Conference (Seattle) for the video, “Visual 
Inspection of a VORPAL Modeled Crab Cavity.” 

Fig. 2 has been used as a cover for one of the issues of 
SciDAC review magazine [10].  Fig. 3 shows 
visualization for SYNERGIA data.  Fig. 4 shows an 
example of multi-domain visualization and demonstrates 
that VizSchema is general enough to accommodate 
applications outside of computational accelerator physics: 
data from FACETS (Framework Application for Core-
Edge Transport Simulations) [11].   

CONCLUSIONS AND FUTURE 
DIRECTIONS 

Standardization of the HDF5 output using consistent 
markup for visualization proved to be useful in 
accelerator physics applications as well as other domains 
having notions of fields and particles.  The developed 
VisIt plugin is available for all interested parties. 

In the nearest future we intend to extend the schema 
and the plugin with more detailed metadata for 
unstructured meshes and bring more applications into the 
VizSchema realm.   

It will be interesting to develop a means to 
automatically annotate data with the markup.  One could 
have a text or XML input for mapping internal data to the 
data elements of the schema and then use PyTables to add 
the expected attributes.  
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Figure 1: Examples of a visualization of VORPAL data: electromagnetic fields (red and green) and magnetic stress on 
the cavity (on the walls). 

 

 
 

Figure 2: A three-dimensional VORPAL simulation models the self-consistent evolution of the wake resulting from a 
laser pulse and the acceleration of particles in a laser-plasma particle accelerator. Shown in volume rendering are the 
wake (blue) and a particle bunch (green and yellow). Courtesy of G.H. Weber and C. Geddes. 
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Figure 3: Examples of a visualization of SYNERGIA data: beam colored by the energy of the particles. 

 

 
 

Figure 4: Examples of a visualization of FACETS data: electron temperature defined in multiple domains. 
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THE OBJECT ORIENTED PARALLEL ACCELERATOR LIBRARY
(OPAL), DESIGN, IMPLEMENTATION AND APPLICATION

A. Adelmann∗, Ch. Kraus, Y. Ineichen, PSI, Villigen Switzerland
S. Russell, LANL, Los Alamos, USA,
Y. Bi, J.J Yang, CIAE, Beijing, China

Abstract
OPAL (Object Oriented Parallel Accelerator Library) is

a tool for charged-particle optic calculations in accelera-
tor structures and beam lines including 3D space charge,
short range wake-fields and 1D coherent synchrotron radi-
ation and particle matter interaction. Built from first princi-
ples as a parallel application, OPAL admits simulations of
any scale, from the laptop to the largest High Performance
Computing (HPC) clusters available today. Simulations,
in particular HPC simulations, form the third pillar of sci-
ence, complementing theory and experiment. OPAL has
a fast FFT based direct solver and an iterative solver, able
to handle efficiently exact boundary conditions on complex
geometries. We present timings of OPAL-T using the FFT
based space charge solver with up to several thousands of
cores.

OPAL IN A NUTSHELL
OPAL is a tool for charged-particle optics in accelerator

structures and beam lines. Using the MAD language with
extensions, OPAL is derived from MAD9P and is based on
the CLASSIC class library, which was started in 1995 by an
international collaboration. The Independent Parallel Parti-
cle Layer (IP 2L) is the framework which provides parallel
particles and fields using data parallel ansatz, together with
Trilinos for linear solvers and preconditioners. Parallel in-
put/output is provided by H5Part/Block a special purpose
API on top of HDF5. For some special numerical algo-
rithms we use the Gnu Scientific Library (GSL).

OPAL is built from the ground up as a parallel appli-
cation exemplifying the fact that HPC (High Performance
Computing) is the third leg of science, complementing the-
ory and experiment. HPC is now made possible through the
increasingly sophisticated mathematical models and evolv-
ing computer power available on the desktop and in super
computer centres. OPAL runs on your laptop as well as on
the largest HPC clusters available today.

The state-of-the-art software design philosophy based on
design patterns, makes it easy to add new features into
OPAL, in the form of new C++ classes. Figure 1 presents a
more detailed view into the complex architecture of OPAL.

OPAL comes in the following flavors:

• OPAL-T

• OPAL-CYCL

∗ andreas.adelmann@psi.ch
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Figure 1: The OPAL software structure

• OPAL-MAP (not yet fully released)

• OPAL-ENVELOPE (not yet fully released)

OPAL-T tracks particles with time as the independent
variable and can be used to model beam lines, dc guns,
photo guns and complete XFEL’s excluding the undula-
tor. Collective effects such as space charge (3D solver),
coherent synchrotron radiation (1D solver) and longitudi-
nal and transverse wake fields are considered. When com-
paring simulation results to measured data, collimators (at
the moment without secondary effects) and pepper pot el-
ements are important devices. OPAL-CYCL is another fla-
vor which tracks particles with 3D space charge including
neighboring turns in cyclotrons, with time as the indepen-
dent variable. Both flavors can be used in sequence, hence
full start-to-end cyclotron simulations are possible. OPAL-
MAP tracks particles with 3D space charge using split op-
erator techniques. OPAL-ENVELOPE is based on the 3D-
envelope equation (à la HOMDYN) and can be used to de-
sign XFEL’s

Documentation and quality assurance are given our high-
est attention since we are convinced that adequate docu-
mentation is a key factor in the usefulness of a code like
OPAL to study present and future particle accelerators.
Using tools such as a source code version control system
(subversion), and source code documentation (Doxygen)
together with an extensive user manual we are committed
to provide users as well as co-developers with state-of-the-
art documentation for OPAL. Rigorous quality control is
realized by means of daily build and regression tests.
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In the sequel we will only discuss features of OPAL-T
based on the current production version 1.1.5.

MODELS
In recent years, precise beam dynamics simulations in

the design of high-current low-energy hadron machines as
well as of 4th generation light sources have become a very
important research topic. Hadron machines are charac-
terized by high currents and hence require excellent con-
trol of beam losses and/or keeping the emittance of the
beam in narrow ranges. This is a challenging problem
which requires the accurate modeling of the dynamics of a
large ensemble of macro or real particles subject to compli-
cated external focusing, accelerating fields and wake fields,
particle-matter interaction, as well as the self-fields caused
by Coulomb interaction of the particles. In general the
geometries of particle accelerators are large and compli-
cated which has a direct impact on the numerical solution
method.

Some of the effects can be studied by using a low dimen-
sional model, i.e., envelope equations [1, 2, 3, 4]. These are
a set of ordinary differential equations for the second-order
moments of a time-dependent particle distribution. They
can be calculated fast, however the level of detail is mostly
not sufficient for quantitative studies. Furthermore, a priori
knowledge of critical beam parameters such as the emit-
tance is required with the consequence that the envelope
equations cannot be used as a self-consistent method.

One way to overcome these limitations is by considering
the Vlasov-Poisson description of the phase space, includ-
ing external fields and self-fields and, if needed, other ef-
fects such as wakes. To that end let f(x,v, t) be the density
of the particles in the phase space, i.e., the position-velocity
(x,v) space. Its evolution is determined by the collision-
less Vlasov equation,

df

dt
= ∂tf + v · ∇xf +

q

m0
(E + v×B) · ∇vf = 0, (1)

where m0, q denote particle mass and charge, respectively.
The electric and magnetic fields E and B are superposi-
tions of external fields and self-fields (space charge),

E = Eext + Eself + Ewake, B = Bext + Bself . (2)

If E and B are known, then each particle can be propagated
according to the equation of motion for charged particles in
an electromagnetic field,

dx(t)
dt

= v,
dv(t)

dt
=

q

m0
(E + v ×B) .

After the movement of the particles Eself and Bself have
to be updated. To that end we change the coordinate system
into one moving with the particles. By means of the ap-
propriate Lorentz transformation [5] we arrive at a (quasi-
) static approximation of the system in which the trans-
formed magnetic field becomes negligible, B̂ ≈ 0. The

transformed electric field is obtained from

Ê = Êself = −∇φ̂, (3)

where the electrostatic potential φ̂ is the solution of the
Poisson problem

−∆φ̂(x) =
ρ̂(x)
ε0

, (4)

equipped with appropriate boundary conditions. Here, ρ̂
denotes the spatial charge density and ε0 is the dielectric
constant. By means of the inverse Lorentz transformation
the electric field Ê can then be transformed back to yield
both the electric and the magnetic fields in (2).

In OPAL the discretized Poisson equation is either
solved by a combination of a Green function and FFT or
by a conjugate gradient algorithm, preconditioned with al-
gebraic multi-grid using smoothed aggregation (SA-AMG
PCG). This 3D solver has the unique capability to include
the exact boundary geometry. The right hand side in (4)
is discretized by sampling the particles at the grid points.
In (3), φ̂ is interpolated at the particle positions from its
values at the grid points. We also note that the FFT-based
Poisson solvers and similar approaches [6, 7] are usually
restricted to box-shaped or open domains in order to obtain
good performance.

Field Solver
A Direct FFT Based Poisson Solver In our imple-

mentation of the PIC method, firstly a rectangular 3D grid
containing all particles is constructed. Subsequently, the
charges are interpolated onto the grid points. Then the dis-
cretized Poisson equation is solved on the grid to obtain the
scalar field at the grid points. The electric field is calculated
on the grid and interpolated back on to the positions of the
particles .

In 3D Cartesian coordinates, the solution of the Poisson
equation at point x can be expressed by

φ(x) =
1

4πε0

∫
G(x,x′)ρ(x,x′)dx′ (5)

with G the 3D Green function

G(x,x′) =
1√

(x− x′)2
(6)

assuming open boundary conditions. The typical steps of
calculating space charge fields using Hockney’s FFT algo-
rithm is sketched in Algorithm 1, where the quantities with
superscript D (discrete) refer to grid quantities.

The image charge of a beam near a cathode is not neg-
ligible, hence open boundary conditions are not justified
in such a case. To find the space-charge forces on the
beam from the image charge by the standard Green func-
tion method, we need to solve the Poisson equation with
a computational domain containing both the image charge
and the beam. We are using a shifted-Green function [8]
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Algorithm 1 3D Space Charge Calculation
1: procedure 3DSpaceCharge(In: ρ, G, Out: Esc,Bsc)
2: Create 3D rectangular grid which contains all particles,

3: Interpolate the charge q of each macro-particle to
nearby mesh points to obtain ρD,

4: Lorentz transformation to obtain ρD in the beam rest
frame Sbeam,

5: FFT ρD and GD to obtain ρ̂D and ĜD,
6: Determine φ̂D on the grid using φ̂D = ρ̂D · ĜD,
7: Use FFT−1 of φ̂D to obtain φD,
8: Compute ED = −∇φD,
9: Interpolate E at the particle positions x from ED,

10: Perform Lorentz back transform to obtain Esc and Bsc

in frame Slocal and transform back to Slab.
11: end procedure

technique in order to efficiently compute the correct poten-
tial at the cathode. With this technique, the FFT is used to
calculate the cyclic convolution and the previous algorithm
can be used to calculate the potential in the shifted field
domain.

At emission from a dc gun, or when calculating neigh-
boring turns in a cyclotron, the electrostatic approximation
is not valid anymore. To overcome this problem we divide
the beam into n energy bins. The space charge solver uses
now n separate Lorentz transformations.

To show the parallel performance of OPAL-T we con-
sider two problems, the first one has 5 · 106 particles on a
64×64×128 mesh and 200 time steps are considered. The
used CPU time as a function of cores is shown in Figure 2.
We obtain in the order of 5 · 106 particle pushes per sec-
ond on a 16 nodes (HP BL460c blades) cluster, each node
having a dual-socket quad core Intel Xeon E5450 3.0 GHz
with 16GB ECC RAM. For a high-bandwidth low-latency
communication the InfiniBand interconnect is used.
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Figure 2: CPU time of a production run showing the scaling
of the most important parts of OPAL-T on a 128 core HP
Cluster.

The second problem consists of 1·108 particles on a 5123

mesh and timings for 3 integration steps are shown in Fig-

ure 3. The timings where obtained on the Cray XT5 clus-
ter of the Swiss Supercomputing Center (CSCS) in Manno.
Each of the 1844 compute nodes consists of 2 quad-core
AMD Opteron 2.4 GHz Shanghai processors giving 8 cores
in total per node with 16 GBytes of memory. The high-
speed network based on a SeaStar 2.2 communications
processor which is able to provide 2 GBytes/s of injec-
tion bandwidth for the node, with a theoretical peak of 9.6
GBytes/s of bandwidth in each direction for the through-
flow of packets out on the network.
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Figure 3: CPU time of a test run showing the scaling of the
most important parts of OPAL-T on a Cray XT5.

A Fast Iterative Parallel Poisson Solver on Irregu-
lar Domains The problem is discretized by finite dif-
ferences. Depending on the treatment of the Dirichlet
boundary the resulting system of equations is symmetric
or ‘mildly’ nonsymmetric positive definite. In all cases,
the system is solved by the preconditioned conjugate gradi-
ent algorithm with smoothed aggregation (SA) based alge-
braic multigrid (AMG) preconditioning. Additionally we
investigated variants of the implementation of SA-AMG
that lead to considerable improvements in the execution
times. We demonstrate good scalability of the solver on
distributed memory parallel processor with up to 2048 pro-
cessors in [9]. In this paper we also compare our SAAMG-
PCG solver with the FFT-based solver described in the pre-
ceding paragraph.

Particle Matter Interaction
The physics models describing particle matter interac-

tion includes energy loss and Coulomb scattering. The nu-
clear scattering is not yet included for particles in the or-
der of hundreds of MeVs. Their contribution is negligible
compared to Coulomb scattering. The energy loss model is
based on the Bethe-Bloch equation. Comparing the stop-
ping power with the PSTAR program of National Institute
of Standards and Technology (NIST), we find errors in the
order of 10% for copper, from several MeV to 10 GeV.
Important for our immediate application at PSI, the error
is within 3% in the region from 50 MeV to 1 GeV. In gen-
eral, there is energy straggling when a beam passes through
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the material. For relatively thick absorbers such that the
number of collisions is large, the energy loss distribution
is Gaussian [10]. The Coulomb scattering is treated as two
independent events: the multiple Coulomb scattering and
the large angle Rutherford scattering, using the distribution
given in [11].

Validation A 72 MeV cold Gaussian beam with σx =
σy = 5 mm is send through a copper slit with the half aper-
ture of 3 mm from 0.01 to 0.1 m. Figure 4 shows some tra-
jectories of particles which are either absorbed or deflected
by the collimator. Most of the particles were absorbed
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Figure 4: Trajectories of particles which are either ab-
sorbed or deflected by the collimator.

within a range of about 7.4 mm, except for a few which
were deflected by the collimator. As a benchmark of the el-
liptic collimator models in OPAL, the energy spectrum and
angle deviation is compared against two general-purpose
Monte Carlo codes, MCNPX [12] and FLUKA [13, 14],
as shown in Fig. 5. The deflected particles contribute to
the energy spectrum and angle deviation after a collimator.
These particles may be lost downstream.
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Abstract

elegant is an open-source accelerator code that has
been in use and development for approximately two
decades. In that time, it has evolved from a graduate
student project with a narrow purpose to a general code
for the design and modeling of linacs and storage rings.
elegant continues to evolve, thanks in no small part to
suggestions from users. elegant has seen extensive ap-
plication to modeling of linacs, particularly for applica-
tions related to free-electron lasers and energy recovery
linacs. Recent developments have emphasized both linac
and storage-ring-related enhancements, along with paral-
lelization. In this paper, we briefly review the features of
elegant and its program suite. We then describe some of
the recent progress made in the ongoing development of
elegant. We also discuss several noteworthy applications
and directions for future work.

INTRODUCTION

The program elegant [1] is now widely used in the ac-
celerator community and is available as source code or in
binary form for many operating systems. It started more
than two decades ago as a graduate student project when
the lead author concluded that it was easier to write a
new code than to modify existing codes to include needed
features. Since then, it has undergone almost continuous
incremental improvement, with releases at approximately
six-month intervals. The original structure and philosophy
of the code are well suited to this process.

A basic elegant run has two inputs: a command input
file and a lattice definition file. The command input file
contains a series of namelist-like structures defining a se-
ries of commands to set up and execute a run. The lattice
input file defines the lattice using a format that is very sim-
ilar to that popularized by the program MAD [2].

One of the design goals of elegant was to make adding
a new element no harder than writing code to implement
the physics of the element. Toward this end, a set of data
structures was defined that allows the developer to describe
the properties and parameters of any new element, as well
as the properties of those parameters. This element dictio-
nary has made incremental improvement of the code rela-
tively painless. (It is also used to automatically generate
the manual pages for all elements.)

∗Work supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.

† borland@aps.anl.gov

elegant attempts to implement as many features as pos-
sible using a lumped-element concept. For example, one
may impart charge to a beam or change the Twiss param-
eters of a beam using a lumped element. This has the
advantage of allowing elegant to vary or optimize such
properties just as it could for a property of a quadrupole or
any property of another traditional beamline element. Sim-
ilarly, many local diagnostic outputs are obtained by insert-
ing one of several diagnostic elements into the beamline.
elegantwas the first accelerator code to make thorough

use of self-describing data for input and output, starting
originally with the Access With Ease (AWE) protocol [3]
and transitioning in 1993 to the Self-Describing Data Sets
(SDDS) protocol [4]. This feature is as important as the el-
ement dictionary in allowing incremental improvement and
delivering new results to users in a consistent, usable fash-
ion. With SDDS we can add new data to the output without
disrupting users and applications that use the output files.
We can also make use of general-purpose pre- and post-
processing tools that are not elegant-specific.

In what follows, we discuss recent improvements in
elegant and some of the programs distributed with it.
We’ll begin by discussing improvements of a general na-
ture, followed by a discussion of new features that are spe-
cific to ring modeling. Next, we’ll summarize the status of
on-going parallelization of the code, then turn to a discus-
sion of recent changes to related programs. Finally, we will
briefly review some recent applications of elegant and
plans for future development. This paper covers changes
starting with version 16.0 and ending with version 22.1.

GENERAL IMPROVEMENTS

Although elegant (“ELEctron Generation ANd Track-
ing”) was written for electron tracking, repeated requests
were made to allow tracking of other particles. The new
change_particle command allows to user to choose dif-
ferent particles by name or specify the charge and mass of
the particle of interest.

Optimization is an important feature of elegant and
perhaps one of its strengths, compared to other codes.
elegant’s optimizer uses a single penalty function that is
the sum of many terms, each of which is specified as an
expression by the user. Essentially anything the program
computes, including intermediate and final results of track-
ing, can be used in an optimization term. New features
in optimization include the ability to define optimization
terms from templates, so that many similar optimization
terms may be added without much effort. We’ve also added
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the ability to read optimization terms from an SDDS file, so
that they can be generated by external programs or scripts.
elegant features several elements for modeling wig-

glers and undulators, including the new UKICKMAP element,
which implements undulator kick maps [5]. A script was
written and distributed with elegant that translates RA-
DIA [6] kick map output into SDDS for input to elegant.
The CWIGGLER element (a canonically integrated wiggler
using code from Y. Wu [7]) was improved to use more gen-
eral field expansions, such as those resulting from certain
helical or vertically polarized devices. The CWIGGLER ele-
ment now also includes classical and quantum synchrotron
radiation effects when tracking.

Another element that involves an undulator is
LSRMDLTR, which simulates a laser/undulator beam heater.
This element was upgraded to include a time-dependent
laser profile as well as synchrotron radiation.

A number of methods of simulating synchrotron radi-
ation effects are provided in elegant. One of these is
element-by-element simulation during tracking. By de-
fault, modeling of quantum effects uses Gaussian energy
scattering of simulation particles [8], which might not be
accurate for beams with very small emittance or energy
spread. To allow examination of these, the CSBEND ele-
ment now allows modeling synchrotron radiation using the
energy and angle distributions for the emitted photons.

Of course, one can use tracking with element-by-
element synchrotron radiation modeling to compute the
beam properties along a beamline or even at equilibrium
in a storage ring. However, a more efficient method [9] is
propagation of the beam envelope using matrix techniques,
including the damping and diffusion effects of radiation.
This is now available in elegant, both for storage rings
and transport lines, using the moments_output command.
The results of these computations at any number of points
in the lattice may also be subjected to optimization. One
application of this is coupling minimization.

Another source of beam size and energy spread is intra-
beam scattering (IBS), which can be modeled in elegant
using the IBSCATTER element. The algorithm behind
IBSCATTER has been improved to include the effect of
vertical dispersion [10], to allow multipole scattering lo-
cations, and to allow modeling of IBS with acceleration
[11]. The program ibsEmittance, which is distributed
with elegant, includes the same changes and can be used
for computing equilibrium properties in storage rings.

In order to model IBS along a beamline using
IBSCATTER, it is necessary to insert many IBSCATTER el-
ements in the lattice. To make this easy, we added the
insert_elements command, which allows inserting a
new element at multiple locations in a lattice without edit-
ing the lattice definition file. A companion command,
replace_elements, is also new. It allows replacing ex-
isting elements with new ones. In both cases, the result can
be saved as a new lattice file.

Another example of using insert_elementswould be
to insert many WATCH elements in a lattice in order to get

phase-space dumps at many locations. In the past, this
wouldn’t work as expected because all the output files
would have the same name, so that only the last occurrence
would be retained. In addition, in modeling a large beam-
line one could easily attempt to open more files than the
operating system allows. Hence, we improved the WATCH
element to allow versioning of the filenames and to make
use of the SDDS library’s file disconnection feature to al-
low an essentially unlimited number of output files.
elegant models lumped-element beam pipe apertures

of various types. Using insert_elementsprovides a new
way to add apertures to an existing lattice at specific loca-
tions; e.g., one could insert the same aperture downstream
of all quadrupoles with the same name. To further improve
aperture specification, we’ve added the aperture_data
command, which allows providing the beam aperture as a
function of position along a beamline using an SDDS file.
This file can, of course, be plotted together with loss distri-
bution data or beam size data, using sddsplot.

When modeling errors in long transport lines, the simu-
lated beam may be completely lost on the apertures before
making a full pass. This makes trajectory correction us-
ing traditional methods problematical. To address this, we
added two new trajectory correction methods. The thread
method attempts to thread the beam through the system
looking only at transmission. The one-to-best method
pairs each corrector with the downstream BPM showing
the largest response. Both methods attempt to imitate what
might be done in early-stage commissioning.

Singular-value decomposition (SVD) is a standard tech-
nique for orbit and trajectory correction in situations where
the beam is fully transmitted. elegant’s correction al-
gorithm has been updated to use SVD, including various
methods of downselecting the singular values that are used.
elegant is used frequently as part of a procedure for

routine correction of lattice functions in the APS [12].
We know that many of our gradient errors result from
orbit offsets in sextupoles. Under such circumstances,
the sextupoles act like combined function sextupoles and
quadrupoles. For convenience in the correction procedure,
we added the KQUSE element, which is a combined canon-
ically integrated quadruople and sextupole magnet. This
magnet can also be used in advanced storage ring designs
that posit combined function magnets of this type.

STORAGE RING MODELING

A topic of considerable recent interest in the storage ring
community has been the use of pulsed sextupole magnets to
perform injection [13]. To support modeling of such con-
cepts, elegant now includes the MBUMPER element, which
simulates a time-dependent multipole kicker. The wave-
form for the kicker is supplied using an SDDS file.

No matter what injection method is used, having suffi-
cient dynamic aperture (DA) is an important consideration
in obtaining high injection efficiency. We’ve improved the
aperture search algorithms in elegant to include multi-
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line scans from the origin as well as a “smart” calculation
of the aperture area that ignores lobes that may indicate
an unreliable result. In addition, the DA area may now be
optimized using elegant’s built-in optimization methods.
Another method of improving dynamic aperture is mini-
mization of resonance driving terms [14]. The computa-
tion and optimization of these quantities is now included in
elegant, so that they can be optimized along with other
linear and nonlinear properties of the lattice.

Particularly in light source rings, coupling has an impor-
tant effect on DA. elegant now supports computation of
coupled lattice functions, based on Ripken’s method [15],
and allows these to be optimized. This could be used, for
example, to correct coupling in the presence of errors.

DA is just one aspect of storage ring optimization.
Equally important is the position-dependent momentum
aperture [16], which determines the Touschek lifetime.
This computation is now included in elegant. It can be
used for storage rings, of course, but has also been applied
to single-pass systems like energy recovery linacs (ERLs)
[17].

One of elegant’s strengths in ring simulations is mod-
eling collective effects. This includes transverse and lon-
gitudinal short-range wakes and resonant impedances. The
former are computed turn-by-turn, while the latter persist
over many turns. An effective way to avoid spurious tran-
sients in such simulations is to ramp the impedance gradu-
ally from zero[18]. This feature has been added for trans-
verse and longitudinal wakes, impedances, and rf modes.

Typically when modeling a ring with impedances, one
needs to track a large number of particles for many turns to
get reliable results. Hence, one cannot afford element-by-
element tracking. At the same time, one needs to include
higher-order transport effects, e.g., chromaticity or tune
shift with amplitude, as these may provide damping. This
can be done with the new ILMATRIX element, which stands
for Individualized Linear MATRIX. This element can stand
in for an entire storage ring or a superperiod, for example.
The user specifies the periodic lattice functions, the tunes,
and the momentum- and amplitude-dependent tune shifts.
Synchrotron radiation effects can also be included with the
(pre-existing) SREFFECTS element, providing a very fast
simulation with all the essential features.

In addition to impedance elements, elegant can now
simulate transverse space-charge kicks in a storage ring
[19]. This is accomplished using the insert_sceffects
command, which inserts a number of SCMULT elements.
Each of these elements imparts an effective space-charge
kick that simulates the effect of weak space-charge forces
over the intervening distance from the previous element.
Using insert_sceffects, it is trivial to vary the number
of elements used in order to verify convergence.

PARALLELIZATION

With the increasing emphasis on multicore processors in
laptops and desktops, parallelization is essential to the fu-

ture of any simulation code. Pelegant, the parallel version
of elegant, has been successfully run on dual-core laptops
and 1000-core supercomputers. The status of paralleliza-
tion is detailed elsewhere in this conference [20, 21].

Parallelization of elegant is being performed gradu-
ally, concurrent with on-going improvements to the se-
rial version, while maintaining a single set of source code
files. The initial approach was to parallelize only those
elements that involve “embarrasingly parallel” operations,
then gradually parallelize the elements that involve inter-
process communication. The code is capable of switching
between parallel and serial mode automatically as required,
based on information in the element dictionary. This ap-
proach resulted in a very useful parallel version in about
6 months, which was put to immediate use. At present,
just under 90% of the elements have been parallelized for
multi-particle tracking. Optimization that involves tracking
also makes use of parallel computation.

Originally, the master node handled all input/output
(I/O) and performed particle scatter/gather operations as
needed. As a result of I/O and memory bottlenecks, this
approach was limited to about 60M particles (for 16 GB
of RAM on the master node). A significant recent im-
provement was the addition of parallel I/O using the par-
allel SDDS library [21] and subsequent elimination of the
central role of the master processor. This has allowed sim-
ulation with hundreds of millions of particles with signifi-
cantly improved performance.

In addition to basic tracking of multi-particle beams,
which involves particle-based domain decomposition, sev-
eral other operations were recently parallelized. These in-
clude frequency map analysis, dynamic aperture search-
ing, and momentum aperture searching [20]. We believe
Pelegant is the first parallel code to offer these features,
although the elegantRingAnalysis script [22] provides
equivalent functionality.

RELATED PROGRAMS

The consistent use of SDDS files makes it easy to deploy
elegant as a component of a larger application. Examples
of this abound in the use of elegant along with other ac-
celerator codes and free-electron laser (FEL) codes to per-
form start-to-end modeling for FEL light sources. One nec-
essary component of such simulations is the ability to trans-
late phase-space conventions among codes. Recent addi-
tions of this type include a pair of programs to translate be-
tween elegant and ASTRA [23] conventions, and another
pair to translate between elegant and TRACK [24] con-
ventions. Several scripts are available to translate IMPACT-
T [25] output, including phase-space output, into SDDS.

Modeling the effects of coherent synchrotron radiation
(CSR) is of course important in linac-based light sources,
but it is also of interest in storage ring design. A convenient
way to model CSR in a storage ring is to use the steady state
CSR impedance with shielding [26]. This impedance can
be computed and placed in an SDDS file ready for use with
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elegant using the new program csrImpedance.
Different aspects of synchrotron radiation are handled

by the new programs sddsurgent and sddsfluxcurve,
which augment sddsbrightness in providing computa-
tions of synchrotron radiation properties. sddsurgent
provides computation of flux distributions and spectra
using code from the programs URGENT [27] and US
[28]. sddsfluxcurve provides computation of flux tun-
ing curves using code from US. All of these programs take
beam distribution data from elegant output files.

Another recent addition is touschekLifetime [17],
which allows computation of Touschek lifetime using op-
tics and momentum aperture data generated by elegant.
elegant’s commandline interface and use of SDDS

strongly supports script-based automatation of simulations.
Along these lines, we have written the graphical user in-
terface script elegantRingAnalysis [22], to provide a
convenient interface to many storage ring computations.
elegantRingAnalysis is designed to take advantage of
a computing cluster, but can run on a single processor.
elegantRingAnalysis uses sddsfindresonances, an-
other recent tool, to find resonances in frequency map data.

SOME RECENT APPLICATIONS

In this section we briefly highlight a few recent applica-
tions, some of which use the new features discussed above.

Short-pulse x-rays in rings: APS has investigated the
application of Zholents’ scheme [29] for crab-cavity-based
short pulse x-ray production from a storage ring. Origi-
nally [30], we used serial elegant, but the studies later
benefited immensely from the parallel version. In partic-
ular, the optimization of sextupole to reduce vertical emit-
tance dilution[31] and the exploration of the use of pulsed
cavities[32] both benefited from rapid turn-around with
the parallel version. Figure 1 shows an example of using
Pelegant to optimize the results of one-pass tracking to
minimize the vertical emittance growth while maintaining
the desired chromaticity. elegant was also used to in-
vestigate this scheme for the Diamond Light Source [33].
Several other short-pulse schemes, one based on a vertical
kicker [34], another based on rf phase modulation [35], and
a third based on circulation of a short injected pulse [36],
were also investigated with elegant.

Storage ring optimization: Optimization of dynamic
and momentum aperture is a challenging aspect of stor-
age ring design. Using elegant and Pelegant, we im-
plemented several highly successful direct methods [37]
of optimizing dynamic and momentum aperture based
on tracking and genetic optimization. Figure 2 shows
an example of frequency map analysis performed with
elegantRingAnalysis on 100 processors for an opti-
mized APS lattice with 10 long straight sections. Earlier,
elegant was used to develop potential replacement rings
for the APS[38, 39] as well as ultimate storage ring light
sources [40]. elegant is also being used to optimize the
NSLS-II lattice in the presence of strong damping wig-

glers using both direct optimization and minimization of
resonant driving terms [14, 41], to model injection into the
ring[42], and to investigate instabilities [43].

ERL design and modeling: elegant has been used ex-
tensively for design and simulation of ERLs, both at APS
and elsewhere (e.g., [44, 45, 46, 47]). The APS group
has produced several designs [48, 49] for possible up-
grades. This included simultaneous optics matching for
beams of multiple energies in the same beamline, as in Fig-
ure 3, which shows an optics solution for a two-pass 7-GeV
linac. Tracking with Pelegant was essential in evaluating
concerns about the microbunching instability [50]. Other
elegant-based investigations at APS are Touschek scat-
tering simulation and loss minimization[19], intrabeam-
scattering simulation[11], optics correction[51], and x-ray
compression [52].

FEL design and simulation: The recent success of the
Linac Coherent Light Source (LCLS) at SLAC [53] has
demonstrated the power of modern simulation tools, in-
cluding elegant, to accurately predict the performance of
future accelerators [54, 55]. elegant was used for devel-
opment of the LCLS design and is part of on-going work
to develop new operating modes for LCLS [56, 57].

The FERMI project has made use of elegant for a wide
variety of design and simulation problems. This includes
study of the laser heater [58] and related diagnostics [59],
trajectory correction [60], jitter [61], beam instabilities
[62], bunch length diagnostics [63], and the microbunching
instability [64]. Figure 4 shows the evolution of a density
modulation in FERMI, modeled with Pelegant.

Many other FEL projects are using elegant, including
efforts in Korea [65], the United Kingdom [66, 67], Italy
[68], Sweden [69], Switzerland [70], the United States [71,
72], Germany [73, 74], Japan [75], and China [76].

International Linear Collider (ILC): The ILC is a pro-
posed next-generation electron-positron collider based on
superconducting technology. elegant has been used in
several aspects of ILC design, including the electron source
[77], positron source [78, 79], bunch compression [80], and
damping ring [19, 81].

FUTURE DEVELOPMENT

While there is no formal plan for future work on
elegant, we anticipate that in the not-too-distant future
the following enhancements will be made available. Users
are encouraged to send suggestions for additional features.

1. Simultaneous parallel optimization of dynamic and
momentum aperture, to allow use of the built-in simplex
optimizer to perform storage ring nonlinear optimization.
This should be more convenient than the existing method
using a genetic optimization script.

2. Upgrading of the CSR algorithm to include shielding,
non-relativistic beams, and multiple magnet effects, using
the method of Sagan et al. [82]. Although the existing
algorithm seems to correspond very well to experiments
on LCLS, this upgrade will extend the validity to longer
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bunches and lower energies.
3. Addition of higher-order wakes and long-range resis-

tive wall wakes is desirable.
4. Inclusion of IBS in moments computations is desir-

able in order to have a self-consistent result including radi-
ation effects and IBS.

5. Improved coupling correction, using cross-plane re-
sponse matrices and vertical dispersion correction. At
present, coupling correction can only be done using some-
what artificial methods, such as correction of the coupled
lattice functions or moments, or using an external script.

6. Built-in lattice correction using LOCO [83]. At
present, this is performed by an external script. With par-
allel resources, it should be possible to quickly perform the
simulated response matrix measurement and correction.

CONCLUSION

elegant and related tools are under continuous, incre-
mental development for linac and storage ring simulation.
We have reviewed some of the many new features added
in the last three to four years, as well as highlighted some
applications. Details of the features discussed in this paper
may be found in the elegant manual, which is available
on-line [84]. An additional source of information and as-
sistance is the on-line forum [85].
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Figure 1: Vertical emittance optimization in the presence
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UPDATE ON MAD-X AND FUTURE PLANS

F. Schmidt (MAD-X custodian∗), CERN, Geneva, Switzerland

Abstract

After a intense and hectic code development during the
LHC design phase the MAD-X [1] program (Methodical
Accelerator Design – Version X) is going through a period
of code consolidation. To this end the development on the
core has been frozen and most efforts are concerned with
a solid debugging in view of a trustworthy production ver-
sion for the LHC commissioning. On the other hand, the
demand on further code development from the LHC pre-
accelerators and CLIC are dealt with PTC [2] related parts
of the code where the implementation is in full swing. Hav-
ing reached a mature state of the code the question arises
what kind of future can be envisaged for MAD-X.

INTRODUCTION

During the year 2000 the MAD-X project had been
started and a first version had been released in June
2002 [1]. Since then all parts of the code have been adapted
frequently to deal with constantly changing requirements
needed for the LHC design. Since some time now we have
shifted our focus to the upcoming LHC commissioning.
Since MAD-X will be playing a relevant role in the LHC
operation.

Module Description Keeper
MAD-X C Core Maintenance & Debug H. Grote
APERTURE [3] Modeling LHC Aperture J.B. Jeanneret
C6T [4] SixTrack Converter F. Schmidt
CORORBIT Orbit Correction W. Herr
DYNAP Tracking Postproc. F. Zimmermann
EMIT Emittance, Radiation R. Tomas
ERROR Error Assignment W. Herr
IBS Intra-Beam Scattering F. Zimmermann
MAKETHIN Thin lens Converter H. Burkhardt
MATCH Matching Procedures E. Laface
PLOT Mad-X Plotting R. de Maria (interim)
PTC [2] PTC proper É Forest KEK
PTC NORMAL Normal Form Coeff. F. Schmidt
PTC TRACK Thick lens Lattice Track V. Kapin ITEP (RU)
PTC TWISS Ripken Optics Para. J.L. Nougaret
SODD [5] Resonance Comp. F. Schmidt
SURVEY Machine Survey F. Tekker
SXF [6] Stand. eXchange Format N. Malitsky BNL
TOUSCHEK Touschek Effect C. Milardi IFNL/LNF

F. Zimmermann
TWISS Classical Optics Para. –
THINTRACK Thin lens Lattice Track Y. Sun

Table 1: Module Keepers, People in RED are collaborators
from outside CERN, corresponding laboratories in BLUE.

∗MAD-X Module keepers see Tab.1

During the years 2008/2009 we have been working on a
consolidation of the code such that we can provide a trust-
worthy MAD-X production version for the LHC commis-
sioning. In particular, since we are presently developing an
on-line model [7] of LHC that is based on MAD-X.

On the other hand, there are new demands from other
applications notably from the LHC upgrade program, the
studies on the LHC pre-accelerators and the CLIC project.
Presently, these demands concentrate on better perform-
ing modules based on PTC. These developments have been
continued and they are not interfering with the consolida-
tion effort for the LHC commissioning.

In this report the key features of the MAD-X are re-
viewed followed by the most relevant recent MAD-X high-
lights. The consolidation phase was used to further pro-
fessionalize the code maintenance which is dealt with in
some detail in the next chapter. Besides several outdated
features of MAD-X, due to the fact that it is a successor
to MAD8, we had to use shortcuts to allow for a gluing of
MAD-X with PTC. These shortcuts cannot easily be un-
done and pose limitations for a further development of the
code as a whole. In particular since we will need MAD-X
proper in its present state for the LHC commissioning ef-
fort. This report closes with a discussion of how one could
modernize the code and achieve a better integration of PTC
with MAD-X.

KEY FEATURES

The status of MAD-X can best be understood by looking
at the design goals of MAD-X followed by a description of
what PTC is and how it is connected to MAD-X. From the
start we have decided to distribute the work of the code
development and maintenance to a large group of module
keepers (see Tab. 1) with a code custodian orchestrating
their efforts. The job of the custodian is to direct the devel-
opment of the code and to guarantee its integrity with the
goal to provide a code that can handle all requirements for
the LHC design and the commissioning alike.

Design Goals

The task at the time was to provide a code in a very short
period to allow the design work for the LHC. No grand
scheme could be attempted instead we made use of most of
the well debugged MAD8 source code (Fortran77) includ-
ing the traditional MAD8 strengths like sequence editing,
matching, plotting, closed-orbit and error routines. How-
ever, MAD8 also included out-dated techniques and some
feature were flawed if not plain wrong. Those features had
to be eliminated: e.g. thicklens non-symplectic tracking
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was replaced by a symplectic thintrack module. Another
major step has been the replacement of Lie-Algebra by
the more flexible Differential Algebra Map [8] and Nor-
mal Form techniques [9]. Memory management via C code
was used to replace CERN-made Zebra (Fortran77) and the
concept of link-lists for the elements in an accelerator have
been adopted. A better modular structure of the code was
attempted with C interfaces to isolated modules in Fortran
or C. The input language (parser in C) was chosen close
to MAD9 language and includes FLOW statements like
(while, if, macro etc). Deferred expressions are invoked by
the “:=” symbol rather than the traditional one “=”. More-
over, a complete pattern matching has been implemented.

Through out all the MAD-X modules output data are
written to self-described TFS Format with a two-way TFS-
SDDS [10] converter, both formats are self-described data
sets. For a complex code like MAD-X the version con-
trol system CVS has been an essential tool mandatory for a
sound program evolution in particular when dealing with a
large number of contributors.

The documentation is presented via the MAD-X web
page (google search: madx cern). The user guide can be
found via a HTML page. A keyword search and a PDF
manual is supplied as well. On the MAD-X web page
one can find supporting reports and minutes of the MAD-X
meetings. One can download the source code and executa-
bles. Moreover, all examples can be found collected in the
madx-examples CVS repository.

There have been 2 major objectives: a usable MAD-X
code needed for the LHC design which has been deliv-
ered by July 2002. After years of development MAD-X
has now been prepared for the LHC commissioning and
the LHC on-line model for the end of 2009. It should also
be mentioned that MAD-X also has to serve all LHC pre-
accelerators. To this end a CVS repository CAMIF (Cern
Accelerator Mad-X Input Files) has been worked out by
CERN staff for all Cern machines as of the PS booster till
the LHC and including the transfer lines. Last but not least
MAD-X has become a major design code for CLIC in par-
ticular with the PTC extension.

PTC

The single most important change to MAD8 is the inclu-
sion of PTC of É Forest [2] as an integral part of MAD-X.
The code PTC is composed of two distinct parts (in Eti-
enne’s words):

A) The independent polymorphic library FPP [8, 11]
which handles the operations on polymorphs. Poly-
morphs are capable of transforming real numbers into
Taylor at execution. FPP also contains all the criti-
cal operation on Taylor maps: Normal Forms, various
factorizations, etc

B) The code PTC proper is at heart a symplectic integra-
tor with classical radiation added on top. It also moves
around quadratic stochastic beam envelopes.

However PTC is a physics engine only. It offers hardly
any tool of convenience in itself, except when absolutely
mandatory like a closed orbit searcher. PTC remains É For-
est’s independent (Fortran90) program and is linked to
MAD-X via a converter. All modules based on PTC (also
in Fortran90) have to be provided by the MAD-X team, e.g.
ptc track (symplectic thicklens), ptc twiss and ptc normal
(responsibilities see Tab. 1). The design goal for the inte-
gration of the two codes has been: all accelerator elements
of MAD-X should be treated in PTC and agree with MAD-
X as long as the physics is correct with the added value
that the elements in PTC are correctly described for any
momentum deviation. Special emphasis is on a proper de-
scription of RBEND/SBEND, only the later is truly an el-
ement of MAD-X. This concept may best be illustrated by
an example. At the PAC03 [12] it was demonstrated that
MAD (green dots) cannot handle delta-p dependence very
well. For this cyclotron I have prepared a MAD-X run both
executing a TWISS and PTC TWISS command. The latter
(blue dots) agrees perfectly with the theoretical prediction
(red line).
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Figure 1: Simple cyclotron for MAD-X and PTC in com-
parison with theory.

This result is not a surprise to us but the very reason why
we have complemented MAD-X with PTC. Please note,
that the delta-p in this example is very large contrary to the
LHC where it is so small that TWISS is quite sufficient for
our purposes.

HIGHLIGHTS

MAD-X General Status

In 2008/2009 the MAD-X team has used the time for
a consolidation of the MAD-X code: except for cos-
metic changes the development of the core code has been
stopped. Most efforts have been concentrated on a rigorous
debugging (presently, September 2009, still on-going). In
this mature state a major effort has been launched to max-
imize performance (culprits have been: table access and
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Figure 2: High Beta LHC Interaction Zone in the stand-alone PTC model.

database searches). As a result speed-up factors of 3-5 have
been reported in LHC matching. One major change has
been the suppressing of the highly controversial individual
BV flag for separation dipoles in the common area used
to distinguish between beams going in either direction. In-
stead, we did change the LHC sequence file for the counter-
clockwise beam (BEAM2). After this special effort we are
confident that our goal has been reached to provide a trust-
worthy MAD-X program with all needed features for the
upcoming LHC commissioning.

It should also be mentioned that MAD-X has become
one of the codes that can communicate accelerator input
between those codes via AML and the Universal Accelera-
tor Parser [13].

Module Development

During the MAD-X consolidation phase the status of the
original modules have been reviewed. The goal was to have
all modules ready for the LHC commissioning.

Aperture considerations will be very relevant in the early
stages of the LHC commissioning. To this end the aperture
module was modified various times, both to add new fea-

tures and to clean-up the coding.
Studies for CLIC has revealed that the standard TWISS

module suffered from various shortcomings with respect to
chromatic functions and delta-p dependence in general. A
full solution of all these problems would require a re-write
of the code for which we simply lack the manpower. There-
fore, we decided to fix the worst problems, in particular
some improvement for the chromatic functions and a nu-
merical calculation of the chromaticity which was incorrect
in presence of linear coupling. Unfortunately, we cannot
simply replace this module with ptc twiss since computing
speed is relevant for large machines like LHC in particular
in matching.

For CLIC studies at very large delta-p dependence there
is no choice but using ptc twiss which delivers the desired
results under any condition. We have therefore assigned a
module keeper to this module. The goals are:

a) Provide the same elaborate information as the stan-
dard TWISS module.

b) Adding additional parameters, in particular dispersion
and momentum compaction in second or higher order
both for rings and lines alike.
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Unfortunately, the thintrack modules had relied on the
results of the TWISS module. This had to be changed
since these 2 modules are based on different Hamilto-
nian descriptions. The thintrack module is now fully self-
contained.

Presently, we are just missing a few more module fea-
tures: the noise element will be added and the treatment of
radiation will be improved both in the thintrack module.

PTC Advancements

Up to now PTC was based on one DA package by
M. Berz [14]. Recently, Etienne got in contact with
Lingyun Yang [15]. His DA package is written in C++ re-
quiring an elaborate interface in PTC. Now both DA pack-
ages co-exist in PTC. Results are identical and the C++
package is even slightly better in performance. It should
also be noted that this new package is optimized for use
with many variables which still needs to be fully exploited.

The combination of PTC with ORBIT [16], has been re-
cently achieved and successfully applied for the J-PARC
Main Ring to fight emittance growth by a skew resonance
compensation [17].

Another major development has been the addition of
spin routines to PTC. Applying it to MIT-Bates South Hall
Ring [18] it could be demonstrated that spin resonances as
calculated by PTC agree perfectly with the prediction of
the linear response theory [19].

MAD-X in the LHC Control System

The LHC control system LSA [20] uses TWISS TFS
output files from MAD-X for their controls during all the
LHC cycle.

Similarly relevant is the LHC on-line model [7] to safe-
guard LHC operation. This on-line model is based almost
exclusively on the MAD-X code. This system is being de-
veloped in close collaboration of the operation and accel-
erator physics groups at CERN, the OP and ABP group
respectively.

Lastly, we are in the process of constructing a full 3D
model of the LHC with the PTC code in stand-alone mode.
A MAD-X run provides pieces of the machine that are
placed in the virtual tunnel according to SURVEY infor-
mation. The harmonics to high order are added to all thick
elements, magnet assemblies are misaligned, and sepa-
rately the magnets within them. A complete aperture model
around the ring is also taken into account. In Fig. 2 one
finds a blow up of one of the high beta interaction zones.
By constructions this is really a single structure and the
light blue and red tracks are particles being tracked in both
directions. In the common area these particles are steered
via crossing and separation schemes respectively and are
brought into collision at the interaction point quite like in
the real world.

CODE MAINTENANCE

Integrity

The code development set-up with a sizable number of
module keepers requires a more rigorous testing to ensure
code integrity. To this end we have set up an automatic
system to test several examples for every MAD-X module.
These tests are started automatically once a MAD-X CVS
tag has been set. The tests are performed 3 times with the
standard executable and 2 specially compiled executables.
This is needed to find hidden run-time errors, un-initialized
variables, out-off-bound arrays etc. In case of problems
the module keepers are alarmed and asked to correct code
and/or the examples, which are kept in a separate madx-
examples CVS repository. We have adopted the concept to
provide a production and a debug version, the latter being
the latest and greatest but at the risk of the user. A produc-
tion version for LHC commissioning requires a successful
passing of the complete example testing.

Portability

The next relevant design goal is portability across the
3 relevant platforms LINUX, Windows and MAC-OSX.
We have one responsible for each platform. Particular
worrisome is the fact that we are dealing with a multi-
language code which now also includes a C++ part. With
the advent of free GNU Fortran compilers (g95 and gfor-
tran) and several commercial ones (Intel ifort, Lahey lf95,
Nag f95) we could transform the Fortran77 to Fortran90
and provide just one executable which combines MAD-
X and PTC. Presently, the ifort compiler has become our
workhorse since it has worked effortless on Linux and Win-
dows (available for MAC) and it offers a significant perfor-
mance boost compared to the other compilers.

Special Issues

Separate output buffers for combined Fortran/C code
may lead to garbled-up output. This problem is taken care
of by automatic python scripts that modify the code prior
to compilation such that the corresponding buffer is flushed
whenever C calls F or the reverse. To allow for 64 bit com-
pilation the C part of the code needed some fixing. For
portability reasons we provide just the 32 bit executables.
Tools have been provided to facilitate memory leak detec-
tion. In regular intervals we have to check both Fortran
and C parts and take action if too many leaks have been
found. For portability on the various Linux distributions
we need statically linked executables. Unfortunately, the
rapid Linux evolution requires changes to the Makefile for
every new Linux distribution. The link step will therefore
require fiddling in most cases that have not yet been cov-
ered.
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LIMITATIONS

• The MAD-X parser in C is by now very complex and
difficult to modify.

• The TWISS module has reached its end-of-life status.
It exists for performance reasons only.

• The PLOT module is also difficult to maintain.
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Figure 3: Plot example a high-beta LHC interaction zone.

This can best be explained with an plot example of a
high-beta LHC interaction zone. It shows 3 Twiss pa-
rameters with 2 vertical axis, one at either side of the
graph. Moreover, on the top of the graph the machine
elements are symbolically placed at their proper s lo-
cation in this case of the LHC. These kinds of complex
plots are well suited for the design of accelerators.
Any replacement of this module would require the ex-
act same functionally. Trouble with the present mod-
ule is that it is highly complex and difficult to fix, e.g.
the invisible subscripts at the vertical axis should be
modified. The interactive plot mode on Linux requires
the libX11.a library to produce a statically linked ex-
ecutable which requires special installations for each
new Linux distribution.

• The documentation is pretty old-fashioned and should
be replaced by a professional tool.

• The main problem: MAD-X and PTC have separate
structures, e.g. matching (MACROs needed) are ex-
tremely inefficient since in each step the PTC struc-
ture has to be recreated. In the present multi-language
environment there is no clear path of how to overcome
this problem.

PLANS
MAD-X has reached a mature status and can be used as

is for the LHC commissioning. Minor modifications and
bug fixes will continue.

PTC development can happily continue or speed-up to
serve smaller machines and CLIC.

A truly integrated code would require a new start, i.e.
something like MAD-11.

The design goals of MAD-11 as I see them are:

• MAD-X should be a subset of MAD-11 with exactly
the same input language facilities, modules and fea-
tures except for bugs.

• Parser, plot module and documentation should be
build with external, well established and long lifetime
tools.

• A single accelerator structure in memory both used for
MAD and PTC is clearly needed.

• The big question is if such a goal can be reached in
the present situation of a multi-language set-up rather
than a monolith in a single computer language.

• Following the experience of the MAD-X project a
reasonable estimate of the project duration is 5 years
given appropriate resources and manpower. The goal
would be to reach the same functionality as MAD-X
but with a much better structure of the code.
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[8] É Forest, Y. Nogiwa and F. Schmidt, ICAP06, p. 191, Cha-
monix, France.
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[18] É Forest and S.R. Mane, private communication.

[19] S.R. Mane, Nucl. Inst. Meth A 601 (2009), pp. 256-263.

[20] M. Lamont, et al, ICALEPCS07, p. 307, Knoxville, USA.

Proceedings of ICAP09, San Francisco, CA WE3IOPK04

Computer Codes (Design, Simulation, Field Calculation)

121



HIGH-FIDELITY INJECTOR MODELING WITH PARALLEL
FINITE ELEMENT 3D ELECTROMAGNETIC PIC CODE PIC3P ∗

A. Candel† , A. Kabel, L. Lee, Z. Li, C. Ng, G. Schussman and K. Ko,
SLAC, Menlo Park, CA 94025, U.S.A.

Abstract

SLAC’s Advanced Computations Department (ACD)
has developed the parallel Finite Element 3D electromag-
netic code suite ACE3P for modeling of complex accel-
erator structures. The Particle-In-Cell module Pic3P was
designed for simulations of beam-cavity interactions dom-
inated by space charge effects. Pic3P solves the complete
set of Maxwell-Lorentz equations self-consistently and in-
cludes space-charge, retardation and boundary effects from
first principles. In addition to using conformal, unstruc-
tured meshes in combination with higher-order Finite El-
ement methods, Pic3P also uses causal moving window
techniques and dynamic load balancing for highly effi-
cient use of computational resources. Operating on work-
stations and on leadership-class supercomputing facilities,
Pic3P allows large-scale modeling of photoinjectors with
unprecedented accuracy, aiding the design and operation of
next-generation accelerator facilities. Applications include
the LCLS RF gun.

THE PARALLEL CODE PIC3P

In Pic3P, the full set of Maxwell’s equations is solved
numerically in time domain using parallel higher-order Fi-
nite Element methods. Electron macro-particles are pushed
self-consistently in space charge, wake- and external drive
fields.

Finite Element Time-Domain Field Solver

Ampère’s and Faraday’s laws are combined and inte-
grated over time to yield the inhomogeneous vector wave
equation for the time integral of the electric field E:

(
ε

∂2

∂t2
+ σ

∂

∂t
+ ∇× μ−1∇×

) ∫ t

E(x, τ) dτ = −J(x, t),

(1)
with permittivity ε and permeability μ. The effective con-
ductivity σ provides a simple model for Ohmic losses.

The computational domain is discretized into curved
tetrahedral elements and

∫ t E dτ in Equation (1) is ex-
panded into a set of hierarchical Whitney vector basis func-

∗Work supported by the U. S. DOE ASCR, BES, and HEP Divisions
under contract No. DE-AC002-76SF00515.

† candel@slac.stanford.edu

tions Ni(x) up to order p within each element:

∫ t

E(x, τ) dτ =
Np∑
i=1

ei(t) ·Ni(x). (2)

For typical simulation runs with second-order elements
(curved and using second-order basis functions), N 2 = 20.
Up to N6 = 216 different basis functions can be used in
each element. Tangential continuity between neighboring
elements reduces the global number of degrees of freedom,
in contrast to discontinuous Galerkin methods.

Substituting Equation (2) into Equation (1), multiplying
by a test function and integrating over the computational
domain results in a system of linear equations (second-
order in time) for the coefficients ei. Numerical integra-
tion is performed with the unconditionally stable implicit
Newmark-Beta scheme [1]. More detailed information
about the employed methods has been published earlier [2].

Higher-Order Particle-Field Coupling

Electron macro particles are specified by position x, mo-
mentum p, rest mass m and charge q. The total current
density J in Equation (1) is then approximated as

J(x, t) =
∑

i

qi · δ(x − xi(t)) · vi(t), (3)

for delta-particles with v = p
γm , γ2 = 1+ | p

mc |2. The clas-
sical relativistic collision-less Newton-Lorentz equations
of motion are integrated using the standard Boris pusher
[3].

Starting with consistent initial conditions and fulfilling
the discrete versions of Equation (1) and the continuity
equation

∂ρ

∂t
+ ∇ · J = 0 (4)

simultaneously during time integration leads to numerical
charge conservation.

The use of higher-order Finite Elements not only sig-
nificantly improves field accuracy and dispersive proper-
ties [4], but also leads to intrinsic higher-order accurate
particle-field coupling. For delta-particles, the numerical
current deposition involves the (exact) evaluation of line
integrals over vector basis functions along the elemental
particle trajectory segments for a given time step, using
Gaussian quadrature [5].
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Code Performance Optimization

Pic3P has been optimized for high efficiency both on
workstations as well as leadership-class supercomputers.
In the following, two specific methods to optimize the par-
allel performance of Pic3P are introduced, i.e. the causal
moving window technique and dynamic parallel load bal-
ancing.

Causal Moving Window Field computations can be
restricted to the causality region around the particle bunch
without any loss of accuracy, assuming the (approximate)
trajectory of the particles through the gun is known. The
“moving window” feature of Pic3P makes use of adaptive
p-refinement where the Finite Element basis function order
can be specified for every element, including the omission
of certain elements. This can save orders of magnitude in
memory and CPU time requirements and allows full EM
3D PIC simulations on desktop computers [6].

Dynamic Load Balancing Pic3P is designed to scale
to large problem sizes, and both the fields and the particles
are partitioned using a specialized load balancing scheme.
As in ACE3P’s time-domain code T3P, the computational
Finite Element mesh and the corresponding field degrees of
freedom are typically partitioned using graph-based meth-
ods (e.g., with ParMETIS) [7]. The macro-particles are
typically partitioned using a geometric “recursive coordi-
nate bisection” method (e.g., with Zoltan). Figure 1 shows
a typical example of the field and particle partitioning.
The absence of explicit locality of particle and field data

Figure 1: Parallel dynamic load balancing in Pic3P for a
typical LCLS RF gun PIC simulation. Partitioning of fields
(left) and particles (right) onto different processors is indi-
cated by colors. On the left, the particle bunch is shown in
white while the omitted field region from the causal mov-
ing window scheme is shown in blue.

necessitates a sophisticated parallel particle-field coupling
scheme, which is outlined in the following. First, the ge-
ometric domain (such as a collection of bounding boxes)
containing all particles is collectively obtained by all pro-
cessors. Second, every process determines whether it owns
or needs fields for the particle region for the next particle
pushing step. Then, MPI communicators are constructed
accordingly, connecting sub-groups of involved processes,
and the “PIC Mesh”, which consists of tetrahedral elements
and corresponding field coefficients, is collected with col-
lective MPI operations such as Allgatherv. Finally, the

particles are pushed using the (now locally available) PIC
Mesh information. The current deposition “scatter” step is
done similarly.

By segmenting the particle region into fewer or more
pieces, the memory and time requirements during the com-
munication steps can be traded, such that both strong and
weak optimal scalability can be achieved. The execution
order of PIC Mesh updates for different communicators is
optimized and re-ordered such that disjoint sub-groups of
processes can communicate simultaneously. By slightly
enlarging the bounding box around the particles (by ex-
trapolating the trajectories), a new PIC Mesh only needs
to be created from time to time (e.g., every 50 time steps),
and re-using the same objects and communicators leads to
significant savings in computational resources, as only the
changing degrees of freedom for electromagnetic fields and
particle currents need to be communicated.

This dynamic load balancing scheme allows the solu-
tion of large problems with hundreds of millions of field
degrees of freedom (DOFs) and billions of particles and
enables unprecedented accuracy in self-consistent state-of-
the-art simulations of beam-cavity interactions on modern
supercomputers. Table 1 shows typical runtime parameters
for LCLS RF gun PIC simulations performed with Pic3P
on the Jaguar Cray XT5 machine at NCCS. For small prob-

Table 1: Typical runtime parameters on a Cray XT5 for
LCLS RF gun emittance calculations with Pic3P. For the
first case, causal moving windowing and a direct solver
were used. For the other cases, full-domain calculations
were performed with an iterative field solver (i.e. , CG with
incomplete Cholesky preconditioner).

CPUs Particles Elements DOFs Walltime/step
12 100k 305k 53k 0.23 secs

120 1M 305k 2M 1.3 secs
1200 10M 2.8M 17.7M 2.4 secs

12,000 100M 23M 142M 24 secs

lem sizes (i.e., up to a few million DOFs, and less than 100
CPUs), the use of direct factorization methods for the field
solution is most efficient. For larger problems, iterative
solvers are used, since they display much better scalability.
For typical problem sizes, the performance of the memory
subsystem is most important. Due to the small relative size
of the particle bunch compared to the overall field domain
in this LCLS RF gun application, the use of more than a few
thousand CPUs is not efficient in the current implementa-
tion, as the global PIC Mesh construction and communi-
cation begins to strain the network subsystem. However,
the current scheme could be easily modified to only use a
subset of the processors for particle pushing. This should
lead to better scalability for extremely large problems with
highly localized particle distributions, similar to the good
scalability experienced for small to mid-size problems.
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VALIDATION: LCLS RF GUN

Benchmark PIC simulations of the 1.6-cell S-band LCLS
RF gun are presented in the following [8]. Simulation pa-
rameters are: π-mode, 120 MV/m, 1 nC, 10 ps, 1 mm
beer-can initial bunch distribution, centroid injection phase
-58◦ and no solenoid. These parameters allow comparisons
between the 3D results from simulations with Pic3P and
PARMELA and the 2D results from simulations with Pic2P
and MAFIA.

Figure 2 shows a comparison of transverse emittance
results by the different codes. For Pic3P simulations, a
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Figure 2: Comparison of normalized transverse RMS emit-
tance as a function of beam position in the LCLS RF gun
as calculated with PARMELA, Pic2P and MAFIA 2D (both
agree), and Pic3P, where the causal moving window tech-
nique reduces the problem size by one order of magnitude.

conformal, unstructured 3D (1/4) mesh model with only
305k tetrahedral elements is sufficient to reach conver-
gence, with mesh refinement along the center of the beam
pipe. High fidelity cavity mode fields are obtained with the
parallel Finite Element frequency domain code Omega3P
and directly loaded into Pic3P as drive fields.

Excellent agreement between 3D results from Pic3P and
the 2D results from Pic2P is found, as expected from the
high cylindrical symmetry in the fields, as well as perfect
agreement with MAFIA 2D as expected from the conver-
gence behavior of the codes. PARMELA results differ as
space-charge effects are significant, presumably because
wakefield and retardation effects are ignored, as detailed
in a previous study [2]. Simulation results starting from
a measured initial bunch distribution have been published
earlier [6].

SUMMARY

SLAC has developed the first parallel higher-order Fi-
nite Element 3D PIC code Pic3P, for realistic modeling
of space-charge dominated beam-cavity interactions. As
a part of the ACE3P code suite, Pic3P uses state-of-the-
art parallel Finite Element methods on conformal, unstruc-

tured meshes. Pic3P has been optimized for large-scale
modeling on modern supercomputers and causal moving
window techniques and dynamic load balancing enable
high-fidelity simulations of electron injectors with unprece-
dented efficiency and accuracy. Applications include emit-
tance calculations for the LCLS RF gun. Benchmark
simulations show excellent agreement between Pic3P and
MAFIA TS2 results, while results obtained with the elec-
trostatic code PARMELA show some differences, presum-
ably because wakefields and retardation effects are omitted.
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BEAM DYNAMICS IN THE LOW ENERGY PART OF THE LOW
EMITTANCE GUN (LEG)

M. Dehler, S. G. Wipf, Paul Scherrer Institut, Switzerland

Abstract

One option for the electron source of the SwissFEL is the
Low Emittance Gun (LEG), which is currently under devel-
opment at PSI. It consists of a pulsed DC gun operating at
500 keV and has the option of using either a photo cathode
or a field emitter array. The gun is followed by a pulsed
in-vacuum solenoid and a two-frequency cavity, not only
used to accelerate the beam but also to create a highly lin-
ear energy correlation required for ballistic bunching. All
components are rotationally symmetric, so a full particle-
in-cell simulation of the setup using 2 1/2 D MAFIA, in-
cluding space charge, wake fields and beam loading effects,
shows the base line performance. Given the relatively low
beam energy and high brightness of the beam, there were
concerns with respect to the sensitivity to mechanical mis-
alignments in the structure. So we investigated these using
the 3D in-house code CAPONE and calculated tolerances,
which are well within acceptable limits.

INTRODUCTION

To realize compact X-ray free electron lasers, electron
sources with a high brilliance and ultra low emittance are
required. The SwissFEL project at PSI is based on the de-
velopment of such concepts, allowing a substantial reduc-
tion in size and cost of such a facility. In order to reach
the Angstrom wavelength range, peak currents of 1.5 kA,
a relative energy spread of10−4 and normalized transverse
slice emittances in the order of 300 nm rad are crucial in
the standard operation mode.

Several options are under discussion for the electron
source. One consists of an S-band RF gun with a photo
cathode[1] running at gradients of 100 MV/m, which will
be tested in the 250 MeV injector facility currently under
construction. The other, examined here, employs a pulsed
diode at an accelerating gradient of 125 MV/m gradient
over a four millimeter gap[2], where a prototype is un-
der commissioning at PSI. The baseline scenario assumes a
photo-cathode, but cathodes using field emitter arrays may
be promising candidates[4, 5].

Even after the high gradient acceleration in the diode, the
electron beam is still fragile at energies of 500 keV. A low
initial beam current of 5.5 A with an overall charge of 200
pC is beneficial in that respect, but requires a large bunch
compression ratio of 270 to obtain a peak current sufficient
for lasing. Therefore after the diode, the electron beam is
accelerated off-crest in a two-frequency cavity. The fun-
damental mode at 1.5 GHz is combined with a higher har-

Figure 1: Pulsed DC gun with dual frequency cavity
(solenoid not visible)

monic at 4.5 GHz to introduce a highly linear energy chirp
to do ballistic bunching in the following drift delivering a
peak current of 20 A to the linac. The beam current and
phase space at the end of the drift are compatible with those
expected from the S-band RF gun option, so that we can
use the same linac design for both options. Fig. 1 shows
the layout. A pulsed solenoid (not shown in the figure) be-
tween diode and two-frequency cavity corrects the residual
divergence of the beam after the gun.

Pulsed solenoid

Primary coil

Secondary coil
Dielectric

DC Gun

Figure 2: Diode and pulsed solenoid

The simulations have been performed in two steps. Since
all elements are rotationally symmetric, the base line per-
formance assuming perfect alignment and ideal beam prop-
erties is obtained from a2 1

2
D particle in cell simulation

using MAFIA TS2[6]. The influence of misalignment,
beam offsets etc. was obtained with the in-house code
CAPONE[7] and is described in a separate section.

BASE LINE PERFORMANCE

As was mentioned above, the assembly is rotational sym-
metric, so it was modeled in two dimensional cylindrical
coordinates. The setup consists of the following, the cath-
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ode and anode disks, followed by a pulsed solenoid and
the dual-frequency cavity. To be able to resolve the space
charge of the particles within the thin bunch, the mesh is
very fine especially close to the z-axis with a minimum res-
olution of 33µm and an overall grid size of 250,000 points,
at which the full numerical convergence of the results was
obtained. The nominal gap between anode and cathode is
4 millimeters. Both were modeled as precise as possible
in order to obtain sufficient resolution for the fine detail of
the surface shape. The diode voltage is 500 kV giving an
average accelerating gradient of 125 MV/m.

The solenoid (Fig. 2) is a corrugated steel insert sitting
inside the ceramic beam pipe. The azimuthal magnet cur-
rent is excited in this insert by magnetic induction via a sec-
ondary coil indicated in the figure. While the beam is pass-
ing through the magnet, the resulting field can be assumed
as constant, though with important differences to the field
distribution of a truly static magnet. Where the magneto-
static field is determined by the distribution of the driving
currents and the permeability, we have the additional influ-
ence of induced mirror current on the various conducting
parts as e.g. the anode plate or the RF cavity resulting in a
shielding effect.

The PIC module in MAFIA can use only static focus-
ing fields, so we employed the following strategy to ar-
rive at a realistic field distribution. The metallic insert
corresponding to the winding of the solenoid carries a ho-
mogeneous current distribution, something which we can
safely assume from the material properties and the time do-
main behavior of the driving pulse. All metallic parts were
specified with a very low permeability of 0.01 to push out
the magnetic fields. Furthermore, a tiny shielding current
(also homogeneously distributed) was assumed in the an-
ode plate and set to a value minimizing the magnetic field
between anode and cathode1. Figure 3 shows the on-axis
distribution of the longitudinal field.

Figure 3: On axis field of pulsed solenoid

With the given parameters (0.5 kV and a 4 mm gap at
the pulser), the solenoid needs a focusing field strength of

1A fully realistic computation could only be done in 3D with the help
of a time domain computation, but we still would need special tricks to
load the field into the PIC simulation.

∫
B2

zdz = 0.92 · 10−3T 2m to correct for the residual di-
vergence of the beam after the DC gun.

The cavity was modeled including the subsequent filter
section. The entry of the RF-Cavity fits into the end of the
solenoid. The cavity is designed so that the third harmonic
RF mode, TM012 can be superimposed on the fundamental
one, the TM010. Apart from acceleration, the fundamental
frequency provides the energy chirp for compression. The
higher harmonic serves to linearize the longitudinal phase
space. Initial beam and field parameters used in the simu-
lation are listed in table 1.

Table 1: Initial parameters used in simulation
Emittance 70 nm rad
Beam diameter (homogeneous) 600µm
Energy γ=1.0003
Pulse length (flat top) 40 ps
Beam current 5.5 A
Gun voltage 500 kV
Slice length for sliced emittance 1 ps
Solenoid strength 0.92 · 10−3T 2m

Fundamental mode
Amplitude 35.5 MV/m
Phase/deg. -15
Harmonic mode
Amplitude 17 MV/m
Phase/deg. 10

The field values for the solenoid and the RF cavity dif-
fer from the official parameter set in the CDR[2] for the
following reasons. First, we used the latest structure geo-
metries, which differ from those used in generating the ref-
erence case. When trying to find a good beam behavior in
the vicinity of the reference value, we saw that the beam
behavior is very sensitive to small variations in the input
parameters. This is due to the fact that the beam at the entry
of the RF structure is simultaneously focused in the trans-
verse plane and sees a deceleration in the order of 30%,
so that space charge effects become quite pronounced. We
went to a new working point and reduced the phase of the
fundamental mode by roughly 20 degrees toφ = -15 de-
grees and increased the amplitude of the harmonic mode
from 11 to 17 MV/m. The pronounced drop in beam en-
ergy at the entrance of the cavity is strongly reduced lead-
ing to a more stable behavior. The resulting longitudinal
phase space obtained by either accelerating only with the
fundamental mode or with both is shown in Fig. 4. The
combination of both modes results in a nicely correlated
energy spread suitable for ballistic compression in the fol-
lowing drift.

The big bump in emittance, as the bunch is traversing
the solenoid (Fig. 5), may be irritating, but it is due to
the fact that the code (as well as all other known codes)
only uses the kinetic transverse momenta to compute emit-
tances. A computation using the generalized momentum
p = mv + qA would not show this behavior. Only the
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Figure 4: Longitudinal phase space at exit of the dual-
frequency cavity (z = 370mm) with/without harmonic
mode

emittance values outside the solenoid region are relevant.
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Figure 5: Evolution of slice and projected transverse emit-
tance during flight.

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

be
ta

_r
 g

am
m

a

r/mm

Transverse phase space in 20 slices (horizontally shifted from first to last)

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9

line 10
line 11
line 12
line 13
line 14
line 15
line 16
line 17
line 18
line 19
line 20

Figure 6: Phase space distribution of individual bunch
slices at the exit of the dual-frequencycavity (z = 370mm)

The best view of the transverse phase space distribution
is obtained by looking at individual slices in the bunch. In
Fig. 6, the distribution of several slices is shown with the
leftmost corresponding to the tail slice and the rightmost to

that of the head of the bunch. We have a very good emit-
tance of the center slices corresponding to values slightly
above 180 nm rad. Only the outermost slices see a dete-
rioration due to nonlinear space charge, RF forces as well
as wake fields. The angle of the phase space ellipses of
the center slices are very well aligned with respect to each
other, so that there is no intrinsic emittance increase by sub-
sequent bunch compression stages merging adjacent slices.
Table 2 lists the beam parameters seen after the RF struc-
ture.

Table 2: Beam parameters at the exit of the RF structure
(z = 370mm)

Parameter Center slice Projected
ǫt/nm rad 176 378
ǫz/eV s 1.2 10−9 3.9 10−1

σr/µm 297 272
σr′ /mrad 1.0 1.0
γ/MeV 3.9 3.9
σt/ps 0.25 10.8
σγ /% 0.12 4.7
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Figure 7: Intra bunch charge density at exit of the dual-
frequency cavity (z = 370mm)

Fig. 7 shows the relatively flat charge distribution inside
the bunch. The small scale fluctuations seen are due to nu-
merical noise. The peak at the bunch tail (z = −6mm) is
a numerical artifact due to the code.

MISALIGNMENTS

Including misalignments as structure offsets or tilts into
the simulations destroys the symmetry of the problem, so
a full three dimensional simulation has to be performed.
To do that, we used the in-house particle-in-cell code
CAPONE, which was originally developed to do ultra
high resolution of electron sources based on field emission
arrays[7]. The original version was restricted to have only
static accelerating fields, whereas here we also need to take
into account time harmonic fields.
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Running an eigenvalue solver on the large grid sizes of
an order of a billion mesh cells required to have a con-
sistent field solution for the particle-in-cell algorithm is a
rather tedious task – the more, since we need not only the
fundamental mode in the RF structure but also the third
harmonic. With the typical three dimensional solver, this
means computing all modes of all azimuthal orders up to
that frequency, so that approximately 100 modes need to
be determined.

A rather elegant alternative was to introduce 2D field
maps into CAPONE allowing the use of high resolution
two dimensional solution. These are not distributed into
the three dimensional calculation grid but kept in 2D format
and read out there by the force calculation routine. Apart
from the easier generation of these fields, this has other
significant advantages. For one, the domain spanned by the
grid for the particle-in-cell solver does not have to extend
over the full volume of e.g. the RF cavities, but can be
truncated to the size relevant for a correct representation of
space charge fields and wakes. This feature can reduce the
size of the particle-in-cell grid already considerably. As a
second feature, we can easily introduce misalignments as
offsets or tilts by simply moving the 2D field map with re-
spect to the PIC grid.

Figure 8: Phase space distribution of bunch slices as calcu-
lated with CAPONE (z = 370mm)

The initial conditions for the beam correspond to that
of the two dimensional case (Tab. 1) with the exception of
the longitudinal profile. In the three dimensional calcula-
tion, the flat top profile had a non zero rise and fall time
of 0.5 picoseconds. 2D and 3D results agree well, we have
normalized emittance values of 388 nm-rad in 2D versus
383 nm-rad in 3D. The one significant difference is seen in
the center slice emittance, where we obtain 170 nm-rad in
2D compared to 120 nm-rad in 3D, which is probably due
to artifacts in the stochastic distributions used in MAFIA
as shown in Fig. 7. Fig. 8 shows the 3D slice emittances at
the exit of the cavity.

For the various misalignments, the following cases were
computed: The laser spot on the cathode was assumed to
be misaligned by 300µm, the solenoid was calculated with
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Figure 9: Envelope of the projected transverse emittance
for various misalignments.

offset (100µm) and tilted (2 mrad) and the effect of an
offset of the cavity of 100µm was simulated.

The variation of the projected emittance is relatively mi-
nor as can be seen in figure 9. Only the rather extreme
offset of the laser spot leads to a visible difference. Simi-
lar is the influence on the center slice emittance. The only
significant deterioration is visible, if we start with an offset
beam. Fig. 11 shows the phase space distribution for the
case of a shifted laser spot.
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Figure 10: Envelope of the slice emittance in the bunch
center for various misalignments.

Does this mean, that misalignment is a non-issue for the
setup? In addition to any widening of the phase space vol-
ume occupied by the bunch, the kicks introduced by the
finite tolerance lead to a displaced of the bunch centroid in
the transverse phase space as can be seen in Fig. 12 and
Fig. 13 for the mean position and flight angle respectively,
which lead to mismatching in the following beam optics.

In principle, one can correct this effect by additional cor-
rector magnets, but one could also try to find tolerances
rendering these correctors unnecessary. The required cri-
terion is, that the displacement of the bunch centroid still
fits into the maximum allowable phase space volume (aka

WE4IOPK04 Proceedings of ICAP09, San Francisco, CA

RF Guns and Linac Injectors

128



Figure 11: Phase space of bunch slices assuming a shifted
laser spot.
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Figure 12: Variation of beam offset along beam axis

projected emittance) of the bunch of roughly 400 nm-rad.
Given the geometrical offsets< x >, < y > and momen-
tum offsets< ux > and< uy >, we can define a kind of a
pseudo emittance

ǫp =
√

(< x >< ux >)2 + (< y >< uy >)2,

which by definition should be lower than the limit of
the projected emittance. Fig. 14 shows envelopes of this
pseudo emittance for the different cases of misalignment.
ǫp scales roughly quadratically with offset or tilt, table 3
uses this relationship to derive alignment tolerances.

Table 3: Alignment tolerances to keep pseudo emittance
below 400 nm

Parameter Tolerance
laser spot offset 45µm
solenoid offset 70µm
solenoid tilt 1.3 mrad
cavity offset 140µm
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Figure 13: Variation of beam angle along beam axis
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Figure 14: Envelope of the pseudo emittanceǫp (definition
see main text) for various misalignments.

CONCLUSIONS

A simulation of the Low Emittance Gun (LEG), com-
prising the pulsed DC source at 500 kV, the pulsed solenoid
and the two frequency cavity, has been completed. If one
compares the settings and results with those in the official
specification[2], the following remarks have to be made.
Using the official parameter set, we see (as in up-to-date
simulations by Anne Oppelt with tracking codes[8]), that
the setup is extremely sensitive to minor variations in phase
and amplitude of the cavity modes. At the entrance of the
cavity the beam energy drops considerably, this is due to
the fact that it is strongly focused, so that space charge
forces are quite dominant. Given a run time of the simula-
tion of 6-8 CPU hours and a corresponding limited number
of possible iterations, it was not possible to find a satisfac-
tory solution in the vicinity of the official parameters. In the
end, a different working point was found, where the beam
is more on the crest of the fundamental mode and which
has the following advantages: The drop in beam energy at
the entrance of the cavity is visibly reduced and the radius
and projected emittance at the exit are lowered. If one com-
pares emittance values computed by tracking codes such as
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BET (beam envelope tracker)[9] with those of a particle in
cell simulation, one sees the following: Slice parameters
in the bunch center agree relatively well, but the tracking
codes do underestimate the deterioration seen by the head
and tail of the bunch, so that the PIC code computes a larger
value for the projected emittance.

Using the in-house code CAPONE, the influence of mis-
alignments on the performance has been calculated. Other
than the setting of amplitudes and phases for the RF cavity
mentioned above, tolerances for the geometrical alignment
of the setup are relatively relaxed for the operation.
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THE XAL INFRASTRUCTURE FOR HIGH LEVEL CONTROL ROOM 
APPLICATIONS 
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C. P. Chu, SLAC, Menlo Park CA.   

Abstract 
XAL is a Java programming framework for building 

high-level control applications related to accelerator 
physics. The structure, details of implementation, and 
interaction between components, auxiliary XAL 
packages, and the latest modifications are discussed. A 
general overview of XAL applications created for the 
SNS project is presented. 

INTRODUCTION 
The development of XAL [1] was started in 2001 at the 

SNS project as a framework for high level accelerator 
physics applications. The Java programming language 
was chosen because it addresses the need for a GUI 
interface, database services, plotting, and numerical 
simulations. When XAL development first began there 
was a lack of free mathematical and plotting packages, 
but the situation has since improved. EPICS has been 
chosen as a communication protocol. Today the XAL 
framework consists of the following parts: 

• A hardware representation of the machine for 
connectivity and control. 

• A beam simulation model termed the "online model" 
for model reference and comparison to the hardware 
operation. 

• An application framework to provide a common 
“look and feel” and functionality for all XAL 
applications. 

• Services that run continuously in the background 
(24/7), and which can communicate with several 
XAL applications simultaneously.  

• A set of auxiliary mathematics, graphics, and plotting 
packages. 

• The channel access communication library. 
In this paper we present descriptions of these parts of 

XAL and an overview of applications implemented on the 
base of this framework for the SNS project. 

ACCELERATOR MODEL 
An accelerator model represents a structural view of an 

accelerator. According to this model the accelerator 
consists of ordered accelerator sequences which usually 
represent accelerator beam lines, and they can have other 
ordered sub-sequences or nodes corresponding to physical 
devices. An instance of such a structure is shown on Fig. 
1. The lowest level of the accelerator model hierarchy is 
represented by such components as magnets, BPMs, wire 
scanners, RF gaps, position markers etc. Usually 
accelerator nodes correspond to real physical devices, but 

it is not necessarily a one-to-one mapping.. For instance, 
at SNS there are single devices consisting of a quadrupole 
+ dipole windings + BPM strip-lines. We consider these 
functionalities as three separate accelerator nodes (quad + 
dipole corrector + BPM), all at the same position. 

XAL uses an XML file called an “optics_source” as a 
natural way to initialize this accelerator hierarchy. This 
XML file includes all information about sequences, 
components, positions, parameters, and necessary 
EPICS’s PV names for device signals. 

There are two ways to prepare such files. First, it can be 
done manually from scratch or by modification of an 
existing file if you are interested in only a relatively small 
accelerator model for testing XAL features.  Second, you 
can prepare an application that will generate the file for 
you by using a relational database. Of course, this 
application will be specific for each accelerator, because 
accelerator database structures are usually different.  

 

Figure 1: An example of the XAL accelerator model 
structure. 

 
In the beginning of XAL development, the optics XML 

file was the only source for the accelerator model 
initialization, but later several new XML files were added 
to provide the model with the necessary information. 
First, there was an XML file with hardware node status 
information. This is a small file describing availability of 
certain diagnostics nodes, because they frequently go 
from the“online” to the “offline” state, and the model 
should know about a validity of the diagnostic signals.  
The second new XML file maps an accelerator node type 
with a particular implementation of this type in the model. 
This file was introduced to generalize XAL and to use it 
for different accelerators where the similar devices (i.e. 
BPM in SNS or J-PARC) can have different functionality. 
The third one includes information about signals from 
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systems like a timing system that does not belong to any 
particular beam line. Finally, there is a XML file with the 
online model parameters. Today the combination of all 
these XML files is used to initialize the XAL accelerator 
model. 

After initialization, the model is ready for usage.  
Examples of common tasks for the model and nodes are:  

• Creating a new combo-sequence from existing 
sequences. 

• Getting a position of a node or a sequence inside a 
parent sequence.  

• Selecting nodes of a certain type and properties from 
a sequence. 

• Getting a list of possible EPICS signals from a node. 
• Getting default values of parameters of a particular 

node. 
None of the actions listed above need live EPICS 

connections and therefore they do not require a real 
machine or virtual accelerator. There is another group of 
actions which require live EPICS communications. Some 
of these actions include getting or setting live hardware 
parameters such as magnetic fields or RF cavity phase 
and amplitude or reading diagnostic data such as BPM 
signals. This group provides live interfacing with the 
accelerator. The details of such EPICS connections and 
communications are hidden from the user by the simple 
interface of the model.  

The XAL accelerator model is a very useful and 
convenient control system tool, but by itself it is has 
nothing to do with accelerator physics. To perform 
meaningful operations with the accelerator or beam lines 
we need a physical model. We call this model the “online 
model”. 

XAL ONLINE MODEL 
The XAL online accelerator model [2] performs on-the 

fly calculations of beam parameters based on machine 
settings. These settings can be extracted from a live 
accelerator, from design values, from a combination of 
these two sources, or they can be modified by the user.  

The three main components of the model are an 
accelerator lattice which is constructed from the 
accelerator nodes, a probe which describes the beam and 
how it is to be modeled, and a set of algorithms for probe 
tracking through different elements of the lattice. The 
online model implements the Element-Algorithm-Probe 
design pattern introduced by Malitsky and Talman [3]. 
This design strategy separates the machine representation 
from the beam model and the dynamics calculations. 

A lattice can be generated for any sequence of the 
accelerator model described in the previous section. In 
the transformation to the online model lattice view, 
devices may be split into more than one piece, and drift 
spaces are added (note – the XAL initialization database 
does not have drifts as accelerator nodes, only actual 
device information). 

The different probes in the online model represent 
different physics aspects of charged particles beam. There 
are three probe types commonly used: 

• The envelope probe: This is a correlation matrix of 
moments in a 6D phase space up to second order. By 
using this probe we can simulate the beam emittance 
transformation along the lattice. 

• The transfer map probe: This represents the 
transformation matrix of 6D coordinates from the 
beginning of the sequence to a particular point at the 
lattice. This probe is usually used for ring modeling. 

• The particle probe: This represents the center of the 
beam. It is frequently used for phase scan analysis 
and orbit predictions. 

Each probe has one or several corresponding algorithms 
describing the tracking of the probe through the lattice. 

The XAL online model went through a series of 
verifications and benchmarks [2]. The most important 
feature of the online model is the speed of calculations. 
The simulation time for SNS sequences is usually much 
less then one second, and that enables use of the online 
model in the control room even if a problem includes 
multiple runs of the model (optimization procedures). 

XAL APPLICATIONS FRAMEWORK 
In the early days of XAL development, each application 

was created with its own JFrame menus, toolbars, and 
standard functionalities like open, save etc. This approach 
meant duplicated efforts, a different look and feel for each 
application, and maintenance difficulties. To avoid this 
the XAL Application Framework was created [4]. 

An application framework is a set of classes that actual 
applications extend, and it is used as a common starting 
point for all XAL applications. There are several 
advantages of using this framework. 

The framework provides all applications with the same 
look and feel, which helps operators and users to more 
easily get acquainted with new applications. An example 
of the application framework template is shown in Fig. 2. 
A standard “windows application” menu bar, tool bar and 
empty panel is provided as a starting point, modeled after 
the familiar windows application format. All menu and 
toolbar items and actions within them can be customized 
by changing a simple configuration file which is unique 
for each application.  

 
The framework uses a document-view architecture, i.e. 

a single application can have multiple documents 

 

Figure 2: The accelerator application framework template. 

Common menu bar Toolbar for common actions 
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associated with it, and each with its own window view. 
The application document can be stored (restored) in 
(from) a file. Of course, this functionality should be 
provided by the document. 

An Accelerator extension of the XAL application 
framework document class provides an accelerator model 
with a specific set of menu items. This extension enables 
the application to read an accelerator file, and to choose 
and create accelerator sequences. 

The application framework usage is not mandatory for 
XAL applications, but it speeds up and facilitates their 
development and modifications. 

XAL SERVICES 
XAL services are a special type of XAL applications. 

They run 24/7 in the background; they can communicate 
with any number of standard XAL applications; and they 
do not have a GUI interface. A Service-Application 
communication uses XML-RPC for inter-process data 
exchange and uses multicast DNS for discovering 
subscribers and publishers. Knowledge of the details of 
multicast DNS and XML-RPC are hidden from the user.  

There are several advantages of using the services. 
First, users need not worry about starting or restarting 
them. They will restart automatically in the case of 
shutdown or crash. Second, they reduce the amount of 
network traffic by avoiding duplicated EPICS and 
database requests from different XAL applications 
running simultaneously. And finally, they are prototypes 
of a future XAL distributed agent systems that is currently 
under development. 

In this paper we present as examples two services that 
are useful for each accelerator facility.  

 

Figure 3: An example of the XAL MPS client application. 

MPS Service 
MPS service is our Machine Protection System (MPS) 

post-mortem application. Originally it was a standalone 
client application. Later it was migrated to the service 
framework. This service is always running in the 
background monitoring MPS events – capturing the 

stream of signals that emanate from each trip and sorting 
them to determine the root cause of the trip. It also 
provides statistics and views of the MPS trip history. Any 
number of client applications can view this data. Figure 3 
shows a client view of the MPS trip. 

PV Logger 
Another service application is the XAL “PV Logger”. 
This application logs predefined sets of control system 
signal values to a database, at specified intervals and upon 
requests from any XAL application. One example of use 
is to grab machine settings directly used by accelerator 
physics such as magnet, RF and BPM values. This 
provides complete sets of information needed to configure 
the online model, taken by a background process. At SNS 
we have several PV Loggers covering the needs of 
different systems like accelerator physics, SNS cooling 
system, beam loss monitors, etc. 

XAL AUXILARY PACKAGES 
XAL has numerous general purpose packages. They 

were developed at different times, and the list is still 
growing. Usually these packages are independent from 
the rest of XAL, and they can be easily ripped off and 
used elsewhere.. Below we discuss a few of the most 
interesting and useful of these packages . 

XAL Plotting Package 
Development of the XAL plotting package [5] started at 

the early stages of development as a research project to 
study how fast data plotting can be updated. Later, 
interactive features of the package were found useful in 
several applications. This package is not intended to 
completely replace existing and freely available powerful 
plotting packages, but it is sufficient for instances where 
simple charts and color surface plotting is required. 

 

Figure 4: A color surface plot with XAL plotting package. 

In terms of the Model-view-controller (MVC) pattern, 
the XAL internal plotting package is simplified, and it has 
only two components. The view and controller are 
combined, and they are implemented in the 
FunctionGraphsJPanel Java class, which does not have 
any subclasses. There are four major types of data (Model 
components). Two are related to 2D chart plotting. The 
third can be used for bar-charts, and the last one for color 
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surface 3D plotting. An example of the color surface data 
plotting with 100x100 point graphics area resolution is 
shown in Fig. 4.  

XAL Channel Access Package 
To communicate with accelerator hardware XAL uses 

the EPICS Channel Access protocol. EPICS 
communication uses a single “Process Variable” (PV) as 
the fundamental unit for communication via an EPICS 
protocol called Channel Access. XAL has a Channel class 
that encapsulates the communication with a process 
variable. 

The Channel class is an abstract class that has the same 
interfaces that most control system would provide. This 
abstract layer insulates the rest of XAL from possible 
changes in the existing implementation of the EPICS 
protocol. For EPICS PV communication, we extend it to a 
concrete class that wraps Java Channel Access (JCA) [6] 
or Channel Access for Java (CAJ) [7] packages. JCA has 
interfaces to native C routines, and until recently it was 
the only non-Java library we used. Now there is CAJ - a 
100% pure Java implementation of the EPICS Channel 
Access library. 

The Channel class conveniently hides from users the 
underlying actions required to make connections to PVs. 
It also has member functions to provide Process Variable 
parameters other than the value (e.g. times stamps, units, 
display limits, etc.). Additionally, it has the capability to 
switch between synchronous and asynchronous 
communication and PV monitoring. Another useful 
feature of the Channel class is the ability to apply a 
specified “transform” to a Channel value. For example, 
one may apply a scaling transformation on a power 
supply current, in order to get a magnetic field level. 

Typically applications dealing with the accelerator 
classes never actually use Channel objects directly, but 
rather they use methods that provide the information of 
interest. For example, with a magnet the user may call a 
getField() or setField() method to get or set the magnetic 
field. The actual Channel and control system connection 
details are hidden. 

BRICS Package 
XAL Bricks package (gov.sns.tools.bricks) is a tool to 

facilitate writing of GUI interfaces. The main idea of 
Bricks is to keep information about the GUI window 
elements and their appearances in a XML file which can 
be used later to restore the GUI window. The developer 
can get the reference to the GUI window simply by 
specifying the name of this XML file. Then, all effort can 
be concentrated on the functionality of an application 
instead of its appearance. 

The Bricks package also has been integrated with the 
XAL application framework. During the runtime the 
bricks definition file can be loaded to create the main 
XAL application window. After that, all child views are 
available for usage inside the XAL application document. 

To create XML Bricks files XAL includes a GUI 
builder based on the Bricks package. This builder is a 

XAL application and works like others GUI builders for 
many existing Integrated Development Environments 
(IDEs). The key difference between existing GUI builders 
and XAL Bricks is that Bricks does not create any Java 
code. This design for Bricks is inspired by OpenStep’s™ 
Interface Builder™ [8]. The snapshot of the Bricks GUI 
builder application is shown in Fig. 5. 

 

Figure 5: XAL Bricks GUI builder. 

The main window for the Bricks document shown in 
Fig. 5 displays a hierarchy of windows and their views for 
a future GUI interface. A palette of views shows possible 
views such as buttons, tables, text fields etc. so the 
developer can simply select and drop views into the main 
window. A preview window reveals how the GUI window 
will look. An inspector is used for editing the properties 
of a selected view. Copy, Cut and Paste support along 
with drag and drop support make it easy to rearrange 
views. The built in code assistant helps developers avoid 
errors by generating references to views to pass directly 
into their code. 

General Optimization Package 
The XAL optimization package (gov.sns.tools.solver) is 

a “home grown” product of a long evolution of such 
packages during the XAL development. Currently it is the 
third generation of optimization packages in XAL. The 
base components of the package are: 

• The Solver component: This is a primary class for 
setting up and running an optimization process. To 
create an instance of the Solver we need instances of 
the Algorithm Market, Stopper, and Solution Judge 
classes. The Problem class is needed to start the 
optimization process in the Solver. 

• The Algorithm Market: This is a collection of 
algorithms that will compete during the optimization 
process. The user can choose arbitrary combination 
of algorithms from the existing ones in the package. 

• The Stopper Class and Subclasses: This decides if 
the process should stop. The decision is made on the 
basis of time, number of iterations, a level of 
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satisfaction, etc. Users can choose which criterion or 
which combination of criteria will be used. 

• The Solution Judge component: The implementation 
of the Solution Judge interface compares the new 
solution and the best known one at a particular 
moment. 

• The Problem Class: This class consists of the list of 
variables, restriction rules, possible hints for 
different algorithms, and a scorer that estimates the 
model function. 

At the moment there are four available algorithms: a 
random search, a random search with a shrinking rage of  
search, a direct gradient method, and a simplex algorithm. 

The XAL optimization package has no upward 
connection to other XAL classes except the XAL message 
center, and it can be freely used outside of XAL. 

Least Square Method Package 
There is a special linear squares method (LSM) package 

(gov.sns.tools.fit.lsm) in XAL to solve optimization 
problems that can be reduced locally to a linear problem. 
Usually, we want to find an approximation of measured 
points (x,y) by a known function with unknown 
parameters. This type of problems has exact solutions, so 
there is no need to use the general XAL optimization. The 
XAL LSM package implements two algorithms: a classic 
LSM and a Levenberg-Marquardt Method (LMM) [9]. 
Both methods assume that the user will provide methods 
to calculate partial derivatives of the model function with 
respect to the model parameters. 

The two types of functions most frequently used in 
XAL applications are a Gaussian distribution and a 
damped sinusoidal oscillation, 

{ }2
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where ia  are the unknown parameters. The Gaussian 
distribution function is used in wire scanner data analysis, 
and the damped oscillations are used in SNS ring tune 
calculations. To provide initial values for the model 
parameters, both fitting classes have a “guess” method 
which analyzes the initial data and suggests reasonable 
values. There is also a polynomial class that calculates 
coefficients of arbitrary power series. 

Another advantage of the LSM package with respect to 
the general XAL optimization is that errors for model 
parameters can be estimated if the user specifies the errors 
in the measured data. 

Formulas Evaluation Package 
The formulas evaluation package 

(gov.sns.tools.formula) is used to evaluate a formula with 
a given set of variables provided by the user. The 
formulas are presented as text. A Formula Interpreter class 
compiles the text and evaluates the formula. The 
compilation process is performed only once, so the 
efficiency of following evaluations is very high. This 
allows use of the package for fitting problems inside the 

optimization package. The formulas evaluating package 
has a variety of operators including arithmetic operators, 
function operators, and logical operators. The set of 
internal functions can be extended. 

XAL APPLICATIONS 
At this moment, only the SNS project has more than 50 

XAL applications. They were developed at different times 
by different developers, and many of them do not comply 
completely with all standards for correctly implementing 
XAL applications. In this paper we consider only few of 
them which could be useful everywhere. 

To write a correctly implemented general XAL 
application the developer should follow several rules: 

• The application cannot use java classes from another 
application. If a Java class is useful for more than 
one application, it should be moved into the core 
XAL packages. 

• The source code of the application should not 
contain any specific information related to a 
particular accelerator. 

• The application should use the accelerator model for 
hardware interaction. The model should be 
initialized from the default XML accelerator model 
file. 

• The number of external packages should be 
minimized. 

Virtual Accelerator 
A virtual accelerator (VA) is a simulation program 

running permanently and generating sensible diagnostics 
signals in response to changing parameters of the model. 
From the point of view of a client that communicates 
(through EPICS or another protocol) with this VA there is 
no difference between the VA and a real machine. The VA 
is a very useful tool for developing and testing control 
room applications, especially during the early stages 
when the real accelerator is not functioning yet. 

In the beginning of XAL development, the virtual 
accelerator was based on PARMILA or TRACE3D codes 
and an EPICS Portable Channel Access Server (PCAS) 
[10]. The structure of this VA is shown in Fig. 6. Later, 
the XAL online model was used as a simulation program. 

 

Figure 6: The structure of a virtual accelerator. 
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Until recently, PCAS was the only option to provide 
communications between an application and the 
simulation program. It was inconvenient because each 
time the user had to generate a special initialization file 
with a list of EPICS PV names that will be used in the 
VA. After replacing the JCA wrapper around the native 
EPICS C-library by the CAJ (pure Java EPICS 
communication package [7]), the PCAS was dropped 
from XAL. Now the XAL Virtual Accelerator Application 
does not need any external executables and produces all 
necessary EPICS signals by itself. The user needs only 
the XML Accelerator Model file to start VA. 

Orbit Correction Application 
An orbit correction application was developed to 

correct transverse orbit errors with dipole correctors and 
bend magnets in the linac and the ring. Among the 
features of this application, there is the ability to save and 
restore the existing orbit, to correct orbit errors to zero or 
a reference orbit, to switch on and off any particular 
dipole correctors from the process, and to initialize from 
the XML accelerator model file. This application utilizes 
the XAL optimization package by specifying a goal of 
optimization as a combination of zeroing orbit errors, by 
providing a smooth orbit, and by keeping the currents in 
the correctors within their control limits. The satisfaction 
function of this optimization is a nonlinear combination 
of all goals. The use of nonlinearity eliminates the need to 
introduce artificial weights, as is often necessary with 
many linear optimization approaches.  

 

Figure 7: Orbit correction for the MEBT-DTL-CCL1 
SNS’s linac sections. 

When correcting an orbit, the user can choose whether 
to correct the orbit based on the XAL online model or 
through empirical measurement. For the first case, the 
orbit response coefficients of the dipole correctors for the 
downstream beam position monitors (BPMs) come from 
the online model. If the model is incorrect the orbit 
correction will fail. In this situation the empirically 
measured coefficients can be used. The empirical 
approach will work even in a case where there are dipole 
correctors and BPM polarity errors. The disadvantage of 

this method is the long period of time needed to measure 
the orbit response to each dipole corrector. 

The result of the orbit correction for part of the SNS 
linac is shown in Fig. 7. The four trajectories are the 
initial horizontal and vertical trajectories (purple and 
pink, respectively), and the horizontal and vertical 
trajectories after correction (blue and light blue, 
respectively). The initial trajectory excursion is about 4 
mm horizontally and 2 mm vertically. After correction, 
trajectory oscillation in both planes is within 1 mm. 

The XAL orbit correction application can also serve as 
a live orbit display. 

CONCLUSION 
The XAL framework has three basic interconnected 

components: the hierarchical accelerator model, the 
online model, and the XAL application framework. 
Additionally, XAL includes a collection of independent 
Java packages that can be used anywhere. 

Correctly implemented XAL applications can be easily 
ported to other accelerators, and there are persistent 
efforts to make the XAL more portable. 

ORNL/SNS is managed by UT-Battelle, LLC, for the 
U. S. Department of Energy under Contract No. DE-
AC05-00OR22725. 
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Abstract

The on-line models for Relativistic Heavy Ion Collider
(RHIC) and the RHIC pre-injectors (the AGS and the AGS
Booster) can be thought of as containing our best collec-
tive knowledge of these accelerators. As we improve these
on-line models we are building the framework to have a
sophisticated model-based controls system. Currently the
RHIC on-line model is an integral part of the controls sys-
tem, providing the interface for tune control, chromatic-
ity control, and non-linear chromaticity control. What we
discuss in this paper is our vision of the future of the
on-line model environment for RHIC and the RHIC pre-
injectors. Although these on-line models are primarily used
as Courant-Snyder parameter calculators using live ma-
chine settings, we envision expanding these environments
to encompass many other problem domains.

INTRODUCTION

The Collider Accelerator Department (C-AD) at
Brookhaven National Laboratory (BNL) operates a series
of accelerators that serve the purpose of providing beams
to the RHIC experiments. These accelerators include the
AGS, which first operated with beams in 1960 and the two
RHIC rings, that began beam operations in 2000.

RHIC consists of two super-conducting accelerators, 2.4
miles in circumference, with counter-rotating beams. It has
six interaction regions where the two beams can be put into
collisions with zero crossing angle. We currently operate
with collisions in two of these regions. RHIC can be oper-
ated in many different modes and with many different types
of beams [1]. For example, RHIC is able to run with two
different ion beams in the two rings simultaneously (e.g.,
gold and deuteron beams in collision) [2]. RHIC can ac-
celerate gold ions up to 100 GeV/nucleon and polarized
proton beams up to 250 GeV/c (for more on RHIC perfor-
mance see [3, 4]).

To deliver polarized protons to RHIC, the beam acceler-
ates as H− ions through the 200 MeV LINAC is stripped
to H+ and brought up to 2.16 GeV/c in the Booster syn-
chrotron. The beam is then transferred into the AGS and
accelerates to 23.8 GeV/c. Finally the beam is transferred
to the two RHIC rings, ending with polarized protons up to
250 GeV. For ion operations the process starts at the Tan-
dem Van de Graff. A gold beam, for example, is stripped

∗Work performed under Contract Number DE-AC02-98CH10886 with
the auspices of the US Department of Energy.

† kbrown@bnl.gov

of some of the outer shell electrons at the Tandem and is
brought through a long transport line to the Booster. From
the Booster the gold ions are transferred to the AGS and
stripped to Au77+ in the transfer line. The final two elec-
trons are stripped off in the AGS to RHIC transfer line.

ACCELERATOR CONTROLS SYSTEM
We have two ways to view accelerator controls inter-

faces. One can take an engineering view in which we think
in terms of power supply configurations and in physical
units of current and voltage. This paradigm had worked
well for decades, before large scale computing was able
to take over the more computationally involved process
of working in terms of beam parameters, such as beta-
tron tune, chromaticity, and other Courant-Snyder parame-
ters [5].

What is important is that we develop controls that allow
the best mapping between how we think of the accelerator
and how we control it. This also allows more of the in-
formation that describes the various subsystems to be cap-
tured into the controls systems. For example, if you have
a transport model of a beam line in the controls, the sys-
tem will contain not only the transfer functions for control
units (e.g., some 0 to 10 volt reference to a power supply,
derived from a 16 bit digital to analog conversion module)
but also transfer functions from current to field, gradient,
and even normalized strengths. This then captures not only
the power supply information, but also the magnet informa-
tion. The controls system now begins to hold the best col-
lective knowledge of the accelerators. It could even contain
the best collective knowledge of the beam dynamics.

The controls systems at C-AD span multiple genera-
tions of technologies. The controls for RHIC represent
the largest systems, in terms of total number of control
points (over 220,000 settings and over 160,000 measure-
ments) [6]. From the point of view of the online models,
there are then multiple interfaces that need to be defined to
collect live parameters of the accelerators.

Generally speaking, all of the controls systems are hi-
erarchical with multiple physical and software layers. At
the lowest level we speak of a front end computer (FEC)
that directly interfaces to some piece of hardware (a power
supply or an instrumentation module). The front end sys-
tems interface to the console layers of the system through
high speed Ethernet employing fiber-optic network connec-
tions. In this respect one can think of the controls system
as a widely distributed computer system where computa-
tional work is performed in parallel. This is somewhat
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naı̈ve, since each FEC performs a very specific task (they
cannot share the work of some other FEC). Our reason for
making this analogy is to highlight two things. First is the
concept of distributing the accelerator state for the controls
to the lowest levels of the hierarchy. The other is to al-
low us to make the point that this form of a controls sys-
tem implements an engineering paradigm of controls. The
work is distributed according to the power supply configu-
rations(which often don’t parallel magnet configurations),
not according to the magnet configurations. So the work
that the online model performs cannot be distributed down
to the lowest level of the controls hierarchy, but must re-
main at a higher abstraction in the software layers.

HOW MODELS FIT IN

The software layers of the controls can be divided up into
three parts. There is the software on the FEC’s, then there
is the middleware manager (server) layer, and finally there
is the console layer. The online models reside in the mid-
dleware manager layer, that being the lowest level of the
software hierarchy that can perform that work. Each man-
ager acts as a domain-specific arbiter between the console
applications and the FEC’s. Multiple hardware systems can
be employed to distribute managers, but a single manager,
unless it threads itself off into multiple instances, remains
fixed on a single computer server as a single process.

The basic design of the RHIC online model server allows
for multiple instances using different computational model
engines [7]. The main computational engine used is an in-
house system we call Opticalc. The communication inter-
face for the online model uses CDEV [8]. The main client
interfaces that connect the online model to the controls sys-
tem are the RampManager server and RampEditor console
application [9]. Through this system we achieve control
of the accelerator in units of betatron tune and chromatic-
ity. The division of work, between the online model server,
the RampManager, and the FEC’s permits each to focus
on a specific function. The model server works purely in
normalized strengths, with the RampManager handling the
management of transfer functions, along with the Wavefor-
mGenerator manager that builds the actual references that
are sent to the FEC and eventually into the various power
supplies. In this system the RampManager acts as the cen-
tral authority, managing the interfaces between the hard-
ware, the model, and the operator.

The AGS/Booster online model system is not yet an in-
tegral component of the controls system. It acts more as
an advisor, providing basically what is a fast offline inter-
face to the operator. The basic design follows very closely
the design of the RHIC online model system [10, 11], ex-
cept madx [21] is used as the computational engine. The
communication interface uses CDEV, and the design al-
lows for multiple instances using different computational
model engines. The main client is the AGSModelViewer,
which obtains controls data (e.g., the tune control func-
tions, the main magnet ramp, and the RF functions) as

well as data logged from instrumentation (i.e., to compare
tune and chromaticity measurements with the model). The
AGSModelViewer also works with a longitudinal model of
the accelerators, encapsulated in a library interface, and so
presents to the operator both longitudinal and transverse
beam parameters.

The kind of online model system we are working to-
wards is a manager, advisor cooperative, in which the
RampManager is the central authority and the model server
acts as an advisor to all other applications. This is shown
in figure 1. The RHIC system is very close to this kind of
system, lacking only a model viewer that is as extensive
as the AGS/Booster system. The model viewer, when built
to encapsulate not just the simple linear model, but to al-
low comparison to other models and measurements, grows
in functionality to a controls viewer. That is, the concep-
tual view of the accelerator and the mapping to the controls
begin to converge where the RampEditor is the controls in-
terface and the model viewer is the visualization interface.
Figure 2 shows a snapshot of the AGSModelViewer appli-
cation interface.

Model Server

ApplicationsRamp Editor Model Viewer

Ramp Manager
Waveform
Generator

FEC

Manager Middleware Layer

Application User Interface Layer

Hardware Interface Layer

Figure 1: The manager, advisor online model cooperative
in the controls system.

OFFLINE SIMULATION ACTIVITIES
Offline simulation activities tend to be focused on un-

derstanding phenomena that limit beam performance. This
can include relatively simple simulations, such as matching
at injection, to highly specialized simulations, such as pre-
dicting the performance of transverse stochastic cooling in
RHIC. It is interesting to review the current set of activities
and consider what offline work could prove useful as ei-
ther online simulations that become part of the controls or
as activities that can be improved by linking to the online
system.

In the Booster and the AGS a significant amount of the
offline simulation activities are associated with improving
the performance of polarized protons operations. To pre-
serve polarization in the AGS the vertical betatron tune
needs to be kept very near the integer [12]. A significant
amount of work goes into comparing beam based mea-
surements to predictions, including momentum offset and
other effects. This work will eventually lead to precise
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Figure 2: AGSModelViewer showing polarized proton lat-
tice at injection. ¯-functions are distorted by the presence
of partial snakes in the lattice.

tune control in the AGS, through the online model inter-
face. Another activity is learning how to match the Booster
to AGS transfer line optics to the AGS lattice distorted by
the partial snakes [13]. The main area of activity here is
in trying to understand how to model the snakes and bring
that model into the online model [14]. Keeping transverse
emittance as small as possible is important for polariza-
tion preservation, simulations of emittance growth on the
injection foil during Booster injection are another area of
activity [15]. Having these simulations online could bene-
fit machine performance, especially since the dynamics are
complicated enough to not be entirely intuitive.

Other areas of offline work include space charge calcu-
lations at AGS injection, spin tracking, and understanding
horizontal resonances. A new project in the AGS is the
horizontal tune jump system. Two fast quadrupoles were
added to the AGS lattice [16]. They will be programmed to
perform tune jumps across 82 horizontal spin resonances.
Including this system into the online model has already
proved desirable, where some pieces of the online system
were used to provide predictions.

In RHIC, the focus of offline simulations is on polarized
proton performance and ions operation performance.

Even though RHIC has full snakes (each ring has two
180 degree snakes), there are still spin resonances that can
cause polarization loss. Areas of study related to spin in-
clude spin tracking and polarization preservation above 100
GeV, where there are strong resonances [17]. There can
also be polarization losses during stores. Polarized protons
are also susceptible to beam-beam interactions [18].

For ions operations, the dominant intensity limitation is
instabilities that occur after the gamma transition jump.
Various areas of exploration are being pursued, including
electron cloud effects and nonlinear chromaticity. During
store intrabeam scattering (IBS) limits luminosity. New lat-

tices have been developed to suppress IBS [19]. The devel-
opment of a new lattice is an offline activity. This is be-
cause great care must be taken to build functions that are
realistic for the power supplies to follow.

Other areas of offline activity include orbit feedback, or-
bit response matrix measurements (ORM) [20], and injec-
tion steering and matching. This last activity is actually a
mostly online activity, but developing optical matches be-
tween the AGS to RHIC transfer line and the RHIC lattice
remains an offline activity. Significant work also goes into
offline analysis of collimation.

Finally a significant amount of effort goes into simula-
tion of individual elements or systems. These include im-
proving our understanding of the RHIC injection kickers
and for the development of a superconducting 56 MHz RF
cavity.

INFRASTRUCTURE IMPROVEMENTS

All online software systems are version controlled and
under a backup system.

The lattice descriptions are managed outside of the main
controls infrastructure, although they are under some form
of version control. All lattices are under a backup system.
The lattices used in the online models are provided by the
responsible physicist for the given system. For these lat-
tices the plan is to encapsulate them into a true version con-
trolled system. The responsible physicists will then employ
this system to make changes.

There are a number of tools, either obtained from other
accelerator laboratories, or built in-house, that are not man-
aged within the main controls infrastructure. Some of these
tools are used by the online system, such as madx, and
others could be useful for the online systems, such as cer-
tain in-house built spin tracking modules. This software
should, but may not, be under source control and backups.
Since some of this software resides on individuals comput-
ers. Documentation of this software is usually minimal and
mechanisms for bug tracking and reporting are not imple-
mented.

A particular problem we are focusing on is the linking of
the online models to offline analysis. One example of this is
the ORM analysis. In this case clearly the online and offline
descriptions of the accelerator need to be identical. But
there is no mechanism, besides individual initiative, that
ensures they are identical. So we are moving to systems
where everyone uses the same lattice descriptions, there is
a responsible contact for each lattice and lattice tool, and
there is user guide documentation.

We have formed an online model working group to work
through these infrastructure improvements, consisting of
members of the physics group, controls group, and opera-
tions. A significant amount of the work is currently focused
on model development and verification for the online mod-
els. But the infrastructure is being built to permit offline
and online simulations to use the same descriptions of the
accelerators and beam lines.
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MOVING OFFLINE WORK ONLINE
We often discuss the process of moving offline work to

online [22]. Some offline work needs only better access
to real time machine parameters. Some is associated with
beam experiments and is only useful during those periods.
What is important, from our perspective, is that there is a
need for mechanisms that allow faster offline work to be
done using real time machine parameters.

Members of the physics group do most of the offline
work. Since they have a diverse set of tools they employ
for simulations, we focus on providing a framework with
which they can easily access the information they need to
perform offline studies. This can satisfy the difficulty of
getting real time parameters to offline work, but it doesn’t
bring the offline work into the online infrastructure. For
this we need to define what physics is needed in the online
environment. This is a continual process, since as models
become more sophisticated and realistic, we can seriously
consider bringing them into the online system. We also
need to consider that much of the offline work is compu-
tationally demanding. Bringing it online may mean pur-
chasing better servers or bringing cluster computing into
the controls system.

Finally, but most importantly, bringing offline work into
the online environment necessarily brings it to a larger au-
dience. This provides the ability to use these offline tools
in the online system as teaching aides.

LONG TERM PLANS
Our goal is to support a model based accelerator con-

trols system and to provide an accelerator physics based ap-
proach to accelerator operations. We intend to provide sup-
port to accelerator physicists and operators assisting physi-
cists. To do these things we need to have well understood
models of the accelerators and transfer lines that have been
tested against beam based experiments. At C-AD there is a
strong collaboration amoung physics, operations, and con-
trols. We intend to build on this collaboration to achieve
our goals.

We are actively investigating improved simulation en-
gines for the online models, investigating ways to make
madx faster and learning about other systems such as
ptc [23]. We are also looking into ways of standardiz-
ing and improving the data formats with tools such as
SXF/ADXF [24] and HDF [25].
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BEAM-BEAM SIMULATIONS FOR KEKB AND SUPER-B FACTORIES

K. Ohmi, KEK, Tsukuba, Japan

Abstract

Recent progress of KEKB and nano beam scheme
adopted in KEKB upgrade are discussed. For the present
KEKB, chromatic x-y coupling, which was the key pa-
rameter to improve luminosity, is focussed. Beam-beam
simulations with weak-strong and strong-strong models for
nano beam scheme are presented. A weak-strong simula-
tion was done in the presencee of the longitudinal micro-
wave instability. Finally status of beam simulations in KEK
supercomputers is presented.

INTRODUCTION

Crab cavity has been installed into KEKB to boostup the
luminosity performance. Basically the crab cavity should
give us potential to increase the beam-beam parameter
more than 0.1. Actually various errors disturb to achieve
the high beam-beam performace. For example linear x-
y coupling at IP induces an emittance growth with couple
to the beam-beam nonlinear interaction. Fast turn by turn
fluctuation of the beam position also inducd an emittance
growth with couple to the interaction. To achieve the high
beam-beam parameter, errors should be removed as pos-
sible as we could. Tuning of colliders is just the work to
remove errors. Tolerance for errors are estimated in simu-
lations, but it is hard to know how much errors exist, how
to correct the errors and how the errors were corrected in
an accelerator.

Recently KEKB achieved the new luminosity record.
The luminosity record increases 20%, from 1.76 to 2.1 ×
1034 cm−2s−1 in June 2009. It is twice of the design lumi-
nosity, 1 × 1034 cm−2s−1. Tuning of chromatic x-y cou-
pling improved the luminosity remakably.

For KEKB upgrade, we turn to the strategy to boost-up
the luminosity. Higher beam-beam parameter is hard to
achieve against various errors. Increasing currnt is also
problem for the operation cost. Nano-beam scheme, in
which low emittance and low beta beams collide with a
large crossing angle, is alternative way.

We discuss simulations of the crab crossing of the
present KEKB and nano-beam scheme of the KEKB up-
grade in Sec II and III, respectvely. In Sec. IV, the com-
puter environment of KEK is reviewed.

RECENT PROGRESS OF KEKB

Chromatic x-y coupling

The existence of the chromatic x-y coupling was known
by a measurement of the synchro-beta sideband in the beam
size on the x-y tune space [1]. Simulations including the
chromatic coupling has been performed using a symplectic
integration method of the chromaticity [2]. Hamiltonian
which expresses generalized chromaticity is given by

HI(x, p̄x, y, p̄y, δ̄) (1)

=
∑
n=1

(anx2 + 2bnxp̄x + cnp̄2
x + 2dnxy + 2enxp̄y

+2fnyp̄x + 2gnp̄xp̄y + uny2 + 2vnyp̄y + wnp̄2
y)δ̄

n/2.

The coefficients 10×n are related to n-th order chromatic-
ity of 10 Twiss parameters, αx,y, βx,y, νx,y and ri, i = 1, 4.
Transfer map using H as a generating function guarantees
the 6D symplectic condition.

Alternative way is the direct map for the betatron vari-
ables x = (x, px, y, py)t and z as

x(s + L) = M4(δ)x(s). (2)

z(s + L) = z(s) + xtM t
4(δ)S4∂δM4(δ)x/2 (3)

where M4(δ), which is the revolution matrix at the inter-
action point, which contains 10 Twiss parameters and their
chromaticity. The transformation for z guarantees the 6-D
symplectic condition.

Twiss parameters at the interaction point is measured by
turn by turn position monitors located at the both side of
the interaction point [3, 4]. Their chromaticity is given by
scanning RF frequcncy in the range of ±200 ∼ 300 Hz.

Figure 1 shows the measured x-y coupling parameters as
functions the momentum deviation. The parameters are fit-
ted by polynomial of the momentum deviation, as follows,

r1(δ(%)) = 0.00848− 0.00435δ + 0.00909δ2 + 0.151δ3

r2(δ(%)) = 0.0137 + 0.00696δ + 0.0222δ2 − 0.320δ3

r3(δ(%)) = 0.189 − 0.304δ + 2.45δ2 − 1.24δ3 (4)

r4(δ(%)) = 0.0277− 0.942δ + −0.512δ2 − 0.301δ3

The coefficients, which are chromaticity, varies run by run,
and differ from prediction of the optics design code like
SAD. Therefore the accelerator model based on the mea-
sured chromaticity is important.

Using these transformation, synchro-beta resonances
and their effects on the beam-beam interaction have been
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Figure 1: Measurement of the chromaticity for x-y cou-
pling in KEKB-LER.

studied [5]. The transformation is implimented into both of
the weak-strong (BBWS) and strong-strong (BBSS) codes
for beam-beam interaction. Figure 2 shows the luminos-
ity as a function of the chromaticity given by the weak-
strong simulation. The chromaticity for r4, dr4/dδ, can
affect the luminosity: the luminosity degradation is 10-15
% for dr4/dδ ∼ 200. Skew sextupole magnets are installed
to correct the chromaticity. Luminosity increases 20% due
to the chromaticity tuning as shown in Figure 3.

KEKB UPGRADE - NANO BEAM
SCHEME

KEKB upgrade is progressing the design with the nano-
beam scheme. In the nano-beam scheme, low emittance
and low beta beams collide with a large crossing angle. Pa-
rameters as candidates of KEKB upgrade are summerized
in Table 1.

Crab waist technique to fit the waist of the beam to the
axis of colliding beam is taken into account in KEKB up-
grade [6].

The ratio of the horizontal projection of the bunchlength
and horizontal size, φσz/σx, which is called Piwinski an-
gle, indicates the overlap area of two beam at collision. In
the low emittance approach, the large retio φσz/σx ≈ 20
means a large number of slice in the simulation.

Weak-strong simulation

Weak-strong simulation is convenient to survey feasibil-
ity of the design. Macro-particles, which represents weak
beam, collide with a fixed chrage distribution as the strong
beam. The strong beam is a fixed tri-Gaussian distribution
for x, y, z with the size σx,y,z . The strong beam is sliced
along z. The number of slices are 200. Since the over-
lap area is Δz = σx/φ ∼ 20 × σz , the area, which mostly
contribute the lluminosity, is sliced into 10 pieces in the av-
erage. Hourglass effect in the area is serious when the beta
fuction is smaller than the overlap area, βy < σx/φ. The
luminosity obtain by the weak-strong simulation is filled in
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Figure 2: Simulated luminosity for the chromatic x-y cou-
pling.

Figure 4: Schematic view of the low emittance approach
for KEKB upgrade.
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Figure 3: Luminosity trend of KEKB.

Table 1: Parameters for KEKB upgrade and Frascati Super B factories.

variable HighCurrent NanoBeam-1 NanoBeam-2 Frascati
Ep/Ee (GeV) 3.5/8 3.5/8 3.5/8 4/7
εx (nm)(L/H) 24/18 2.8/2.0 2.8/2.0 2.8/1.6
εy (pm) 240/90 33.6/10.7 20.7/36.0 7/4
βx (mm) 200/200 44/25 17.8/25 35/20
βy (μm) 3/6 0.21/0.37 0.26/0.26 0.22/0.39
σx (μm) 69/60 11/7.07 7.06/7.07 9.9/5.66
σy (μm) 0.85/0.73 0.084/0.063 0.073/0.097 0.039/0.039
σz (μm) 5/3 5/5 5/5 5/5
φ (mrad) 0 30 30 24
φσz/σx 0 14/21 21/21 14/25
σx/φ (μm) - 0.37/0.24 0.24/0.24 0.35/0.20
Np/Ne (1011) 12/5.25 10.7/6.17 10.7/6.17 0.55/0.55
Nbunch/Cir(m) 5000/3016 2230/3016 2252/3016 1251/1800
ξy 0.3/0.5 0.081/0.081 0.079/0.079 0.147/0.150
L (cm−2s−1) 5.3 × 1035 8(2.9) × 1035 8(8.5)× 1035 (11) × 1035
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table 1, where bracket and non bracket is those with and
without the crab waist. In NanoBeam-1, luminosity with-
out crab waist degrade 1/3 of that with crab waist, while no
big difference for NanoBeam-2. Essential point whether
such difference arises or not is the overlap area σx/φ is
larger than βy or not: that is, the hourglass effect is strong
or not. If hourglass effect becomes serious (σx/φ > βy),
luminosity degrades without crab waist. In σx/φ < βy ,
luminosity without crab waist does not degrade. Figure 5
shows luminosity and beam-beam parameter as a function
of current in this condition. The gain of the crab waist is
not remarkable for σx/φ < βy in this current range. The
gain is higher at higher current, and at further large current,
corresponds to the beam-beam parameter > 0.1, the gain
of the crab waist is remarkable even σx/φ < βy . Figure 6
shows luminosity in transverse tune space. Clear synchro-
beta resonance line 2νx + νs = integer is seen in the both
case of crab waist on and off.
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Figure 5: Luminosity and beam-beam parameter for
NanoBeam-2 as function of the beam current.

Strong-strong simulation

For strong-strong simulation, both beams are repre-
sented by macro-particles. Both beams are sliced into many
pieces, and collide slice by slice with solving Poisson equa-
tion during the interaction. Poisson equation has to be
solved many times, square of the number of slice. Since
the number of slice is 100-200, Poisson equation is solved
104 times per collision. The radiation damping time is 4000
turns for KEKB, therefore the collision has to be repreated
104 times, with the result that the total number is 108−109

times. Note that the potential is calculated for two beams,
and twice per slice to interplate potential along z [7]. KEK
super computer HITACHI SR11000 computes one Poten-
tial solution in 10 ms. Simulation of the present KEKB in
which Poisson equation is solve 102 × 104 turn=106 times,
takes a few hours.
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Figure 6: Luminosity on the transverse tune space. Top and
bottom are without and with crab waist, respectively.

Soft Gaussian approximation reduces the simulation
time extremely. Therefore we adopt a mixed method of the
PIC solver and soft Gaussian approximation. When col-
liding two beam (slice) separation is closer than 5σx, PIC
solver is used, otherwise soft Gaussian approximation is
used. Figure 7 shows the luminosity given by the strong-
strong simulation. The luminosity somewhat degrade from
the design value. The beam-beam parameter obtained by
the luminosity is 0.08. No coherent motion was seen. The
horizontal size did not change, while vertical size was en-
larged. This result means that there is no serious problem
for beam-beam dynamics point of view.
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Figure 7: Luminosity evolution given by the strong-strong
simulation.
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Effect of the micro-wave instability

Bunch current in KEKB upgrade is higher than the
present current of KEKB. Bunch lengthening and mi-
cro wave instability have been observed even in KEKB.
Though the chmaber is more carefully designed, resial
impedance or CSR contribution may cause micro-wave in-
stability. Actually missing impedance exist in the prsent
KEKB [8]. The horizontal beam-beam force integrated
along the bunch length is Bassetti-Erskine type for tri-
Gaussian distribution in x-y-z plane. When the micro-wave
instability arises, the transverse beam-beam force is dis-
torted and fluctuated in the nano-beam scheme as shown in
Figure 8.

Figure 8: Collision of beams with a longitudinal density
modulation.

The combined effect of the beam-beam and micro-
wave instability is studied with the weak-strong simula-
tion. The weak-beam is represented by maco-particles on
6-dimentional phase space as is done generally. The strong-
beam is represented by macro-particles on the longitudi-
nal phase space, where the transverse distributuion is fixed
and determined by the design σx and σy . Longitudinal
wake field is introduced for the strong beam. When the
strong beam is unstable in longitudinal, the weak beam
experiences fluctuating beam-beam force from the strong
beam. Figure 9 shows the longitudinal profile of the strong
beam, and luminosity and weak beam size evolution. The
impedance (wake) is the resonator model used by Y. Cai
[9],

Z(ω) =
RS

1 + iQ
(

ωR

ω − ω
ωR

) (5)

where RS = 2.5 × 10−6 s/m, ωR = 2π × 31.3GHz and
Q = 1. The luminsity is smaller than the design value in
the simulation, 8 → 6 × 1035 cm−2s−1. Bunch lengthen-
ing is the reason of the luminosity degradation, but no other
complex effects is seen. There is not blow-up in the trans-
verse beam size. Since the longitudinal profile is lengthen-
ing but is stable, the beam-beam force does not fluctuate.
The resonator impedance may be mild for the micro wave
instability. Actual impedance is more complex, thus the
beam profile may fluctuate. The simulation shoule be per-
formed with a realistic impedance.

COMPUTING AT KEK

Common memory or distributed memory

Two super computers are used in KEK. One is a common
memory type of parallel computer, HITACHI SR11000. It
consists of 16 nodes, where each node equips 16 CPU’s
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Figure 9: Longitudinal profile fo the strong beam. Lumi-
nosity and transverse beam size of the weak beam.

(POWER 5) with a common memory (24 GB). The total
power is 2 TFlops.

Another is the distributed memory type of computer,
Blue Gene. It consist 10,000 nodes, which contain 2 Pow-
erPC440 in each, and the total power is 57 TFlops.

Simulations for accelerators have been carried out
mainly using SR11000, even though the total CPU power
is lower.

The potential solver is called 102 times per collision for
the present KEKB. It is called 104 or more for the upgrade
of KEKB. The total numbers of Poisson solve is 106 and
108 − 109 for the present KEKB and KEKB upgrade, re-
spectively. It is similar number for JPARC-MR. A potential
calculation including the distribution to all CPU’s should
be finished less than 1 ms to complete these simulations in
a reasonable computation time, < 100 hours.

HITACHI SR11000m in which communication between
CPU is via memory, solves potential in 10 ms. For Blue
Gene, the overhead of network communication should be
cared.

PIC simulation is carried out as follows,

1. Particle loops are paralleled.

2. Count distribution ρ(xi, xj) and take summation for
all nodes.

3. Potential ϕ(xi, yj) is calculated by solving 2D Pois-
son equation with parallel for the mesh.

4. ϕ(xi, yj) is distributed to all nodes, and is used to
track particles.

When the mesh is 128×128 with 8 Byte memory, 128 kB
data has to be communicated in the process of (2) and (4)
per one potential calculation. This communication is per-
formed via memory for SR11000, but via network for Blue
Gene. The network overhead is estimated by the help of
Dr. Doi (IBM-Japan). MPI Allreduce for 32 node spend
15 sec for 104 times: that is 1.5 ms . Since the deta com-
munication is performed along “tree” structure, it is twice
for 1024 node: i.e., log2 1024/ log2 32 = 2. Anyway the
communication time has already over the required time 1
ms per one potential calculation.
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The common memory type of supercomputer SR11000
is still useful for particle in cell simulations of circular
accelerators. However computing power of super paral-
lel computers based on the distributed memory increases
more and more. Super parallel computers are trend of the
computing. KEK super computers are replaced by new one
with 1 PFlops in 2011. RIKEN computer center with 10
PFlops starts at 2012. We have to keep up the trend in spite
of the network overhead in our simulation scheme.
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RECENT ADVANCES OF BEAM-BEAM SIMULATION IN BEPCII∗

Y. Zhang† , IHEP, Beijing, China

Abstract

The luminosity of BEPCII (the upgrade project of
Beijing electron-positron collider) have reached3.0 ×
1032 cm−2s−1@1.89GeV in May 2009. In this paper we’ll
compare the beam-beam simulation results with the real
machine. In the case the single bunch current is lower than
8mA, the simulation coincides well with the real. Some
phenomenon related to synchro-betatron resonances during
machine tuning and simulation is shown . The tune is close
to half integer help us increase luminosity, however the de-
tector background increases at the same time. It is believed
that the beam-beam dynamic effect result in the drop of the
dynamic aperture. We also study the possible luminosity
contribution from the crab waist scheme in BEPCII.

INTRODUCTION

BEPCII is an upgrade project from BEPC. It is a dou-
ble ring machine. Following the success of KEKB, the
crossing scheme was adopted in BEPCII, where two beams
collide with a horizontal crossing angle2 × 11mrad. The
design luminosity of BEPCII is1.0 × 1033cm−2s−1 at
1.89GeV, about100 times higher than BEPC. The con-
struction started in January 2004 and completed in June
2008 when the detector is positioned. The luminosity was
only achieved1.0 × 1032cm−2s−1, since the two profile
monitors in the positron ring excite very strong longitudi-
nal instability [1]. When the two monitors were removed,
2.0 × 1032cm−2s−1 was achieved. In May 2009, we de-
cided to move the horizontal tune more closer to half in-
teger, which help us achieve3.0 × 1032cm−2s−1, and the
project was reviewed by the governement in July 2009. Ta-
ble 1 shows the main design and achieved parameters in
BEPCII.

The beam-beam code used in our simulation is a Particle-
in-Cell code [2]: (1) the transport map in the arc is linear
approximation which is same as Hirta’s BBC code where
the synchrotron radaiation and quantum excitation is in-
cluded, (2) the beam-beam force is calculated by solving
Poisson equation using FFT, (3) finite bunch length ef-
fect is included by longitudinal slices, and the interpolation
scheme is used to improve the convergence of slice num-
ber [3], (4) the finite horizontal crossing angle is included
by Lorentz Boost [4].

In the following, we’ll compare the simulated beam-
beam limit with the achieved in the real machine. Ac-
cording to the simulation, the synchro-betatron resonances

∗Work supported by National Natural Sciences Foundation of China
(10725525 and 10805051)

† zhangy@ihep.ac.cn

Table 1: Parameters of BEPCII (Design and Achieved)

Design Achieved

E [GeV] 1.89 1.89
C [m] 237.53
Nb 93 70
Ib [mA] 9.8 8
L [×1032cm−2s−1] 10 3.0
ξy 0.04 0.025
θc [mrad] 2 × 11
β∗

x/β∗

y [m] 1 / 0.015
ǫx/ǫy [nm] 144 / 2.2
σz [cm] 1.5
σe 5.16 × 10−4

νx/νy 6.53 / 7.58 6.51 / 5.58
νs 0.034 0.032
τx/τy [turn] 31553 / 31553
τs [turn] 15777

would be excited in some tune region, and similar phe-
nomenon appears in the tune scan of real machine. We’ll
also show that the dynamic effect reduce the aperture in
the near half-integer region. We also study the possible lu-
minosity contribution of the crab-waist scheme in our ma-
chine. At last a summary and discussion is presented.

BEAM-BEAM LIMIT

The beam-beam parameter is defined as

ξu =
Nre

2πγ

β0
u

σu(σx + σy)
(1)

whereN is the particle number per bunch,re the classi-
cal electron radius,γ the relativistic factor and it should
be noted thatβ0 is unperturbed beta function andσ is per-
turbed beam size. If we do not consider the luminosity
loss caused by finited bunch length and crossing angle, the
bunch luminosity can be expressed as

L =
N2f0

4πσxσy

(2)

wheref0 is the revolution frequency, and it should be noted
that σ is perturbed beam size. For flat beamsσy ≪ σx,
the achieved beam-beam parameter can be expressed with
bunch luminosity as

ξy =
2reβ

0
y

Nγ

L

f0
(3)
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Figure 1: The achieved and simulated beam-beam parame-
ter forνx ≈ 0.53. 2008 and 2009 refers to that before and
after the removal of the profile monitors respectively.
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Figure 2: The achieved and simulated beam-beam parame-
ter forνx ≈ 0.51.

Figure 1 shows the beam-beam limit forνx ≈ 0.53.
There exists clear difference between 2008 and 2009,
which is due to the data error. Only one bunch is used to
tune the machine in 2008, and we would like to inject more
bunches (5 or 10) in 2009. The latter is more credible. The
maximum beam-beam parameter is close to 0.025 by simu-
lation, and in the real machine 0.015-0.020 can be achieved
stably.

Figure 2 shows the beam-beam limit forνx ≈ 0.51. The
maximum beam-beam parameter is about 0.035 by simula-
tion, and in the real machine 0.022-0.025 can be achieved
stably.

In both cases, the achieved beam-beam parameter can
be greater than simulation by optimization for lower bunch
current. However the real is less than the simulation when
Ib > 8mA. One possible explanation is the crosstalk be-
tween the beam-beam kick and the nonlinear map in the
arc, since there is no cells in the arc and only 4-groups sex-
tupoles are used to correct the chromaticity.

SYNCHRO-BETATRON RESONANCES

There are two kind of synchro-betatron resonances in our
machine: one is caused by beam-beam kick, which can be
seen in Figure 3 during machine tuning and in Figure 4
by simulation, the corresponding resonance line is2νx,π +
2νs = n.
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Figure 3: Luminosity versus tune of the electron ring.
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Figure 4: Luminosity versus tune by simulation.

The other is2νx + νs = n which is more important
during the lattice design nearνx ∼ 0.51, since it may limit
the dynamic aperture. In fact the beam-beam effect is also
very effective to the resoance. In the first stage when we
move the horizontal tune to 0.51, the luminosity is very
sensitive to the knobs: RF voltage, tune and orbit etc. It
is found that the sextupole configuration is not good, see
Figure 5. After the problem is fixed, the tuning knob is
normal.

Growth Rate of Synchro-Betatron Resonance with Different Sextupole
Configurations
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Figure 5: Growth rate of synchro-betatron resonance for
different sextupole configurations.
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Figure 6: The perturbed horizontal beam size along the ring
for νx = 0.53 andIb = 8mA

DYNAMIC EFFECT

The beam-beam interaction perturbs the twiss parameter
along the ring, which is the so-called dynamic beta effect.
With linear approximation, the beam-beam force is treated
as linear focusing force in both transverse directions, and
the perturbed beta function at IP is

β =
β0√

1 + 4πξ cotµ0 − 4π2ξ2
(4)

whereβ0 is unperturbed andξ is the achieved beam-beam
parameter. The transverse emittance is also perturbed,
which is the so-called dynamic emittance,

ǫ =
1 + 2πξ cotµ0√

1 + 4πξ cotµ0 − 4π2ξ2
ǫ0 (5)

The perturbed parameters can be calculated by iteration.
When our machine is running nearνx ∼ 0.53, the detec-

tor’s background is low enough to take data. And we can
reduce the background by tuning the horizontal orbit in the
IR region. When the horizontal tune is more closer to half
integer, the luminosity achieves3.0×1032cm−2s−1 but the
detector cannot work due to high background. Tuning the
horizontal orbit cannot improve the background.

We use two methods to study the dyanmic effect. One
is the linear theory analysis, the other is making use of the
simulation code: the macroparticles after multi-turn beam-
beam kick is transported along the ring, and the RMS bunch
size is calculated by statistics. Figure 6 and Figure 7 shows
the horizontal beam size along the ring forνx = 0.53/0.51
respectively. It is very clear that the RMS size enlarges
near the horizontal final focus magnet along with the tune’s
close to half integer. It should be noted that the aperture is
only bout12σ without collision. It seems that we could
not make full use of the high luminosity region near half
integer without modification of IR.

CRAB WAIST SCHEME

There is still long way for us to achieve the design lumi-
nosity. The crab waist scheme proposed by Raimondi [6]
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Figure 7: The perturbed horizontal beam size along the ring
for νx = 0.51 andIb = 8mA
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Figure 8: Luminosity versus the crab transformation
strength with design parameters.

may help us, so it’s necessary to study the feasibility in our
machine. There is 3 steps to implement the scheme:

1. large Piwinski angleφ = σz tan θ/σx, however it’s
only 0.43 in BEPCII

2. reduce vertical beta, which is comparable to the over-
lap areaβy ≈ σx/θ, andβy = 0.015 < σx/θ =
0.034 in BEPCII

3. crab waist transformationH = 1
4θ

xp2
y, which means

H = 22xp2
y in BEPCII

It seems that we’re not very lucky to use this scheme.
First we try to determine the optimum stregnth of crab

waist transformation, which is shown in Figure 8. The
optimum is only∼ 0.2 of the full crab rotation. The
beam-beam limit with crab on is shown in Figure 9 for
νx = 0.53. The achieved beam-beam parameters is in-
creased from 0.025 to 0.030, which means the maximum
luminosity is∼ 11 × 1030cm−2s−1. When νx is more
closer to half integer, the luminosity contribution is not as
good as that 0.53. It can be concluded that the scheme
could help us to some extent, however we still could not
find a lattice solution due to dynamic aperture limitation
coming from the strong sextupoles.
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SUMMARY

The machine has been tuning with solenoid on since
June 2008. In the real machine,ξy = 0.015 ∼ 0.020 is
achievable nearνx = 0.53, however the simulated beam-
beam limit is 0.025. Nearνx = 0.51, ξy = 0.020 ∼ 0.025
is achievable, and the simulated beam-beam limit is 0.035.
Not only the achieved but also the simulated is not satisfy-
ing. It is the crossing angle which reduces the beam-beam
limit. We still don’t know what cause the difference be-
tween the simulated and the real. It is suspected that the
nonlinear map in the arc contributes to the difference. The
element-by-element tracking in the arc instead of6×6 lin-
ear map is scheduled.

By the simulation study, we notice that2νx,π + 2νs = n

could excite synchro-betatron resonances and lead lumi-

nosity loss. During tune scan of the real machine, we find
similar resonance line, however it seems not very strict to
conclude they prove each other. Both the dynamic aperture
and beam-beam effect is sensitive to another resonance line
2νx + νs = n.

The dynamic effect reduces the aperture near half inte-
ger, which makes the high luminosity region cannot be used
to take data till now. On the other hand, the crab waist
scheme would not increase luminosity very much. In fact
lower beta at IP will help us increase luminosity with or
without crab. That is to say it’s a good choice to enlarge
the aperture near the horizontal final focus magnet. In one
words there is still long way to achieve the design luminos-
ity.
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Abstract 
An ultimate goal in accelerator physics is to produce a 

“zero-emittance” beam, which is equivalent to making the 

beam temperature the absolute zero in the center-of-mass 

frame. At this limit, if somehow reached, the beam is 

Coulomb crystallized. Schiffer and co-workers first 

applied the molecular dynamics (MD) technique to study 

the fundamental features of various Coulomb crystals. 

Their pioneering work was later generalized by Wei et al. 

who explicitly incorporated discrete alternating-gradient 

(AG) lattice structures into MD simulations. This paper 

summarizes recent numerical efforts made to clarify the 

dynamic behavior of ultra-cold and crystalline ion beams. 

The MD modeling of beam crystallization in a storage 

ring is reviewed, including how one can approach the 

ultra-low emittance limit. Several possible methods are 

described of cooling an ion beam three-dimensionally 

with radiation pressure (the Doppler laser cooling). 

INTRODUCTION 

Mutual Coulomb interactions among stored particles 

play a substantial role in beam dynamics especially when 

those particles are densely distributed in phase space 

[1,2]. The volume occupied by the particles in six-

dimensional phase space is called “emittance” that can 

directly be linked to the beam “temperature” measured in 

the center-of-mass frame. In theory, the emittance of a 

beam converges to zero (except for quantum noises) at the 

ultra-low temperature limit [3]. It can thus be said that 

space-charge-induced phenomena become more 

prominent as the emittance or temperature goes down. 

The emittance is approximately conserved if the rate of 

Coulomb collisions between individual particles is low 

[4]. That is basically due to the Hamiltonian nature of 

lattice elements (magnets, cavities, etc.) that only produce 

conservative forces. In practice, however, we almost 

always prefer a beam with a lower emittance. To meet this 

general requirement, we must introduce dissipative 

interactions into the system to “cool” the beam. Needless 

to say, the ultimate goal of cooling is to make the beam 

temperature the absolute zero. 

Many questions arise, however: is it really possible in 

principle to establish a zero-emittance state? Can such an 

ultimate state, if it exists, be stable? How does the beam 

look like at that limit? These questions have been 

answered since the mid 1980’s [5-13]. Schiffer and co-

workers first carried out systematic theoretical researches 

on strongly-coupled non-neutral plasmas by employing 

the MD technique [5-9], but their work was based on the 

smooth approximation that may eliminate possible 

realistic effects in cooler storage rings. This fact 

motivated the later, more sophisticated MD work by Wei 

et al. who took discrete lattice structures into account [10-

13]. Their MD simulations actually revealed essential 

differences between ultra-cold states in a uniform channel 

and those in an AG channel. Through all these continuous 

efforts, it is now strongly believed that stable zero-

emittance beams can exist, at least, in theory. 

The purpose of this paper is to give a brief review of 

computer modelling of ion beams in the ultra-low 

temperature regime. After showing the primary conditions 

to form and maintain a crystalline ion beam in a storage 

ring, we outline the MD method employed generally for 

crystalline-beam studies. We then proceed to the 

description of several cooling models including the 

Doppler laser cooling [14,15] that is currently the only 

solution toward beam crystallization. Although the 

Doppler limit is actually very close to the absolute zero, 

the powerful laser cooling force only operates in the 

longitudinal direction of beam motion [16,17]. It is thus 

necessary to somehow make it work three-dimensionally. 

For this purpose, we here consider the resonant coupling 

method (RCM) that can easily be implemented in a real 

storage ring [18,19]. Finally, a unique storage-ring lattice 

free from momentum dispersion [20,21] is described 

which can resolve the problem of “tapered cooling” 

[12,22]. 

CRYSTALLINE BEAMS 

Schiffer, Hasse and others numerically demonstrated 

that a system of many identical charged particles confined 

by a time-independent harmonic potential exhibits a 

spatially ordered configuration at the low-temperature 

limit [5-9]. This phenomenon is referred to as “Coulomb 

crystallization”. In this unique state of matter, the 

Coulomb repulsion among particles just balances with the 

external focusing potential. Suppose a coasting ion beam, 

for instance. If the line density is sufficiently low, all ions 

are aligned along the design beam orbit at equal intervals 

(string crystal). By increasing the line density, we can 

convert this one-dimensional (1D) configuration into a 

two-dimensional (2D) (zigzag crystal). The zigzag crystal 

is eventually transformed to a three-dimensional (3D) 

figure (shell crystal) if we put more ions in the beam. The 

threshold line density from a particular crystalline 

structure to another can be estimated from the Hasse-

Schiffer theory [8]. Similar structural transitions occur 

even for bunched beams. Figure 1 shows a typical multi-

shell Coulomb crystal predicted by a MD simulation. 

____________________________________________  
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When the external force is uniform and time-

independent as assumed in early papers on Coulomb 

crystals [5-9], each particle is frozen at a certain fixed 

point in the rest frame once the beam reaches a crystalline 

ground state. The situation is definitely different in a 

storage ring where the beam experiences periodic driving 

forces all the time. The periodic change of the focusing 

potential excites resonant instability under a specific 

condition satisfied. It is particularly important to avoid 

crossing linear (second order) resonance stopbands 

throughout a cooling process toward the absolute zero. To 

eliminate the possibility of dangerous resonance crossing, 

the bare betatron phase advance per lattice period must be 

less than 90 degrees [12,23]: 

    x ( y) < N sp / 4,                              (1) 

where 
    
( x , y)  are the horizontal and vertical betatron 

tunes, and Nsp  denotes the lattice superperiodicity of the 

ring. The time-dependency of the external potential also 

enhances heating from intrabeam scattering [24,25]; we 

thus need to provide sufficiently strong transverse cooling 

force to overcome this effect. Another primary condition 

pointed out by Wei et al. is the following: 

    
<

T
,                                    (2) 

which means that the beam energy  (the Lorentz factor) 

must be below the transition energy 
T

 of the ring. 

Various Coulomb crystals have now been realized 

experimentally in ion traps [26-28]. It is actually 

straightforward to produce an ultra-cold ion plasma in a 

trap by using the Doppler cooling technique. Figure 2 is a 

laser-induced fluorescence image of a 
40

Ca
+
 plasma laser-

cooled in a linear Paul trap. There is no doubt that a 

multi-shell crystalline structure has been formed. It is 

indeed possible to make string and zigzag crystals as well. 

This experimental evidence probably convinces many 

people that it must be possible to crystallize an ion beam 

in a similar way. In reality, however, nobody has 

succeeded in producing a crystalline beam in spite of 

serious attempts by European groups [16,17,29,30]. 

Although “moving” Coulomb crystals were generated in a 

ring-shaped Paul trap system [31,32], crystalline beams in 

a real storage-ring accelerator have the nature more 

complex than Coulomb crystals in such a compact low-

energy device. In addition, the lattice parameters are not 

so flexible which often prevents us from approaching an 

ultra-low temperature state [33]. How to achieve efficient 

3D laser cooling in a storage ring is also a big issue. 

MD APPROACH 

Periodic Boundary Condition 

The Particle-In-Cell (PIC) algorithm has often been 

adopted to study the dynamic behavior of space-charge-

dominated beams. Beam crystallization is, however, 

clearly beyond the scope of the PIC method that relies on 

spatial meshes and macro-particles. Since collective 

interactions over the whole beam and Coulomb collisions 

among individual particles both play an important role at 

low temperature, we have to compute the space-charge 

potential as precisely as possible. The best way is to 

simply sum up the Coulomb potentials of all particles, but 

that is indeed impractical even with a modern high-

performance computer when the beam consists of a large 

number of particles. 

In MD simulations, the so-called periodic boundary 

condition is employed to save computing time. We first 

slice the beam in the longitudinal direction and load some 

number of “real” particles (not “macro” particles) in the 

reference cell we are looking at. Within this particular 

cell, interparticle Coulomb interactions are calculated 

from the potential of the form 

short

( j)
=

1

(x x j )
2
+ ( y y j )

2
+ (z z j )

2
,         (3) 

where     (x, y, z)  is the spatial coordinates of a particle, and 

(x j , y j , z j )  the coordinates of one of the other particles. 

When the cell contains n particles, the short-range 

Coulomb forces acting upon the particle at     (x, y, z)  are 

evaluated by summing up Eq. (3) over all n 1 partners. 

 
Figure 1: Side view of a typical 3D Coulomb crystal 
numerically obtained with a MD simulation code.

 
Figure 2: Laser-induced fluorescence from a multi-
shell Coulomb crystal formed in a linear Paul trap at 
Hiroshima University. 

 
 

Figure 3: Periodic boundary condition 
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If n is not too large, the CPU time required for this 

process should be reasonable. Now, the question is how to 

compute the long-range Coulomb forces coming from 

other cells. The MD algorithm assumes that all 

longitudinal cells have an identical particle distribution at 

each integration step, as illustrated in Fig. 3. Then, the 

long-range Coulomb potential generated by the jth 

particle’s images in all cells can be reduced to the Ewald-

type integral [34]: 

long

( j)
=
2

L

cosh(kz
( j)
/ L)J0(kr

( j)
/ L) 1

ek 1
dk

0
,       (4) 

where L is the cell length, 
    
J

0
 is the Bessel function of 

zero-th order, 
    
z

( j)
= z z j      ( L / 2 < z

( j )
< L / 2) , and 

    
r

( j)
= (x x j )

2
+ ( y y j )

2 . Although the beam is not 

perfectly uniform in the longitudinal direction, this should 

be a good approximation because the total long-range 

potential is probably insensitive to the details of the image 

charge distribution. The cell length L should be neither 

too short nor too long, so that we have a proper number of 

real particles in the reference cell. It has been confirmed 

that, as long as the ratio n / L  is fixed, we always reach 

the same crystalline structure. 

Beam-Frame Hamiltonian 

In order to apply the periodic boundary condition, we 

have to observe the beam motion in the center-of-mass 

frame. Strictly speaking, the general relativity formalism 

is required to derive the correct equations of motion 

because the beam is not in an inertial system. Let us here 

suppose an ion beam travelling at the speed   c  with c 

being the light velocity. For simplicity, consider only 

dipole and quadrupole magnetic fields. Then, the beam-

frame Hamiltonian is approximately given by [35] 

H =
px
2 + py

2 + pz
2

2
xpz +

x
2

2 2

K (s)

2
x
2
y
2( ) +

rp
2 2

,

     (5) 

where the scaled canonical variables are 

(x, y, z; px , py, pz) ,  is the local curvature of the design 

beam orbit,     K (s)  corresponds to the focusing gradients of 

quadrupole magnets, rp  is the classical radius of the 

particle, and the independent variable is the path length 

  s = c t  with t being proper time. The scalar Coulomb 

potential is calculated in a MD code from 

= ( short

( j)
+

j long

( j)
) . Not surprisingly, H has the form 

identical to the well-known Hamiltonian for standard 

beam-orbit theories. We have developed a MD code 

“CRYSTAL” that integrates this Hamiltonian motion in a 

symplectic manner. Solenoid magnets, radio-frequency 

(rf) cavities, and other insertion elements can also be 

incorporated in the code, if necessary. 

When the beam is bunched, the CRYSTAL code 

automatically set the MD cell length equal to the rf bucket 

size, assuming that all bunches have an identical particle 

distribution. We have confirmed that, at low temperature, 

the Coulomb potentials from other bunches are generally 

quite weak. 

COOLING MODELS 

Cooling interactions must be introduced separately 

from the Hamiltonian framework because they are not 

conservative. Several cooling models can be considered 

in the CRYSATL code to study the dynamics of cold 

beams. 

Linear Friction 

The simplest cooling force is the linear 1D friction 

defined by 

pq = f q pq
in (q = x, y, z),

                   
(6) 

where 
  
fq  is the constant friction coefficient, and 

  
pq  

stands for the momentum change in q-direction before 

and after the cooling section; namely, pq = pq
out

pq
in

. 

This cooling force just tries to equalize the velocities of 

all particles. The linear friction can certainly cool regular 

hot beams, but at very low temperature, it works as a 

heating source. For example, unlike in a uniform focusing 

channel, the betatron oscillations of particles never vanish 

in an AG lattice as long as the beam has finite transverse 

extent. 

Tapered Cooling 

As mentioned above, too strong a transverse linear 

friction eventually starts to heat up the beam due to the 

oscillatory nature of the stationary state. The same 

argument also applies to the longitudinal motion because 

of the existence of dipole fields in a storage ring. Once a 

crystalline ground state is reached, particles with different 

horizontal positions follow slightly different closed orbit 

every turn. On the other hand, their revolution frequencies 

must be identical to maintain the ordered structure. This 

means that the average longitudinal speeds of those 

particles are different depending on the horizontal 

coordinates. Therefore, the linear friction as in Eq. (6) 

again operates as a heating source in the longitudinal 

direction. To compensate the dispersive heating at ultra-

low temperature, the tapered cooling force is necessary 

[12,22]: 

    pz = f z( pz

in Cxz xin),                        (7) 

where C
xz

 is the tapering factor that depends on the 

lattice design [36]. The tapered force yields not only 

longitudinal but also horizontal cooling effects when it is 

applied to the beam at a position with finite momentum 

dispersion [22]. 

Laser Cooling 

The longitudinal dissipative force 
    
F+ ( )  generated by a 

laser light co-propagating (counter-propagating) with an 

ion beam can be expressed as [14,15] 

F± = ±
1

2
k
L

S
L

1+ S
L
+ (2 ± / )

2
,

              

(8) 
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where  is the natural linewidth of the cooling transition, 

k
L
 is the wave number of the laser, S

L
 is the saturation 

parameter, and 
  + ( )  is the detuning of the co-propagating 

(counter-propagating) laser frequency from the natural 

resonant frequency 
  0

 of the ion. When the co-

propagating (counter-propagating) laser frequency in the 

laboratory frame is 
  + ( ) , we have the Doppler-shifted 

detuning 
      ± ± [1 (1+ pz / )] 0 . Assuming a 

Gaussian laser, the saturation parameter is given by 

    SL = S0 exp[ 2(x
2
+ y

2) / w
2 ] , where 

    
S

0
 corresponds to 

the peak saturation parameter on the axis of laser 

propagation, and w is the laser spot size that depends on 

the Rayleigh length 
  
z

R
. When the center of a laser 

cooling section is located at the longitudinal coordinate 

    
s

0
, we can write 

    
w(s) = w0 1+ 2(s s0)2 / z

R

2
 with 

    
w

0
 

being the waist size of the laser. 

The Doppler limit 
  
T

D
 of laser cooling is determined by 

the balance between the dissipative force in Eq. (8) and 

diffusive heating originating from the random nature of 

photon emission and absorption. In the simple 1D case, 

T
D

 can be evaluated from the formula k
B
T
D
/ 2 = / 4 , 

where 
  
k

B
 is the Boltzmann constant. In the CRYSTAL 

code, a proper amount of random kick is applied to the 

beam in every integration step to include the diffusive 

heating effect. To check the reliability of our laser-

cooling algorithm, we performed test simulations 

changing some fundamental parameters. An example is 

shown in Fig. 4 where the final equilibrium temperature 

reached in our laser-cooling simulation is plotted as a 

function of integration time step. The horizontal straight 

line corresponds to the theoretical Doppler limit that 

agrees fairly well with the CRYSTAL simulation results 

unless the integration step is too large.  

RESONANT COUPLING SCHEME 

Principle 

In order for the Doppler cooling mechanism to be 

effective, each ion must absorb many photons while it 

passes through a cooling section. This requirement can 

readily be met in the longitudinal direction by introducing 

the laser light along the beam orbit in a straight section. 

As to the transverse directions, it is practically impossible 

to achieve efficient, direct laser cooling because we 

cannot ensure a large overlap between the beam and laser. 

Unlike an ion plasma in a compact trap, a typical ion 

beam in a storage ring is much hotter and thinner, which 

makes it extremely difficult to accomplish 3D laser 

cooling. 

A possible solution to extend the powerful longitudinal 

laser-cooling force to the transverse dimensions is the use 

of dynamic coupling that correlates one dimension to the 

others [18]. Mathematically, what we must do is to create 

additional linear potentials proportional to   x z  and y z  

(or x y ). We then move the operating point of the 

storage ring to excite linear coupling resonances: 

    x y integer, x z integer,             (9) 

where 
  z

 is the synchrotron tune. As theoretically 

demonstrated in previous papers [18,19], the transverse 

indirect cooling rate is considerably enhanced under these 

conditions. The effectiveness of RCM has been partially 

confirmed in a storage-ring experiment [37] where the 

method was actually employed to improve the vertical 

cooling efficiency. In this experiment, a solenoid magnet 

was turned on to produce the linear x y  coupling. 

Coupling Sources 

There are several practical ways to provide the linear 

coupling potential required for indirect transverse cooling. 

The excitation of horizontal-vertical coupling is 

particularly easy; we simply put either a skew quadrupole 

magnet or a solenoid. It is also straightforward to couple 

the longitudinal motion of a stored particle with the 

horizontal motion; all we have to do is to place a regular 

rf cavity at a dispersive position [19]. An alternative 

solution for longitudinal-transverse coupling is the use of 

coupling rf cavities operating in a deflective mode [18]. 

The coupling-cavity scheme is more flexible in 

controlling the transverse cooling efficiency because it 

does not rely on the dispersion function of the lattice. 

Another interesting option for indirect transverse 

cooling is the Wien filter [38]. The single-particle motion 

within this static electromagnetic device approximately 

obeys the Hamiltonian 

    
HW =

px

2
+ py

2
+ pz

2

2
+

1

2
x

2
x

2

x xpz ,         (10) 

where 
x
 is a constant parameter proportional to the filter 

voltage. As pointed out in Ref. [38], a sort of tapered 

force defined by Eq. (7) is naturally developed when we 

apply a cooling laser to stored ions within the filter. The 

momentum dispersion must, therefore, be finite in the 

straight section where this device is located. It is worthy 

to recall that tapered cooling requires no synchro-betatron 

resonance to enhance the horizontal cooling rate [22]. We 

 
Figure 4: Results of Monte-Carlo simulations to test 
the laser-cooling model. Low-energy 24Mg+  ions 
have been assumed in this example. 
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can thus strongly cool even coasting beams. Efficient 

vertical cooling can very easily be carried out with RCM 

by equalizing two betatron tunes 
    
( x , y)  and then 

switching on either a solenoid or a skew quadrupole. 

MD RESULTS 

It has been demonstrated in many previous papers that 

beam crystallization is theoretically feasible under several 

conditions satisfied. The necessary conditions include not 

only Eqs. (1) and (2) but also efficient transverse cooling 

plus tapering. In practice, however, it is difficult to meet 

all these requirements simultaneously. For example, the 

condition (1) cannot strictly be fulfilled unless we execute 

beam cooling in all lattice periods. If we bunch the beam 

with a single rf cavity, that also weakly breaks the lattice 

symmetry, reducing Nsp  to unity. The bare betatron tune 

    x ( y)  then has to be less than 0.25 per turn, which is 

clearly unacceptable in a regular storage ring. 

We have performed a number of systematic MD 

simulations to see how close we can come to a crystalline 

state with existing technologies. First of all, laser cooling 

has to be chosen for our final goal because of its ultra-low 

limiting temperature. Although several other cooling 

methods are available, none of them can reach the 

temperature range close to the absolute zero. Then, we 

need to enhance the transverse cooling rate in some way. 

The best option for this purpose should be the application 

of RCM, considering its simplicity; in fact, all we need is 

to adjust the betatron tunes to proper resonant values if 

linear coupling sources are present in the ring. Figure 5 

shows a MD result in which we have assumed low-energy 

  
24

Mg
+  ions circulating in the cooler storage ring “S-

LSR” at Kyoto University [21]. Clearly, a coasting string 

crystal has been formed. In this example, a horizontal 

Wien filter is used to activate linear synchro-betatron 

coupling, while a weak solenoid field is switched on for 

x y  coupling. S-LSR actually has a solenoid magnet 

(originally for electron cooling) in one of six straight 

sections. The bare tunes have been set at ( x , y) =

(1.46, 1.46)  to improve the vertical cooling rate with 

RCM. The ordered configuration in Fig. 5, whose 

normalized root-mean-squared (rms) emittance is below 

  10
12

m rad , lasts many turns even without the cooling 

force. It is also possible to form a zigzag crystalline beam 

while its stability is not guaranteed. Note that, by 

switching on an rf cavity, we can establish string and 

zigzag-like configurations of finite lengths (bunched 

crystals). In that case, the Wien filter is no longer 

necessary because, as explained in the last section, a 

regular rf cavity sitting in a dispersive position naturally 

induces synchro-betatron coupling. 

In contrast to 1D and 2D crystals, none of numerical 

attempts to produce a stable shell crystal with realistic 

methods have been successful. There are two primary 

obstacles that prevent the formation of stable 3D 

crystalline structures: 

• Transverse collective instability (linear coherent 

resonance) due to the lattice symmetry breakdown 

originating from local cooling forces and coupling 

sources. 

• Lack of an optimal tapered force. 

We immediately recognize that it is not easy to evade the 

first obstacle in practice. The second one is also quite 

troublesome. Although a Wien filter provides a tapered 

force, it is difficult to adjust the tapering coefficient to the 

optimum value [38]. Even if the optimum tapering is 

realized somehow, the filters have to be placed in all 

superperiods to keep the high lattice symmetry, which is 

not realistic in general. 

DISPERSION-FREE LATTICE 

One of the two obstacles mentioned above (i.e. lack of 

an optimal tapered force) can be overcome by introducing 

special bending elements [20]. Since the necessity of the 

tapered force comes from the existence of momentum 

dispersion in a usual storage ring, what we should try is to 

minimize dispersive effects. It is actually possible to 

eliminate linear dispersion all around the storage ring by 

combining an electro-static dipole field with a magnetic 

dipole [20].  

The dispersion-free bending element enables us to 

construct multi-shell crystalline structures, as depicted in 

Fig. 6, without the use of the tapered force. The bunched 

Figure 5: Spatial configuration of an ultra-cold ion 
beam predicted by a MD simulation in which the 
realistic laser-cooling model and the lattice of S-LSR 
have been considered.  
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Figure 6: Ordered structure formed in a ten-fold 
symmetric test storage ring operating in a dispersion-
free mode. The linear friction model in Eq. (6) has 
been employed to cool a bunched 24Mg+  beam.  
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3D crystalline state was actually reached with the linear 

friction model in Eq. (6). The ordered beam in Fig. 6 is, 

however, unstable without the cooling force; the 

crystalline structure is destroyed as soon as we stop 

cooling the beam. This is because in the present 

simulation, we put only one rf cavity in the test ring to 

bunch the beam. If rf cavities are placed and excited in all 

lattice periods, then the stability of the crystalline beam is 

remarkably improved. In any case, it is impossible to 

form such an ordered 3D configuration as shown in Fig. 6 

unless the ring is operated in the dispersion-free mode. 

CONCLUSIONS 

We have surveyed relatively recent MD results on 

Coulomb crystallization of ion beams circulating in a 

storage ring. Emphasis is placed upon the importance of 

including the actual lattice structure of the ring into MD 

simulations. In fact, the periodic nature of AG focusing 

and momentum dispersion peculiar to a circular machine 

make the dynamic behavior of crystalline beams much 

more complex than that of Coulomb crystals in a 

harmonic potential. To form various crystalline beams, we 

need a storage ring that has a high superperiodicity and is 

equipped with a laser cooler. It is particularly important to 

preserve the lattice symmetry as strictly as possible, so 

that the destructive effect from transverse coherent 

instability is minimized. In a regular ring, it is also 

strongly required to develop an optimal tapered force in 

order to avoid dispersive heating at ultra-low temperature. 

MD simulations indicate that 1D and 2D crystalline 

beams can be generated with advanced beam cooling 

techniques, e.g. 3D laser cooling based on RCM. The use 

of the dispersion-free bending element may enable us to 

form even 3D crystalline structures (while it depends on 

how well we can maintain the lattice symmetry). In any 

case, a careful combination of state-of-the-art accelerator 

technologies will make it possible to produce an ultra-

cold beam that has a normalized rms emittance of the 

order of 10 10
m rad  or even lower. 
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Abstract

The Heavy Ion Fusion Science Virtual National Labo-
ratory (a collaboration of LBNL, LLNL, and PPPL) is us-
ing intense ion beams to heat thin foils to the “warm dense
matter” regime at � 1 eV, and is developing capabilities for
studying target physics relevant to ion-driven inertial fusion
energy. The need for rapid target heating led to the devel-
opment of plasma-neutralized pulse compression, with cur-
rent amplification factors exceeding 50 now routine on the
Neutralized Drift Compression Experiment (NDCX). Con-
struction of an improved platform, NDCX-II, has begun
at LBNL with planned completion in 2012. Using refur-
bished induction cells from the Advanced Test Accelerator
at LLNL, NDCX-II will compress a ∼500 ns pulse of Li+

ions to ∼1 ns while accelerating it to 3-4 MeV over ∼15 m.
Strong space charge forces are incorporated into the ma-
chine design at a fundamental level. We are using analysis,
an interactive 1D PIC code (ASP) with optimizing capabil-
ities and centroid tracking, and multi-dimensional Warp-
code PIC simulations, to develop the NDCX-II accelerator.
This paper describes the computational models employed,
and the resulting physics design for the accelerator.

INTRODUCTION

The Heavy Ion Fusion Science Virtual National Labora-
tory (HIFS-VNL) is a collaboration of Lawrence Berkeley
National Laboratory, Lawrence Livermore National Labo-
ratory, and the Princeton Plasma Physics Laboratory. The
VNL is using intense ion beams to enable the study of mat-
ter in the poorly-understood “warm dense matter” (WDM)
regime at �1 eV, and is developing capabilities for exper-
imental studies of inertial-fusion target physics relevant to
ion-driven inertial fusion energy. For an overview, see [1].

The need for rapid target heating motivated the devel-
opment of ion beam compression in the presence of a
neutralizing plasma (which serves to minimize the beam
space-charge forces that otherwise would inhibit compres-
sion to a compact volume). Bunching factors exceeding 50
have been achieved on the Neutralized Drift Compression
Experiment (NDCX) at LBNL. Funding for an improved
research platform, NDCX-II, has been approved (via the
American Recovery and Reinvestment Act of 2009) and
construction is beginning at LBNL, with planned comple-

∗This work was performed under the auspices of the USDOE by LLNL
under Contract DE-AC52-07NA27344, by LBNL under Contract DE-
AC02-05CH11231, and by PPPL under Contract DE-AC02-76CH03073.

Figure 1: CAD rendering of a design concept for NDCX-II.

tion in 2012. This will be the first ion induction accelerator
specifically designed to heat targets with short pulses. Us-
ing refurbished induction cells, Blumlein voltage sources,
and transmission lines from the decommissioned Advanced
Test Accelerator (ATA) at LLNL, NDCX-II will compress
a ∼1 m, ∼500 ns pulse of Li+ ions to ∼1 cm, ∼1 ns
while accelerating it to 3-4 MeV over ∼15 m. This is
accomplished in two stages: the induction accelerator it-
self, which shortens the pulse to ∼0.2 m, 20 ns (∼5x in-
creased speed and ∼5x decreased length); and a down-
stream neutralized drift compression line, which enables
the final compression (spatial and temporal) through a fac-
tor of ∼20 or more. The layout is shown in Fig. 1.

The ferrite in each ATA cell offers 0.014 V-s of flux
swing, while the Blumleins can source as much as 250 kV
with a FWHM of 70 ns. Passive pulse-shaping elements
can be inserted into the “compensation boxes” attached to
each cell, offering some flexibility in the accelerating wave-
forms. It is possible to generate longer pulses (and nec-
essary to do so at the front end of the machine), as well
as pulses with waveforms optimized to confine the beam-
ends, but the need to minimize costs motivates keeping the
voltage of any new power supplies to 100 kV or less. The
NDCX-II lattice period is unchanged from that of the ATA,
at 0.28 m; the accelerating gaps (across which the driving
inductive electric field appears) are 2.8 cm long. Because
ions do not rapidly reach high speeds, transverse confine-
ment of the beam against its own space charge requires that
the existing DC solenoids be replaced by much stronger
pulsed solenoids with fields approaching 3 T.

For three reasons, it will be necessary to rebuild the ra-
dially innermost parts of the ATA cells. Firstly, a major
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loss of Volt-seconds available for acceleration results when
the return flux of a pulsed solenoid passes through a ferro-
magnetic core. Thus, we plan to introduce extra magnetic
elements (a copper layer, magnetic iron, or a secondary
winding) outboard of each solenoid, to force flux to return
inboard of the ferrite. This requires reducing the original
6.7 cm ATA beam-pipe radius to 4.5 cm. Secondly, an ac-
celerating gap must be “on” while any of the beam overlaps
its fringe field; the transit time for a single particle can be
comparable to the time for the beam to pass a fixed axial
position z. To shorten this fringe, it is again necessary to
reduce the pipe radius (or at least the radius of the conduc-
tor that sets the axial scale of the fringe field) to of order 4
or 4.5 cm. Finally, the ATA cells contain end plates that al-
low large eddy currents; these plates will be made thinner.

Non-relativistic ions exhibit complex dynamics, more so
when the beam is space-charge-dominated longitudinally
and transversely. The beam manipulations in NDCX-II
are actually enabled by longitudinal space charge forces.
We are using analysis, an interactive 1D PIC code (ASP)
with optimizing capabilities and a centroid-offset model,
and both (r, z) and 3D Warp [2] simulations, to develop
the NDCX-II accelerator. This paper describes the com-
putational models used for these studies, and the resulting
physics design. A companion paper [3], and earlier papers
on this work [4, 5, 6], provide complementary information.

1-D ASP CODE MODEL

The ASP code (an acronym for “Acceleration Sched-
ule Program”) follows the beam’s evolving longitudinal
phase space (z, vz), and was developed to facilitate the syn-
thesis and optimization of accleration schedules. It uses
well-established particle-in-cell methods, but solves for the
space-charge field with a modified 1-D Poisson formula-
tion [7]. In order to capture the fall-off with axial distance
of a beam slice’s influence (associated with image charges
in the beam pipe wall), we use the following prescription
for the electrostatic potential φ(z):

∇2φ � d2φ

dz2
− k2

⊥φ = − ρ

ε0
, (1)

where the transverse inverse scale length k⊥ is defined by:

k2
⊥ = 4/(g0r

2
b ) ; g0 = 2 ln(rw/rb) . (2)

Here, rb is the nominal beam radius, rw is the pipe (“wall”)
radius, and the so-called “g-factor” g0 has been introduced
to make correspondence with the long-wavelength limit.
For very short wavelength variations the effect of the k2

⊥
term is properly small, while at long wavelengths the elec-
tric field is given by

Ez = −∂φ

∂z
= − g0

4πε0

d

dz
(πr2

b ρ) = − g0

4πε0

dλ(z)
dz

, (3)

where λ(z) is the line charge density (C/m) [7, 8]. Our pre-
scription for g0 differs slightly from that of [7] because we

seek to model a space-charge-dominated beam of roughly
constant density, that is, λ(z) ∝ r2

b (z). In practice, com-
parisons with (r, z) Warp calculations allow us to set g0.

ASP represents the accelerating-gap fields Ez,i(z, t) due
to each time-varying gap voltage Vi(t) via the “Lee” model
[9]; we use the single-term approximation (Eq. A7 of the
reference) because the gap is narrow.

The general “type” of each accelerating waveform (in-
cluding ideal ramps or flat-tops, circuit-models of various
kinds, and self-adjusting “ear” waveforms that counteract
beam end expansion) is set by the user. The code automati-
cally adjusts each waveform using estimated times of beam
entry into and exit from the gap’s fringe field, constrained
by user-specified limits to peak voltage and Volt-seconds.

In addition to the longitudinal phase-space coordinates
(zk, pzk) of each simulation particle (beam slice) k, ASP
also tracks the transverse coordinates (xk, yk, pxk, pyk) of
its centroid. In a perfectly aligned system, all of these
would remain zero. However, misalignments drive the
beam off axis. Furthermore, because of the head-to-tail en-
ergy variation along the beam, once a displacement occurs
the different beam slices gyrate in the solenoids’ field at
their own peculiar rates. The result is a “corkscrew” distor-
tion [10]. Fortunately, methods for minimizing its ampli-
tude have been developed for electron linacs [11] , and our
studies (described below) show that they remain effective
for NDCX-II with its large energy variation.

ASP was designed to be interactive; it is written in the
Python scripting language, with a few computationally-
intensive routines in Fortran. A few hundred simulation
particles (beam slices) are used, and a run without itera-
tions takes a few minutes on a single processor. Iterations
of two kinds are routinely carried out: variations of the
applied voltage waveforms Vi(t) to establish the acceler-
ation schedule, and iterative tuning of the “steering” dipole
magnet strengths to minimize the beam’s corkscrew and
off-axis shift. On a 4-processor computational node of a
2.2 GHz AMD Linux cluster, each “steering” run takes be-
tween two and three hours. Using a script which launches
four jobs at a time, an ensemble of 20 cases with differing
random alignment errors runs overnight.

In order to initialize the ASP beam, we begin by carry-
ing out a Warp simulation of the source diode and match-
ing section, and record the beam parameters as it passes
through a plane upstream of the first gap; we then construct
a smooth beam in ASP that resembles the Warp beam, us-
ing a simple parameterization. This method requires man-
ual intervention and is crude, but works well enough. We
have most recently implemented a method that uses the
Warp data to construct a profile which is then used as the
basis in detail for the ASP initial beam [3].

1-D PHYSICS DESIGN

We identified two principles which served as guides to
development of an effective acceleration schedule. The first
of these is to “shorten the beam first” (compress it longitu-
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Figure 2: Pulse length vs. axial coordinate z. Numbers label the
accelerating gaps.

dinally before the main acceleration) via a process of non-
neutral drift compression. We use the initial cells primarily
to impose a velocity tilt, while others provide longitudinal
control; space is left for the drift compression. The goal is
to achieve a sub-70 ns beam transit time through the accel-
eration gaps (including their fringe fields) as early as pos-
sible, so that we can use as many Blumlein-driven 200-kV
pulses as possible. It is necessary, at this stage, to compress
the beam carefully so as to minimize the effects of space
charge which might lead to beam non-uniformity. Thus we
seek to achieve (ideally) a large linear velocity “tilt” with
vz(z) ∝ z and a smooth density profile. We obtain the
desired waveforms using a least-squares optimization that
penalizes both nonlinearity and nonuniformity.

The second guiding principle is to “let the beam bounce.”
Rapid inward motion in the beam frame is required to re-
duce the pulse duration below 70 ns. Space charge ulti-
mately inhibits this compression. At that point, the beam
is shorter than the fringe field of a gap, and is not sus-
tainable because confining fields are ineffective. Thus, the
beam “bounces” — that is, it starts to lengthen. Nonethe-
less, the duration remains below 70 ns because it is now
moving faster and is confined by additional ramped pulses.
We allow it to lengthen while applying additional accel-
eration via flat-top pulses, and longitudinal confinement
via ramped (“triangular”) pulses. Alternatively, trapezoidal
pulses may be used instead of a combination of flat-tops
and triangles. The final few gaps apply the velocity tilt for
neutralized drift compression onto the target.

Figure 2 shows the evolution of the beam length, while
Fig. 3 shows the evolution of the pulse duration. While the
design has yet to be finalized, the system described here is
representative, with the final ∼20 induction cells driven by
the ATA Blumleins and the rest by lower-voltage sources.
Most of the required waveforms (shown in Fig. 4) are sim-
ple enough to be formed with passive circuits in the “com-
pensation boxes” that are attached to the ATA cells. ASP
solves simplified circuit equations for the 200 kV triangular

Figure 3: Pulse duration vs. z; the key time is that for the entire
beam to traverse a gap’s fringe field from entrance to exit.

pulses; laboratory tests of such pulse shaping are underway,
and to date a high-quality ∼60 ns ramp has been achieved
(our latest ASP runs use this experimental data). Similar
circuits may be able to form the initial tilt-generating wave-
forms. The low-voltage highly shaped “ear” waveforms
that provide beam-end control (shown in black in Fig. 4)
will be driven by programmable circuits.

Figure 5 shows the evolution of the phase space and cur-
rent. The final panel shows the beam when its centroid is
at the plane of best longitudinal focus. This plane is esti-
mated by an RMS measure [12] and refined by searching
for that plane through which the most current flows in a
1-ns window. In ASP, the beam is assumed perfectly neu-
tralized after it exits the accelerator (the space-charge field
is ramped to zero over a user-specified length).

(R, Z) SIMULATIONS

As mentioned earlier, we are carrying out both (r, z)
and full 3-D simulations of NDCX-II using the Warp code.

Figure 4: Waveforms for accelerattion as developed via ASP.
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Figure 5: ASP snapshots.

Figure 6: Warp RZ snapshots.
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Figure 7: ASP vs. Warp comparison.

These simulations include detailed acceleration gaps and
focusing magnet fields, and solve for the beam self-field in
a conducting pipe. The gap fields have a two-dimensional
variation (that is, the fringe field has reduced axial extent at
larger radius); we derive these fields by solving Laplace’s
equation with differing potential on the walls at each side
of the gap; the true field is inductive, but for these slowly
varying fields the approximation is excellent. As an exam-
ple, Fig. 6 shows a few snapshots from a Warp movie; the
elevation view does not clearly convey the compactness of
the beam, which has a long, low-density tail. (A number
of such movies may be found at [13].) In view of the ra-
dial variation of the gap field and the approximate nature

Figure 8: Warp simulation of a possible injector configuration.

of the 1-D self-field, it was not clear at the outset that a set
of waveforms developed in ASP would be effective in ac-
celerating, confining, and compressing the Warp beam. We
were pleased to see that indeed our design procedure works
reliably provided the initial beam is well described in ASP
(see Fig. 7), and efficiently relative to iterative Warp runs.

The (r, z) mode of Warp is also used to design the injec-
tor (Fig. 8). For scoping we are using one refinement patch
around the emitter; to obtain converged voltage waveforms
it will be important to use fully adaptive multi-level AMR.

3-D EFFECTS: MISALIGNMENTS,
CORKSCREW, AND THEIR MITIGATION

With nominal random solenoid-end misalignments of up
to 0.5 mm (thus allowing for transverse offsets as well as
pitch and yaw tilts), both ASP and Warp simulations indi-
cate good beam transmission through the accelerator. See
the 3-D Warp movie with random 1-mm shifts of solenoid
ends at [13]. 3-D Warp simulations show that the degrada-
tion of the focal intensity is smooth, and modest for small
errors. Nonetheless, it is highly desirable to use steering
dipole magnets to minimize both the corkscrew amplitude
and the off-axis displacement. In Fig. 9 we show how iter-
ative dipole tuning can be effective in such a system. The
most recent designs for NDCX-II are built around blocks
of three cells, followed by a non-accelerating lattice period
with a solenoid, steering dipoles for x and y, and diagnos-
tics to measure the beam centroid displacement.
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Figure 9: ASP studies of steering, showing RMS of x and y centroid coordinates vs. z for head, middle, and tail particles, and the
corkscrew amplitude; the results are averages over 20 simulations with differing random offsets of solenoid ends up to 1 mm. The
penalty function was evaluated at the next sensor downstream from the dipole being varied.

DISCUSSION

We have developed the physics design for a novel accel-
erator, using a new computational tool (ASP) in tandem
with an existing tool (Warp). Computational aspects of
this work, including the 1-D field solution with tuned axial
falloff, self-adjusting waveforms that make maximal use of
available volt-seconds and voltage, iterations for waveform
design and for beam steering, and the interactive very-high-
level code framework based on Python, have all worked out
well in this application.

The baseline design for the NDCX-II project will be es-
tablished later this year; it will resemble the designs shown
here, but should take the beam to a lower final kinetic en-
ergy (the goal for the WDM application is a mean kinetic
energy of 2.8 MeV, as appropriate for uniform heating by a
beam that slows through the Bragg peak in a foil target).

This paper has described the physics design of the
NDCX-II accelerator, and has not attempted to cover many
other important aspects of the full machine, which include
the ion source and the pulsed power, as well as the neutral-
ized drift line, final focusing solenoid, and target chamber
(into all of which which plasma must be injected at suffi-
cient density that the beam space charge is uniformly can-
celled). For discussion of these topics the reader may refer
to the Proceedings of the recent Heavy Ion Fusion Sympo-
sium [14] and presentations at PAC09 [15, 16].
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SELF FIELD OF SHEET BUNCH: A SEARCH FOR IMPROVED METHODS
G. Bassi, University of Liverpool and Cockcroft Institute, Liverpool, UK∗

J. A. Ellison, K. Heinemann, University of New Mexico, Albuquerque, NM, USA†

ABSTRACT

We consider a sheet bunch represented by a random sam-
ple ofN simulation particles moving in a 4D phase space.
The mean field (=‘self field’) of the bunch is computed
from Maxwell’s equations in the lab frame with a smoothed
charge/current density. The particles are tracked in the
beam frame, thus requiring a transformation of densities
from lab to beam frame. We seek improvements in speed
and practicality in two directions: (a) choice of integration
variables and quadrature rules for the field calculation; and
(b) finding smooth densities from scattered data. For item
(a) we compare our singularity-free formula with the re-
tarded time as integration variable, which we currently use,
with a formula based on Frenet-Serret coordinates. The lat-
ter suggests good approximations in different regions of the
retardation distance which could save both time and stor-
age. For item (b) we discuss Fourier vs. kernel density es-
timation and mention quasi vs. pseudo-random sampling.

INTRODUCTION

In this paper we discuss current and future approaches to
numerically integrating the Vlasov-Maxwell system for a
sheet bunch. More information on our current work can be
found in [1]-[3]. We first present the mathematical problem
in the lab frame. We write the field as an integral of the time
history of the source. Then the initial value problem (IVP)
for the Vlasov equation defines theu = ct evolution of
the phase space density,fL. The coefficients of the Vlasov
equation depend on the Maxwell self field and thus contain
integrals over the time history offL.

It is both physically and computationally advantageous
to determine the so-called beam frame phase space density,
fB. We define the beam frame phase space variables in
terms of the lab frame. The independent variable in the lab
frame (LF) isu and the independent variable in the beam
frame (BF) is arc lengths along a suitably defined reference
orbit. The lab to beam phase space variable transformation
gives the relation betweenfB andfL andfB satisfies a BF
Vlasov equation. Our goal is an efficient computation of
the s-evolution of fB given its valuefB0 at says = 0.
However, this problem is not well posed; solutions are not
unique. The root of this is a causality issue; ats, certain
coefficients of the BF Vlasov equation need information
aboutfB outside the interval[0, s]. This problem, which is
pertinent to the BF and absent in the LF, is easily resolved
to what we believe is a good approximation.

We want to numerically integrate the 4D BF Vlasov

∗gabriele.bassi@stfc.ac.uk
† Work supported by US DOE grant DE-FG02-99ER41104

equation and we do this in terms of a random sample of
N points which simulate the 4D phase space density. We
work in a high performance computing (HPC) environ-
ment. Even so, we do not have a fast enough algorithm
to takeN large enough to obtain an accurate estimate of
the 4D density. Furthermore, there are probably more ef-
ficient ways to obtain the 4D density, e.g., the method of
local characteristics. However, the self field calculation
only needs the BF spatial density,ρB, and a 2D current
density type function, which we denote byτB. We believe
our sample of 4D points is large enough to accurately es-
timate these 2D quantities and this makes a simulation ap-
proach feasible. We randomly generate an initial sample of
BF phase space points fromfB0, and move this sample ac-
cording to the BF equations of motion. Having resolved the
causality issue, the self field can be computed at arc length
s from the history ofgB = (ρB, τB). The calculation ofgB

requires a density estimation procedure from our scattered
data which we discuss. To move the points froms to s+δs

we freeze the self field ats and move the points accord-
ing to the equations of motion. Important to our approach
is the discovery of ans-independent grid on which to rep-
resent the spatial density and a parallel implementation of
our algorithm.

STATEMENT OF PROBLEM FOR SHEET
BUNCH IN LAB FRAME

We consider particle motion in theY = 0 plane in a
right handed coordinate system,(Z, X, Y ), under an ex-
ternal magnetic fieldBext(Z, X, Y ) = Bext(Z)eY . The
equations of motion without self field are

Ṙ =
P

mγ(P)c
, Ṗ = qBext(Z)

1
mγ(P)c

(
PX

−PZ

)
, (1)

whereR = (Z, X)T , P = (PZ , PX)T , ˙ = d/du, m

is the electron rest mass,q is the electron charge andγ is
the Lorentz factor. The associated 4D phase space density,
fL(R,P; u), evolves according to the Liouville equation
∂ufL + Ṙ ·∂RfL + Ṗ ·∂PfL = 0, wherefL is normalized
so that its integral over a phase space region represents the
fraction of the beam in that region. All densities in this
paper are normalized in this way.

We are interested in the evolution offL when cou-
pled to the self field and we begin with the coupled
Vlasov-Maxwell initial boundary problem in 3D with a
shielding boundary condition and initial data atu = ui

where ui will be specified further below. In general,
the self field will push the particles out of theY = 0
plane unless the bunch is a ‘sheet bunch’ and the self
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field is ‘symmetric’. We call the bunch a ‘sheet bunch at
u’ i f its phase space densityf has, at timeu, the form
f(Z, X, Y, PZ , PX , PY ; u) = δ(Y )δ(PY )fL(R, P; u).
Denoting the components of the self field by
EZ , EX , EY , BZ , BX , BY we call the self field “symmet-
ric at u” if EZ(R, Y ; u), EX(R, Y ; u), BY (R, Y ; u) are
even inY and ifEY (R, Y ; u), BZ(R, Y ; u), BX(R, Y ; u)
are odd inY . The point here is that if the initial bunch is
a sheet bunch and if the initial self field is symmetric then,
thanks to the reflection symmetry of Maxwell’s equations
with respect to theY = 0 plane, the bunch is a sheet
bunch for allu ≥ ui and the self field is symmetric for
all u ≥ ui. We assume that these initial conditions on
f and the self field are fulfilled whence, for allu ≥ ui,
EY (R, 0; u) = BZ(R, 0; u) = BX(R, 0; u) = 0. Thus no
particle is pushed out of theY = 0 plane.

We now focus on the self field components
FL(R; u) = (EZ(R, 0; u), EX(R, 0; u), BY (R, 0; u)) ≡
(EZ(R; u), EX(R; u), BY (R; u)) which together with
Bext(Z) are responsible for the in plane forces. The
solution of the initial boundary problem forFL, with
FL(R; u) = ∂uFL(R; u) = 0 atu = ui and the shielding
boundary conditionFL = 0 for Y = ±h/2, is

FL(R; u) = −
1
4π

∞∑
k=−∞

(−1)k ×

∫
R2

dR′
S(R′; u −

[
|R′ − R|2 + (kh)2

]1/2)[
|R′ − R|2 + (kh)2

]1/2
. (2)

The source is

S(R; u) = Z0QH(u − ui)


 c∂ZρL + ∂uJL,Z

c∂XρL + ∂uJL,X

∂XJL,Z − ∂ZJL,X


 , (3)

whereH is the indicator function on[0,∞) and JL =
(JL,Z , JL,X)T . This solution is obtained by writing the
Maxwell equations in the wave equation form and using the
retarded Green function and the method of images. If the
initial condition is not zero a homogeneous solution must
be added. Without the boundary condition only thek = 0
term remains.

The Vlasov IVP for the LF phase space density is

∂ufL + Ṙ · ∂RfL + Ṗ · ∂PfL = 0,

fL(R,P; ui) = fL0(R,P), (4)

where

Ṙ =
P

mγ(P )c
, (5)

Ṗ =
q

c
(
(

EZ(R; u)
EX(R; u)

)
+

[Bext(Z) + BY (R; u)]
mγ(P)

(
PX

−PZ

)
).

The Vlasov equation and the self field are coupled by the
2D charge and current densities,QρL andQJL, where

ρL(R; u) =
∫

R2

dPfL(R, P; u), (6)

JL(R; u) =
∫

R2

dP(P/mγ(P))fL(R, P; u). (7)

We believe the IVP (4) is well posed, that is, there ex-
ists a unique solution depending continuously on the ini-
tial data. Furthermore, givenfL(·; u),FL(·; u) and a small
positiveδu the solution atu+δu can be determined approx-
imately by freezing the field atu and moving forward along
characteristics defined by the Vlasov equation in (4). Note
thatFL(R, u), requires knowingρL(·; v) andJL(·; v) for
ui ≤ v ≤ u.

In this paper we focus on the numerical solution of the
IVP (4). It is computationally intensive even in a HPC en-
vironment and so a fast algorithm is utmost on our mind.
Actually, for several reasons, the Vlasov equation is inte-
grated in the beam frame and this will be discussed in the
next section. Several approximations will be involved. Ul-
timately the approximations must be judged by how accu-
rately they give an approximation tofL(·; u) as defined by
(4).

The physical problem we have in mind is a single pass
four magnet chicane, and this determinesBext(Y ) (e.g.,
see [1]). We takeui to be the time at which the head of the
bunch reaches the chicane. To have a well defined “head”,
as well as for other reasons, we consider a bunch of com-
pact spatial support, and we assume this in the following
(see [2]). In the regime we have studied we believe the self
field at u = ui is negligible and so (2) is appropriate. In
applications such as this, it is important to determine the
evolution of the so-called BF phase space density,fB, with
the arc lengths along a reference orbit as the independent
variable, and withfB given ats = 0, which we take to be
the entrance to the chicane. This frame is also convenient
as the phase space variables are small and so linearizations
are possible. We now turn our attention to the beam frame.

BEAM FRAME FOR SHEET BUNCH

The beam frame is defined in terms of the reference or-
bit Rr(s) = (Zr(s), Xr(s))T in theY = 0 plane, which
in turn is defined by the Lorentz equations without the self
field given in (1). Heres is the arc length along the or-
bit andRr(0) = 0 is the entry point of the reference or-
bit into the chicane. The unit tangent vector,t, to the
reference orbit is justt(s) = R′

r(s) and we define the
unit normal vector,n, by n(s) = (−X ′

r(s), Z
′

r(s))
T so

that n is a π/2 counterclockwise rotation fromt. It fol-
lows from (1) thatt′(s) = −qBext(Zr(s))n(s)/Pr where
Pr = mγrβrc is the momentum of the reference particle.
This determines the curvatureκ up to a sign and we choose
κ(s) = qBext(Zr(s))/Pr. Thust′(s) = −κ(s)n(s) and
n′(s) = κ(s)t(s).

The BF Frenet-Serret coordinates areξ = (s, x), where
x is the perpendicular distance alongn. Let T : U :=
R × (−xM , xM ) → T(U) ⊂ R

2, whereT(ξ) = Rr(s) +
xn(s) andxM > 0 is chosen sufficiently small so thatT is
a bijection. This leads to the phase space variable transfor-
mation(R,P) ↔ (s, x, ps, px) defined by

R = T(ξ), P = P(s, ps, px), (8)
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where P(s, ps, px) := Pr(pst(s) + pxn(s)). Our
lab to beam transformation has two more transforma-
tions so that we have(R,P; u) → (s, x, ps, px; u) →
(u, x, ps, px; s) → (z, x, pz, px; s). We have included the
independent variables and in the second transformation the
variabless andu are interchanged makings the new inde-
pendent variable. In the final transformationz := s − βru

replaces u as a dependent variable andpz := (γ − γr)/γr

replacesps. Note that the variablesr := (z, x)T and
p := (pz, px)T are small near the reference orbit which
corresponds tor = p = 0.

The main objects in this paper are the phase space densi-
ties. The exact relation between the LF phase space density,
fL, and the BF phase space density,fB, is

fB(r,p; s) =
P 2

r

β2
r

fL{T(ξ),

Pr[ps(p)t(s) + pxn(s)]; (s − z)/βr}, (9)

where

ps(p)2 = (
1
βr

)2(1 + pz)2 − p2

x −
1

γ2
rβ2

r

. (10)

Recall that we considerfL(·; u) to be well defined by (4)
for u ≥ ui and note thatfB(·; s) requiresfL(·; u) for a
range ofu values. This density transformation is unusual
in that there is an interchange ofu ands in their roles as in-
dependent and dependent variables and this requires that in
the dynamicss must be an increasing function ofu. There
are subtleties in the derivation of the transformation (9) and
details will be given in [2].

Introducing the inverse of (8), we write

fL(R,P; u) =
β2

r

P 2
r

fB{s(R) − βru, x(R),

pz(P, s(R)),P · n(s(R))/Pr; s(R)}, (11)

where(s(R), x(R)) = T−1(R) for R ∈ T(U), ps(p) =
P ·t(s)/Pr can be solved forpz(P, s) using (10) andpx =
P · n(s(R))/Pr . BecauseR = T(ξ) in (8) is only locally
invertible we require the coordinate densitiesρL(R; u) and
ρB(r; s) to have compact support.

To define the BF Vlasov equation we need the BF equa-
tions of motion. Using (5) and (8) we obtain

z′ = 1 −
K(ξ)(1 + pz)

ps(p)
, x′ =

K(ξ)px

ps(p)
,

p′z =
qK(ξ)
mγrc2

(
E‖(T(ξ);

s − z

βr

) · t(s)

+
px

ps(p)
E‖(T(ξ);

s − z

βr

) · n(s)
)

p′x =
1
Pr

(
Prps(p)κ(s) − qK(ξ)Bext(Zr(s) − xX ′

r(s))
)

+
q(1 + pz)

Prps(p)βrc
K(ξ)E‖(T(ξ);

s − z

βr

) · n(s)

−
q

Pr

K(ξ)BY (T(ξ);
s − z

βr

). (12)

Here′ = d/ds, E|| := (EZ , EX)T andK(ξ) := 1+κ(s)x.
The BF phase space densityfB, given in (9), satisfies the

Vlasov equation

∂sfB + r′ · ∇rfB + p′ · ∇pfB = 0, (13)

where the coefficients are given by (12). This can be veri-
fied by simply plugging (9) into (13) and using (4). It is also
consistent with the BF equations of motion themselves, as
it must be, since the Vlasov equation for (12) is (13). In
this context it is worth mentioning that the vector field in
(12) is divergence free (see [2]).

Since there exists a uniquefL defined by the IVP (4),
Eq. (9) gives us a uniquefB which we want to compute.
However, we want to compute it based on thes = 0 IVP
for (13), where

fB(r,p; 0) =: fB0(r,p), (14)

by using an algorithm which marches forward ins. The
initial condition can be determined from (9) givenfL0 and
the solution of (4) for a small forward time interval starting
atui. However, in our applications, e.g. [1], we have been
givenfB0, notfL0.

Clearly, (13) is a nonlinear partial differential integral
equation where thep′ coefficient depends on the self
field FL(R(s, x), (s − z)/βr) and thus onfB through
fL. However, there is a causality issue. The quantity
FL(R(s, x), (s − z)/βr) requires knowledge offB(·; τ),
not only for τ ∈ [0, s], but also for someτ outside this
interval. Nevertheless, since the main contribution top′

comes from[0, s], we obtain a feasible s-stepping algo-
rithm for fB given the initial condition (14). In the next
section we discuss what we do when knowledge offB(·; τ)
is needed forτ /∈ [0, s].

The basic computational issue is to solve the IVP (13-14)
in such a way that to good approximation (9) is satisfied,
with fL defined by (4). This requires determiningfL0 from
fB0, which we discuss in [2].

Before leaving this section we note that in our computa-
tions we use the approximate BF equations of motion,

z′ = −κ(s)x, p′z = Fz1(z, x; s) + pzFz2(z, x; s),
x′ = px, p′x = κ(s)pz + Fx(z, x; s), (15)

where

Fz1 =
q

Prc
E‖(R(ξ);

s − z

βr

) · t(s),

Fz2=
q

Prc
E‖(R(ξ);

s − z

βr

) · n(s), (16)

Fx=
q

Prc
[E‖(R(ξ);

s−z

βr

) · n(s) − cBY (R(ξ);
s − z

βr

)].

These equations were obtained from the exact BF equations
(12) by linearizing the terms without the self field and by
approximating the coefficients of the self field terms (see
[2]). Without the self field, the general solution of (15) can
be written in terms of the dispersion function,D(s), and the
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momentum compaction function,R56(s). We have found
that it is numerically more efficient to integrate (15) in the
interaction picture based on this zero self field solution (see
[1]).

SELF FIELD FROM BF PHASE SPACE
DENSITY AND CAUSALITY DISCUSSION

An s−stepping algorithm to evolve an approximation to
fB(·; s) according to (13-14) needs to compute

FL(T(ξ); (s − z)/βr) = (17)

−

∫
R2

dR′
S[R′; (s − z)/βr − |R′ − T(ξ)|]

4π|R′ − T(ξ)|
,

approximately, whereFL(R; u) was defined in (2). Here
we ignore the shielding, as it adds little computational
complexity. To compute (17) we needρL(R′; v(R′)) and
JL(R′; v(R′)) in terms offB asR′ varies over the support
of ρL(R′; v(R′), wherev(R′) = (s−z)/βr−|Ŕ−T(ξ)|.
Using (11) we obtain

ρL(R; u) = (18)

β2

r

∫
dpfB{s(R) − βru, x(R),p; s(R)}|∂pz

ps(p)|,

and a similar formula forJL(R; u). Thus givenfB(·; τ)
over a suitableτ domain, (17) can be computed. Further-
more, using the fact thatfB is nonnegative and continuous,
it follows that the support ofρL(R; u) is the same as the
support ofρB{s(R) − βru, x(R); s(R)}.

There are two issues here. First, it would be inefficient
to integrate (17) over all ofR2. Thus it is important to de-
termine a good superset for the region where the integrand
is nonzero. However, thisR′ region appears to be diffi-
cult to determine efficiently. In the next section we explore
two sets of integration variables better suited to the inte-
gration in (17). Second, we must deal with the issue that
(17) requires knowledge offB(·; τ) for τ /∈ [0, s]. to good
approximation becomes

We begin by considerings = 0. We assume that the sup-
port of the initial z−density,

∫
dxdpzdpxfB0, is [−a, a].

For s = 0 we havez = −βru, so the arrival time ats = 0
of the particle withz−coordinateξ isu = −ξ/βr. Thus the
head of the bunch corresponds toz = a and the tail toz =
−a. Recall that we definedui to be the time at which the
head of the bunch enters the chicane, thusui = −a/βr. To
evaluate (17) we needfL(R′,P;−z/βr−|R′−T[(0, x)]|)
and so we needfL(R′,P; v) for v ∈ [ui = −a/βr, a/βr].
This will be discussed in [2].

We claim that ats we need partial information on
fB(·; τ) for some τ > s, i.e., there is a causality is-
sue. To demonstrate this we chooser = 0 and R′ =
Rr(s) + ∆t(s) in the integrand of (17), where∆ is pos-
itive and small relative to the bunch size. Thus the inte-
grand requires the value ofρL(Rr(s) + ∆t(s); s/βr −∆)
and by (18)fB{s(Rr(s) + ∆t(s))− s + βr∆, x(Rr(s) +
∆t(s)),p; s(Rr(s) + ∆t(s)} is needed. Now applying

Taylor’s theorems(Rr(s) + ∆t(s)) = s + ∆ + O(∆2)
andx(Rr(s) + ∆t(s)) = O(∆2) and we obtainfB{(1 +
βr)∆ + O(∆2), O(∆2),p; s + ∆}. Thus we need partial
information onfB(·; s + ∆) and this completes the claim.

A geometrical argument may be more insightful. Take
r = 0, then the LF observation point is at(Rr(s), s/βr).
The ‘backward lightcone’ of this event isCL = {(R′, u′) :
|R′ − Rr(s)| = s/βr − u′,R′ ∈ T(U)} with BF im-
ageCB = {(z′, x′, s′) : |Rr(s′) + x′n(s′) − Rr(s)| =
(z′ − s′ + s)/βr, ξ

′ ∈ U)}. Solving|Rr(s′) + x′n(s′) −
Rr(s)| = (z′ − s′ + s)/βr for small ∆ := s′ − s gives
z′ = ∆ + βr

√
∆2 + x

′2. Thus there are small positive
∆ with (z′, x′) in the beam, i.e.,CB contains points in the
beams′ > s. In the drift, this argument even works without
the small∆ assumption.

We suspect that whenever causality is violated, within
the support offB, it is only violated in a smallτ inter-
val for τ > s. However, in our applicationsfB(·; s) is
slowly varying, that is,fB(·; s + ∆) ≈ fB(·; s) for |∆|
less than thez−size of the beam. Thus we believe that to
good approximation (17) can be determined fromfB(·; τ)
for τ ≤ s, if we takefB(·; τ) = fB(·; s) whenτ > s,
and this resolves the causality issue. Recall that the IVP
(4) definesfL(R,P; u) for u ≥ ui, givenfL0(R,P). So
the true test of any approximation is, does thefB(r,p; s)
we calculate approximately satisfy (9)? We believe our ap-
proximations do, but have no proof.

For eachs, the computation ofFL in (17) must be done
for a large number ofr values, thus both arguments ofFL

vary. However, sincefB(·; s) is slowly varying we be-
lieve thatFL(T[(s, x)], (s − z)/βr) is also slowly vary-
ing in s, for fixed r. Replacings by s + z and expand-
ing givesFL(Rr(s) + xn(s), (s− z)/βr) ≈ FL(Rr(s) +
M(s)r, s/βr), whereM(s) = [t(s),n(s)]. Thus to move
points, the second argument is independent ofz, and this
increases the efficiency. This is what we do in the code.
There is still a causality issue but it can be resolved as
above.

OUTLINE OF CALCULATION OF THE
BEAM FRAME SPATIAL DENSITY

Our ultimate goal is to compute the evolution offB(·; s)
for s > 0 givenf0B, i.e., the solution of the IVP (13-14),
but this is beyond our current capability as mentioned in the
Introduction. However the computation of the evolution of
the associated spatial densityρB(·; s) is possible. From
(10)∂pz

ps(p) is 1/β2

r to good approximation, thus by (11)
we can takeρL(R; u) = ρB{s(R) − βru, x(R); s(R)).
Also, to good approximation,JL can be determined from
ρB andτB whereτB(r, s) = βr

∫
R2 pxfB(r,p; s)dp (see

[1]-[3]). Thus, from the history ofgB := (ρB, τB), the
self field (17) can be computed. Our current goal is a fast
method to calculategB(·; s), for s > 0 givenfB0, consis-
tent with the IVP (13-14).

We begin by generating an initial,s = 0, set of phase
space points fromfB0 using a random number genera-
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tor. We currently use pseudo random points and are in
the process of investigating quasi random points, which are
known to have a significant advantage in numerical integra-
tion. From the scattered data we calculategB(·; 0) using a
density estimation procedure. We follow the phase space
points using (15) in the interaction picture. Ats we have
the scattered set of phase space points and the history of
gB(r; τ) for −2a ≤ τ < s on a 3D grid in(r, τ). To
go froms → s + δs we first calculategB(·; s) from scat-
tered data using well known density estimation procedures
from Statistics. Then from the knowledge ofgB(·; τ) for
−2a ≤ τ ≤ s we calculate the self field from (17) and use
this and (15) to move the points froms → s+δs. The bulk
of the calculations are done in parallel.

The main issues for a fast algorithm are the field calcu-
lation, the density estimation and the parallel implementa-
tion. The latter is elementary, the first two are discussed in
the next two sections.

FIELD CALCULATION

The bunch is small and moving. Thus, for eachs, it is
important to have a good estimate of the location and spa-
tial extent of the bunch. This allows for an s-independent
grid on which to representgB(r; s). We first discuss a
model we currently use in our bunch compressor studies,
which gives a compact,s-independent grid. Then we dis-
cuss two sets of integration variables for the integration in
(17).

Compact Support Model of Bunch

The location and spatial extent of the bunch depends on
the initial phase space density. The one we use in our mi-
crobunching studies, [1], is

fB0(r,p) = (1 + ε(z))µ(z)ρc(pz − hz)ρt(x, px), (19)

where ε(z) = A cos(k0z), µ is a flat top with support
[−a, a], ρc is N(0, σu) and ρt is N(0, diag(σx0

, σpx0
)),

whereσu andσpx0
are small. Takingσu = 0 andσpx0

= 0,
the initial conditions for (15) have the formz = z̃, pz =
hz̃, x = x̃, andpx = 0 and without the self field the solu-
tion is

z = (1 + hR56(s))z̃ −D′(s)x̃, x = hD(s)z̃ + x̃. (20)

Hereh is the chirp parameter andD(s) andR56(s) were
introduced in the context of (15). Using(z̃, x̃) as coor-
dinates we find that the support ofgB(·; s) is essentially
independent ofs.

To obtain our compact support model we scale the tilde
variables and our final transformation isr = A(s)r̃ =
A(s)Σr̂ =: B(s)r̂. HereΣ is a diagonal matrix chosen
so that the support of the beam is just inside the circle
r̂T r̂ = 1. Thus the support ofgB(r; s) is given by

rT E(s)r ≤ 1, E(s) = B(s)−T B(s)−1, (21)

that is, it is the interior of an ellipse. Using (21) to de-
termine theR′ region of integration seems complicated.
We now introduce two sets of integration variables which
simplify the determination of the support and the task of
integration.

Polar Coordinates

We transform to polar coordinates(χ, θ) in (2) and then
take the temporal argumentv in place of the radial coordi-
nateχ. That is, we make the transformationR′ → (θ, v)
via R′ = R + χe(θ), e(θ) = (cos θ, sin θ)T , v = u −√

χ2 + (kh)2.
This removes the integrable singularity giving the field

simply as an integral over the source,

FL(R, u) = −
1
4π

∫ u

ui

dv

∫ π

−π

dθ S[R+(u−v)e(θ), v], (22)

where we have ignored shielding. Using the slowly varying
assumption, as discussed at the end of Section 4, we obtain

F(, (s−z)/βr) ≈ F(Rr(s)+M(s)r, s/βr)

= −
1
4π

∫ s/βr

ui

dv

∫ π

−π

dθS[R̃(θ, v; r, s), v], (23)

whereR̃(θ, v; r, s) = Rr(s) + M(s)r + (s/βr − v)e(θ).
This is what we must calculate, at arc lengths, asr varies
over the bunch. Note that forr = 0 the approximation is
exact. Also takingr = 0, v = s/βr − ∆ ande(θ) = t(s),
we see the same causality issue as before and resolve it in
the same way.

Except for v close to s/βr the θ support in (23) is
tiny and it is important for a fast algorithm to compute
this accurately. Using the slowly varying approximation
and (18), it can be shown that the support ofS(R̃, v) is,
to good approximation, the same asρB(MT (βrv)(R̃ −
Rr(βrv)), βrv). The support of the latter is given by (21)
with r replaced byMT (βrv)(R̃−Rr(βrv)) ands replaced
by βrv. This gives a quartic inexp(iθ) and solving this
gives reasonableθ limits. This is discussed in some detail
in [1] and [3].

Currently theθ integration is done with the superconver-
gent trapezoidal rule. The remainingv−integrand varies
with v, R andu in ways we have not yet quantified and so
we use an adaptive integrator based on the Gauss-Kronrod
algorithm. We are investigating two improvements. The
adaptive integrator is slow and we are studying thev de-
pendence of the integrand after theθ integration with the
hope of using a non-adaptive algorithm. Solving the quar-
tic to determine theθ support may not be the best approach.
The ellipse in (21) is quite elongated and we are investigat-
ing replacing it by a parallelogram which should simplify
the calculation.

The computational effort for the calculation of one com-
ponent of the self field isO(NzNxNvNθ), whereNz and
Nx are the number of grid points in̂z and x̂ respec-
tively, Nv is the number of evaluations for thev integra-

Proceedings of ICAP09, San Francisco, CA TH2IOPK01

Computer Codes (Design, Simulation, Field Calculation)

167



tion, andNθ is the number of evaluations for theθ in-
tegration. Typical values for our simulations in [1] are
Nz = 1000, Nx = 128, Nv = Nθ = 1000, therefore
O(NzNxNvNθ) = O(1012).

Beam Frame Coordinates

The transformationR′ → ξ′ viaR′ = T(ξ′) in (2) gives

FL(T(ξ); (s − z)/βr) = −
1
4π

∫
R2

dξ′
K(ξ′)

|T(ξ′) − T(ξ)|

×S[T(ξ′);
s − z

βr

− |T(ξ′) − T(ξ)|]. (24)

The nonsingular part of the integrand forE|| is given by

K(ξ′)S||[T(ξ′);
s − z

βr

− |T(ξ′) − T(ξ)|]/QZ0c

= [(
1
γ2

r

− β2

rx′κ(s′))D1ρB() + D3ρB()]t(s′)

+ K(ξ′)[D2ρB() + D1τB()]n(s′), (25)

where() = (z′, x′; s′), z′ = s′− s+ z−βr|T(ξ′)−T(ξ)|
and S|| is defined in the obvious way. Thus the sup-
port of the integrand is the support ofgB(z′, x′; s′). For
eachs′, the x′ region of integration can now be deter-
mined from (21) by solvingr(ξ′)T E(s′)r(ξ′) = 1 where
r(ξ′)T = (s′ − s + z − βr|T(ξ′) − T(ξ)|, x′). This is
a quartic equation inx′, which is not so surprising asx′

is analogous toθ in the previous subsection. We can now
write (24) as an iterated integral as in (23).

We are in the process of comparing this with the polar
coordinate approach. The integrand is given naturally in
terms ofgB which is nice. For example, one sees the fac-
tor, D3ρB, which gives rise to the compression and is not
there for a rigid bunch. Also, studies by Warnock suggest
(i) this is a natural framework for the study of 1D collective
force approximations, (ii) it could lead to a good approxi-
mation fors′ nears, which includes the singularity, and (iii)
a multipole expansion fors′ a few bunch lengths froms is
possible and may save time and storage. We are pursuing
these ideas.

DENSITY ESTIMATION

Density estimation is a significant and active area of
Statistics, see for example [4] and [5]. We compare the
computational effort of three methods for the same level of
accuracy.

One approach to density estimation is based on orthog-
onal series and we have studied the Fourier series case
in some detail following [4]. HereρL and JL are ob-
tained at everys step by computing the Fourier coeffi-
cients of the truncated Fourier series via Monte Carlo in-
tegration of the random sample of phase space points. De-
tails are given in [1] and [3]. The computational effort is
O(NJzJx) + O(NzNxJzJx), whereN is the number of
simulated points, andJz andJx are the number of Fourier

coefficients inẑ andx̂ respectively. Typical values in our
microbunching simulations areN = 5×108, Jz = 150 and
Jx = 50. Therefore the computational effort isO(1012)
and is of the same order as the computational effort for the
polar coordinate field calculation discussed previously.

A second approach employs cloud in cell charge depo-
sition where at everys step the random sample is placed
on our fixed grid (See Section3.5 of [5] and [6]). HereρL

andJL are obtained by computing the Fourier coefficients
of the truncated Fourier series by a simple quadrature. The
computational effort in this case isO(N )+O(NzNxJzJx).
We have found that usingN , Jz, Jx as above,Nz = 1000
andNx = 128, gives the same approximation as the Monte
Carlo approach of the previous paragraph. This computa-
tional effort ofO(109) is much smaller than for the orthog-
onal series method and negligible with respect to the com-
putational effort for the polar coordinate field calculation.
This is the present method implemented in our code.

A third approach applies kernel density estimator tech-
niques to the random sample. This approach is still in the
testing phase where we are investigating standard kernels
like bivariate Gaussians or bivariate Epanechnikov kernels
(all with a uniform bandwith,h). The computational ef-
fort for the bivariate Epanechnikov kernel isO(N ÑzÑx),
whereN is as before but now̃NzÑx is the number of grid
points inside the square which encloses the circle of ra-
diush centered at the scattered particle positionẑ, x̂. For
N = 5 × 108, Nz = 1000, Nx = 128 we approximately
getÑz = 24, Ñx = 3, O(N ÑzÑx) = O(1010). Thus this
method is comparable in speed to the second method and
is worthy of further investigation.

So far, for all three approaches, the initial random sam-
ple is generated from pseudo-random numbers but quasi-
random numbers will be tested soon.
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SIMULATION OF MICROWAVE INSTABILITY IN LER OF KEKB AND
SUPERKEKB

D. Zhou∗, K. Ohmi, K. Oide, Y. Suetsugu, K. Shibata, KEK, 1-1 Oho, Tsukuba 305-0801, Japan

Abstract
Microwave instability in the LER of KEKB may be

one obstacle to achieving high luminosity as expected by
beam-beam simulations. To understand the single-bunch
beam dynamics of KEKB LER, we constructed a numerical
impedance models by calculating ultra-short wake poten-
tials of various vacuum components, resistive wall and co-
herent synchrotron radiation. The geometrical wakes were
calculated by 3D electromagnetic code GdfidL. And CSR
impedance were estimated by a dedicated code. Similar
work was also done for LER of SuperKEKB. Using these
impedance models we simulated the microwave instabil-
ity at LER of KEKB and SuperKEKB by solving Vlasov-
Fokker-Planck (VFP) equation in the longitudinal phase
space. The results of impedance calculation and simula-
tions were presented in this paper.

INTRODUCTION
KEKB [1] has been operated for more than 10 years

since its first commissioning from Dec. 1, 1998. In June
2009, the peak luminosity reached 2.11 × 1034cm−2s−1

with stored beam currents of 1.64/1.12A (LER/HER) due
to crab crossing and off-momentum optics corrections.
One of the merits of KEKB [2] which contributed to such
high luminosity is squeezing the vertical beta function at
interaction point (IP) to 0.59 cm. Correspondingly, the nat-
ural bunch length is around 4.6 mm. And at normal operat-
ing bunch current of 1.0 mA at LER, the measured bunch
length is around 7 mm.

Since the beam-beam simulations showed that the crab
crossing should boost the luminosity by a factor of 2 [3],
the present achieved luminosity is still far from expecta-
tions. Besides chromatic coupling induced by lattice non-
linearity [4], microwave instability in the LER may be an-
other potential obstacle for KEKB to achieving higher lu-
minosity by way of increasing beam currents.

Recently, Y. Cai et al. studied the microwave insta-
bility in the LER of KEKB using a broadband resonator
impedance model [5]. In that work, it was demonstrated
that the model described the longitudinal beam dynamics
very well when comparing with experimental observations.
As predicted by Cai’s model, the threshold of microwave
instability at LER of KEKB is 0.5 mA, which is well lower
than the present operating current of 1.0 mA. In this pa-
per, we introduce the studies on microwave instability in
the LER of KEKB and SuperKEKB using numerically cal-
culated impedance models.

∗dmzhou@post.kek.jp

QUASI GREEN’S FUNCTION OF WAKE
POTENTIAL

To study the longitudinal single-bunch instabilities, we
first calculate the ultra-short wake potentials of various vac-
uum components. GdfidL installed on a cluster with 256
GB memory is available at KEK. As trade-off between the
capability of the cluster and the interested frequency range,
0.5 mm bunch length was chosen for most vacuum compo-
nents of KEKB LER.

Fig. 1 shows the total geometrical wake potentials of
LER of KEKB and SuperKEKB. The length of driving
gaussian bunch used in GdfidL is 0.5 mm. Due to sig-
nificant improvements in the vacuum components, the
impedance of SuperKEKB rings will be well suppressed.
Coherent synchrotron radiation (CSR) is another impor-
tant impedance source at LER of KEKB and SuperKEKB.
The bending radius of normal dipoles at KEKB LER and
wigglers are 15.87 m and 16.3 m, respectively. For Su-
perKEKB LER, only half of the wigglers will remain. Such
magnets will produce CSR as bunch length get short to a
few minimeter. Thus a dedicated code was developed by
K. Oide in 2008 to calculate the CSR impedance in LER
of SuperKEKB. In this code, the paraxial approximation
was adopted [6]. Electronic fields due to CSR were calcu-
lated in the frequency domain and then wake potential was
obtained by Fourier transformation. The calculated CSR
wake potentials of 0.5 mm bunch are shown in Fig. 2. In-
terference between adjacent magnets caused modulations
at the tail parts of the CSR wake potentials.
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Figure 1: Calculated geometrical wake potentials of 0.5
mm bunch for LER of KEKB and SuperKEKB.
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Figure 2: Calculated geometrical, resistive wall and CSR
wake potentials of 0.5 mm bunch for LER of KEKB.

SOLVING VFP EQUATION
Basically we follow R.L. Warnock and J.A. Elisson’s

work [7] to solve Vlasov-Fokker-Planck (VFP) equation
numerically. VFP equation including collective wake force
is written as

∂ψ

∂s
+
∂q

∂s
·
∂ψ

∂q
+
∂p

∂s
·
∂ψ

∂p
=

2β
c

∂

∂p
[pψ + σ2

p

∂ψ

∂p
] (1)

ψ = ψ(q, p, s) (2)

where ψ(q, p, s) is the probability density in the longitudi-
nal phase space and is normalized as

∫∫
ψ(q, p, s)dpdq =

1. q = z is the longitudinal coordinate and p = ∆p/p0 is
the relative momentum deviation. The corresponding lon-
gitudinal distribution is calculated from ψ(q, p, s) as

λ(q, s) =
∫
ψ(q, p, s)dp (3)

and will be used in calculating wake forces. The Hamilto-
nian’s equations are

∂q

∂s
=
ωsσz

cσp
· p (4)

∂p

∂s
= −

ωsσp

cσz
· q − In · F (q, s) (5)

where In =
Ne2

E0C
and wake force is

F (q, s) =
∫ ∞

q′=−∞
W0(q′ − q)λ(q′)dq′ (6)

The unit of W0 is V/pC. N is bunch population. C is cir-
cumference of the ring. E0 is the design energy of the ring.

Operator splitting
The technique of operator splitting [8, 9], or called time

splitting, is widely used in solving partial differential equa-
tions (PDEs). To solve the VFP equation, we rewrite the
VFP Eq. 1 and split the operators into three parts:

∂ψ

∂s
= Lψ = (

3∑
i=1

Li)ψ (7)

The solution of Eq. 7 is given by

ψn+1 = e∆sLψn (8)

where

L1 = −
ωsσz

cσp
· p ·

∂

∂q
+
ωsσp

cσz
· q ·

∂

∂p
(9)

L2 = In · F (q, s) ·
∂

∂p
(10)

L3 =
2β
c

∂

∂p
[p+ σ2

p

∂

∂p
] (11)

The L1 and L2 represents Liouville operator, and the L3

is called Fokker-Planck operator. The Liouville operator is
reversible and the Fokker-Planck operator is irreversible. A
simple first-order splitting is formulated as

e∆sL ≈ e∆sL1e∆sL2e∆sL3 (12)

And high-order splitting instead of Eq. 12 cab be applied to
achieve better approximation. For example, second-order
symmetric splitting scheme can be adopted

e∆s(L1+L2) ≈ e∆s2/L1e∆sL2e∆s/2L1 (13)

To get good approximation, usually we split the one-turn
map in the ring to k integration steps. This scheme can be
written as

eCL ≈ [eC/kL1eC/kL2eC/kL3 ]k (14)

Discrete operator
The discrete version of Liouville operator is Frobenius-

Perron operator. Let F1 and F2 are the Frobenius-Perron
operators corresponding to L1 and L2, then the evolution
of probability density corresponding to reversible operators
can be evaluated as

ψ∗(q, p) = F1ψ(q, p, n∆s) = ψ(R−1(q, p), n∆s) (15)

ψ∗∗(q, p) = F2ψ
∗(q, p) = ψ∗(K−1(q, p)) (16)

where the rotation mapping R is[
q′

p′

]
=
[

cos(µs∆s/C) βz sin(µs∆s/C)
− sin(µs∆s/C)/βz cos(µs∆s/C)

] [
q
p

]
(17)

and the kick mapping K is[
q′

p′

]
=
[

q
p− InF (q, s)∆s/C

]
(18)

For Fokker-Planck operator, we propose exponentially
fitting scheme (EFS) [10] for discretization

ψn+1
i − ψn

i

∆s
=

2β
c
ψn+1

i +
βpi(ψn+1

i+1 − ψ
n+1
i−1 )

c∆p
+

ρn+1
i

2βσ2
p

c

ψn+1
i+1 − 2ψn+1

i + ψn+1
i−1

∆p2

(19)
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Table 1: Main parameters of KEKB LER

Parameter Value Unit

Circumference 3016.25 m

Beam energy 3.5 GeV

Bunch population 6.6 1010

Natural bunch legnth 4.58 mm

Synchrotron tune 0.024

Longitudinal damping time 2000 turn

Energy spread 7.27 10−4

where

ρn+1
i =

pi∆p
2σ2

p

coth
pi∆p
2σ2

p

(20)

As proved in [10], the EFS has the properties of 1) be-
ing uniformly stable for all values of integration step ∆s,
damping coefficient β and mesh size ∆p; 2) being oscilla-
tion free.

SIMULATION RESULTS
Based on the algorithms described in the previous sec-

tion, a code of VFP solver was developed and used in sim-
ulations of microwave instability at LER of KEK and Su-
perKEKB. The main parameters of KEKB LER are listed
in Table 1. For SuperKEKB LER, we choose bunch length
as 5 mm and other parameters as the same as KEKB LER.

The numerical impedance model predicts much weaker
bunch lengthening against measurements [11, 12] as shown
in Fig. 3. An pure inductance of around 90 nH should be
added in this impedance model to get similar bunch length-
ening. But when the pure inductance was added, the thresh-
old of MWI get much higher as shown in Fig. 4. This
disagreement indicates that there are unknown impedance
sources in the KEKB LER. According to Fig. 4, threshold
of MWI with CSR impedance is around 0.7 mA. Without
CSR, the threshold is around 1.1 mA. It can be concluded
that CSR is important source to drive microwave instability.

For bunch length of 5 mm, no serious bunch lengthening
and energy spread growth are seen with bunch current up to
1.6 mA at SuperKEKB LER, as shown in Fig. 5 and Fig. 6.

SUMMARY AND DISCUSSIONS
Accurate impedance model is essential for studying mi-

crowave instability. When comparing with beam obser-
vations, the numerical impedance model for KEKB LER
gave insufficient bunch lengthening and higher threshold
for MWI. The discrepancy between numerical model and
measurements are around 90nH in case of bunch lengthen-
ing.

CSR in storage rings like KEKB LER was not well un-
derstood yet. Interference between adjacent bending mag-
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nets seems to be strong. Thus more benchmarking on the
CSR code is needed.

ACKNOWLEDGEMENTS

The author D. Zhou would like to acknowledge the mem-
bers of KEKB group for careful beam measurements. Sin-
cere thanks are due to M. Zobov (INFN) and Y. Cai (SLAC)
for valuable discussions.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

σ
z
 (

m
m

)

Ib (mA)

GW+RW
GW+RW+CSR

Figure 5: Bunch length as function of bunch current at Su-
perKEKB LER.

Proceedings of ICAP09, San Francisco, CA TH2IOPK02

Instabilities and Feedback

171



 0.0007

 0.00074

 0.00078

 0.00082

 0.00086

 0.0009

 0.00094

 0.00098

 0.00102

 0.00106

 0.0011

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

σ
p

Ib (mA)

GW+RW
GW+RW+CSR

Figure 6: Energy spread as function of bunch crrent at Su-
perKEKB LER.

REFERENCES
[1] KEKB B-Factory Design Report, KEK-Report-95-7, (1995).

[2] K. Oide, ”KEKB B-Factory, The Luminosity Frontier”,
Progress of Theoretical Physics, Vol. 122, No. 1, July 2009.

[3] K. Ohmi, et al., ”Luminosity Limit Due to the Beam-Beam
Interactions With or Without Crossing Angle, Phys. Rev. ST
Accel. Beams 7, 104401 (2004).

[4] D. Zhou, et al., ”Simulations on Beam-Beam Effect Under
the Presence of General Chromaticity”, KEK Preprint 2009-
10, May 2009.

[5] Y. Cai, et al., ”Potential-Well Distortation, Microwave Insta-
bility, and Their Effects with Colliding Beams at KEKB”,
Phys. Rev. ST Accel. Beams 12, 061002 (2009).

[6] T. Agoh and K. Yokoya, ”Calculation of Coherent Syn-
chrotron Radiation Using Mesh”, Phys. Rev. ST Accel.
Beams 7, 054403 (2004)

[7] R. Warnock and J. Ellison, ” A General Method for Propa-
gation of Phase Space Distribution, with Application to the
Sawtooth Instability”,SLAC-PUB-8404, 2000.

[8] S. I. Tzenov, ”Contemporary Accelerator Physics”, Singa-
pore, World Scientific, p. 217 (2004).

[9] W. Hundsdorfer and J. G. Verwer, ”Numerical Solution of
Time-Dependent Advection-Diffusion-Reaction equations”,
Springer series in Computational Mathematics, vol. 33,
Springer, Berlin, p. 325 (2003).

[10] D.J. Duffy, ”A Critique of the Crank Nicolson Scheme
Strengths and Weaknesses for Financial Instrument Pricing”,
Wilmott magazine, p. 68-76, July 2004.

[11] T. Ieiri and H. Koiso, ”Measurement of Longitudinal
Impedance at KEKB”, Proc. of 14th Symposium on Acceler-
ator Science and Technology, KEK, Tsukuba, p. 443 (2003).

[12] H. Ikeda, et al., ”Negative Momentum Compaction at
KEKB”, Proc. of Workshop on e+e− in the 1-2 GeV
range: Physics and Accelerator Prospects, Alghero (SS),
Italy, September 2003.

TH2IOPK02 Proceedings of ICAP09, San Francisco, CA

Instabilities and Feedback

172



STUDY OF BEAM-SCATTERING EFFECTS FOR A PROPOSED APS ERL
UPGRADE ∗

A. Xiao † , M. Borland, X. Dong, ANL, Argonne, IL 60439, USA

Abstract

Beam-scattering effects, including intra-beam scatter-
ing (IBS) and Touschek scattering, may become an issue
for linac-based 4th-generation light sources, such as X-
ray free-electron lasers (FELs) and energy recovery linacs
(ERLs), as the electron density inside the bunch is very
high. In this paper, we describe simulation tools for mod-
eling beam-scattering effects that were recently developed
at the Advanced Photon Source (APS). We also demon-
strate their application to a possible ERL-based APS up-
grade. The beam loss issue due to the Touschek scattering
effect is addressed through momentum aperture optimiza-
tion. The consequences of IBS for brightness, FEL gain,
and other figures of merit are also discussed. Calculations
are performed using a particle distribution generated by an
optimized high-brightness injector simulation.

INTRODUCTION

The Coulomb scattering between particles inside a beam
has been widely studied for circular accelerators. They
were largely ignored for linacs in the past, since signifi-
cant effects are not expected for one-pass, low-repetition-
rate systems with relatively large beam size. The scatter-
ing rate is quite low, and there is not enough time for the
beam to develop any noticeable diffusion. The situation
has dramatically changed since linac-based 4th-generation
light sources are on the horizon. To provide users with syn-
chrotron radiation with unprecedented high brightness, the
required linac beam must have extremely low emittance
with significant charge and a high repetition rate. To en-
sure that the machine can be run safely with acceptable
beam losses and that the beam quality will be not harmed
by IBS, we developed a series of simulation capabilities in
elegant [1]. They provide the ability to simulate beam-
scattering effects for an arbitrarily distributed linac beam
with energy variation.

Beam-scattering effects are traditionally separated into
two categories, Touschek effect and IBS, based on whether
the scattered particles are lost immediately after the scatter-
ing event or not, respectively. In the case of IBS, we only
see diffusion that leads to increased emittance in 6-D phase
space; whereas in Touschek, a single scattering event may
result in loss of the scattered particles. Different theoret-

∗Work supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.

† xiaoam@aps.anl.gov

ical approaches are used to calculate the beam size diffu-
sion rate and beam loss rate. In developing our simulation
tools, we followed the same path: the widely used Bjorken-
Mtingwa’s [2] formula is chosen for calculating the emit-
tance growth rate due to the IBS effect, while a combina-
tion of Piwinski’s formula and Monte Carlo simulation is
used for determination beam loss rates and positions.

Both the Bjorken-Mtingwa formula and Piwinski’s for-
mula were developed for stored beam, which has constant
energy, and both assume a Gaussian bunch. These assump-
tions are generally invalid for a linac beam. In previous
papers [3, 4, 5, 6], we discussed the beam loss issue for a
one-pass transport system (Gaussian beam, constant beam
energy), and the IBS for a arbitrarily distributed acceler-
ating beam. In this paper, we describe newly developed
methods that give us the ability to simulate the beam loss
for an arbitrarily distributed linac beam, and summarize the
already existing IBS tools. We also give an example appli-
cation to a possible ERL-based APS upgrade design [7] us-
ing a particle distribution generated by an optimized high-
brightness injector simulation [8].

A PROPOSED APS ERL UPGRADE

The APS has an eye on building an ERL for a future
upgrade. Figure 1 shows the layout of one proposed de-
sign. The existing APS ring is used as part of the new
machine. Since the radiation shielding of the APS already
exists, there is concern about beam loss rate from the high-
average-current ERL beam. Also, because of energy recov-
ery, we will find that a small energy deviation generated at
high energy may exceed the energy aperture at the end of
deceleration, resulting in beam loss. Therefore, a detailed
simulation tool that can determine the beam loss rate and
the beam loss position precisely is needed.

Figure 1: Layout of a proposed APS ERL upgrade.

In general, a linac beam departs from the normally as-
sumed Gaussian distribution that holds for a stored beam,
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especially in the longitudinal dimension. Figure 2 shows
the particle distribution from our optimized high-brightness
injector simulation. This distribution is used in the laterex-
amples of our simulation tools. The major beam parame-
ters of the simulated bunch are:εx,n = εy,n = 0.35µm,
σp = 2.63 ·10−3, σl = 0.6mm, bunch charge= 77pC, and
repetition frequency= 1.3GHz.

(a) (b)

Figure 2: Particle distribution from optimized high-
brightness injector simulation: (a) horizontal, (b) longitu-
dinal (p=βγ).

TOUSCHEK EFFECT

Simulation of beam loss due to Touschek effect is per-
formed in several steps. The procedure is illustrated in Fig-
ure 3. To start the simulation, the beamline under study is
first divided into many small sections by inserting a special
elementTSCATTER into it. (This is easily done using the
elegant commandinsert_elements.) The total num-
ber and locations where one should insertTSCATTER ele-
ments depends on the rapidity with which the energy and
optical functions vary. To ensure reliable results, these vari-
ations should be small between successive scattering ele-
ments.

Figure 3: Procedure of the Touschek-caused beam loss sim-
ulation.

Estimate local momentum aperture

Unlike in storage rings, the fractional momentum aper-
ture varies over a large range in linacs, as illustrated in Fig-
ure 4. In order to efficiently study beam loss from Touschek
scattering, we need to know the approximate local momen-
tum aperture and use these results for later simulation [9].

elegant provides themomentum_aperture command
to determine local momentum aperture. We also added a

Figure 4: Local momentum aperture for example APS
ERL lattice (tracking stopped before last rf module (E=189
MV).

switch in the Touschek simulation module that can gener-
ate a momentum aperture bunch at eachTSCATTER position
and then track the bunch to the end of the beamline. The
lost particles are collected and an approximate local mo-
mentum aperture is obtained. Figure 5 shows an example
of the aperture bunch and lost particles.

Figure 5: A momentum aperture bunch and lost particles.
All particles havex(x′, y, y′, t) = 0.

The results obtained from this step are very important for
performing an economical yet detailed Monte Carlo simu-
lation in subsequent steps.

Calculate local bunch distribution function

The electron bunch from a high-brightness injector is
typically not Gaussian distributed, especially in the longi-
tudinal direction. As shown in Figure 2, the energy spread
of the entire bunch is more than two orders of magnitude
larger than the “intrinsic” energy spread. The traditional
formulae, which calculate the beam-scattering effect based
on the assumption of a Gaussian beam, are therefore in-
valid. To match our simulation result more closely to the
real machine, we track the simulated electron bunch from
the gun through the beamline with insertedTSCATTER ele-
ments. At eachTSCATTER position, the tracked particles’
coordinates are saved so that a corresponding distribution
histogram can be made. This distribution histogram (table)
is read back later by the Monte Carlo simulation module in
order to obtain the particle density by interpolation of the
table.

To accomplish this task, we wrote a general tool to gen-
erate an n-dimension histogram for a collection of n-tuples,
where n can be any integer. Of course, it’s natural to build
a 6D histogram from a particle distribution. One concern is
that, in order to have a meaningful 6D histogram, we need a
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huge number of particles from the injector simulation. For
example, to have 11 bins in each dimension, the total num-
ber of bins is about116 ≈ 2 · 106, and the total number
of particles need to be larger than this value. Another con-
cern is to interpolate in 6D, any point’s value is determined
by the nearby26 = 64 grid point values. This calcula-
tion is in principle possible using our software. However,
to demonstrate our method in this paper, we separated the
beam distribution into two parts: transverse (4D) and lon-
gitudinal (2D), see Figure 6. The simulated gun bunch has
500,000 particles.

Figure 6: Histogram of the simulated bunch at the begin-
ning of the APS ELR beamline: (a) transverse (4D), (b)
longitudinal (2D). (The index is an n-bit counter where
each bit has the size of the number of bins of the corre-
sponding dimension.)

Monte Carlo simulation

In the center-of-mass (CM) system1, the probability of
one of the two interacting particles being scattered into a
solid angledΩ∗ is given by the differential Møller cross
section [10]

dσ∗

dΩ∗
=

r2

e

4γ∗2

[(
1 +

1

β∗2

)
2

4 − 3 sin
2
Θ

∗

sin4 Θ∗
+

4

sin2 Θ∗
+ 1

]
,

(1)
where re is the classical electron radius;γ∗ and β∗ are
the relative energy and velocity of scattered electrons in
the CM system, respectively;Θ∗ is the angle between
the momenta before and after scattering; anddΩ∗ =
sin Θ∗dΘ∗dΨ∗.

The Touschek scattered particles’ distribution is mod-
eled by Monte Carlo simulation. To use Equation (1), a
pair of particles with same position (x, y, t) are generated
randomly. Their momenta are transformed into the CM
system using the Lorentz transformation. In the CM sys-
tem, the scattering angles (Θ∗,Ψ∗) are selected randomly.
The scattered particles’ momenta, together with the associ-
ated Møller cross section, are then transformed back to the
laboratory coordinate system. Therefore, a single random
scattering event includes 11 random numbers (3 positions,
6 momenta, and 2 scattering angles).

The total scattering rateR is given by integral over
all possible scattering angles and over all electrons in the

1For clarity, we use (*) to denote all quantities in the CM system, as
opposed to quantities in the laboratory coordinate system.

bunch. In the CM system,

R∗ = 2
∫

|v∗|σ∗ρ(~x∗

1
)∗ρ(~x∗

2
)∗dV ∗, (2)

where v∗ is the scattered electrons’ velocity,σ∗ is the
total Møller cross section,~x∗ = (x∗, y∗, z∗, p∗x, p∗y, p∗z),
ρ(x∗

i )
∗ is the electron phase-space density, anddV =

dx∗dy∗dz∗dp∗x1
dp∗y1

dp∗z1
dp∗x2

dp∗y2
dp∗z2

. σ∗ is integrated
over the solid angledΩ∗ with Θ∗ ∈ (0, π

2
], Ψ∗ ∈ [0, 2π]:

σ∗ =

2π∫

0

π/2∫

0

dσ∗

dΩ∗
sin Θ∗dΘ∗dΨ∗. (3)

The reason forΘ∗ ∈ (0, π
2
] is that, if one electron is

scattered into the region0 < Θ∗ ≤ π
2

, then the other is
scattered into the regionπ

2
≤ Θ∗ < π. The factor “2” in

Equation (2) includes both regions.
For the problem we are interested in, we assume that

px ≪ pz andpy ≪ pz, which means that the Lorentz trans-
formation is mainly taking place along thez direction, and
σ∗ is parallel to thez∗-axis. Transforming to the laboratory
coordinate system gives

|v|σ =
|v∗|

γ

σ∗

γ
(4)

and

R = 2
∫

|v|σρ( ~x1)ρ( ~x2)dV, (5)

with

dV = dxβdyβd∆zdx′

β1
dx′

β2
dy′

β1
dy′

β2
d∆p1d∆p2. (6)

Equation (5) can be computed using the Monte Carlo
integration withN uniform distributed samples in the n-
dimensional volumeV , e.g.,

∫
V

f(~x)d~x ≈
V

2N

M∑
i=1

f(~xi), (7)

where “2” represents two particles involved in a sampled
scattering event, and the integration is calculated for each
scattered particle respectively. For the problem of interest
(beam loss calculation),M (M < 2N ) is the total number
of particles withδ > δm, whereδm is an input value and
should be chosen slightly smaller than the local momentum
aperture for an economical simulation.

Figure 7 shows the Monte Carlo integration convergence
vs. the total number of valid simulated scattered particles
M . Based on this, we use5 · 106 as the default value of
M in elegant. Figure 8 shows the comparision of the lo-
cal scattering rates calculated from Piwinski’s formula [11]
and our Monte Carlo simulation for a Gaussian-distributed
beam. We can see that the agreement is excellent.

For a non-Gaussian-distributed beam,elegant has the
ability to read the real beam distribution function from a

Proceedings of ICAP09, San Francisco, CA TH2IOPK04

Multi-Particle Beam Dynamics

175



Figure 7: Scattering rate (in an arbitrary scale) vs. number
of valid simulated scattered particles.

Figure 8: Local Touschek scattering rate (1/s): Piwinski
formula (black) and Monte Carlo simulation (red).

histogram table. The table is interpolated to get the val-
ues ofρ( ~x1) andρ( ~x2) in Equation (5). Figure 9 shows
the comparison of simulated scattering rate for the assumed
Gaussian-distributed beam and the realistic beam distribu-
tion. In the dispersion-free regions (η = 0), we obtained
similar results for both cases, which is expected since the
transverse beam distribution is very close to the Gaussian
distribution. At a location withη 6= 0, the simulated rate
depends on energy spread and the local value of the dis-
persion. Since the energy distribution is not Gaussian, the
results from the Gaussian bunch are unreliable.

Figure 9: Simulated local Touschek scattering rate (1/s)
for Gaussian beam (PRate) and realistic beam distribution
(SRate).

Simulation of loss rate and position

Beam-scattering is a random process and can happen at
any place along the beamline. The Monte Carlo simula-
tion at one location is already very time consuming. To
simulate the Touschek effect at every location of the beam-
line and obtain a stable statistical result is almost a non-
realistic task. From Figure 8, we see clearly that the Monte

Carlo simulation results are very close to Piwinski’s for-
mula for a Gaussian-distributed bunch. This fact inspired
us to consider using Piwinski’s formula to calculate the in-
tegrated scattering rate over a section of beamline and using
the Monte Carlo simulation to generate random scattered
particles. This allows obtaining accurate results with far
few particles. Each scattered particle represents a scatter-
ing rate of

Ri =
ri∑
ri

∫
RPiwinski, (8)

where ri is the associated local scattering rateV
2N

f(~xi)
in Equation (7),

∑
ri is the value of Equation (7), and∫

RPiwinski is the integrated Piwinski rate over the section
of beamline. For a non-Gaussian-distributed bunch the lo-
cal scattering rate can not be given by Piwinski’s formula.
In this case, Equation (8) is modified by multiplying by a
factor RMonteCarlo

RP iwinski

, whereRMonteCarlo andRPiwinski are
both local rates calculated at the same place.

The scattered particles are then tracked from the scatter-
ing location to the end of the beamline. The lost particles
Ri and locations are collected, and the total beam loss rate
and loss position are given by adding results from all the
small beamline sections together.

As shown in Figure 7, to obtain a stable statistical result,
the total number of valid eventsM (not the total number
of samples 2N ) needs to be large enough. (Recall thatM

is the number of particles for whichδ > δm.) In the case
of calculating beam loss rate, it implies that the input value
of δm should be close to the real momentum aperture for
an economical calculation. A value of0.8δ0, whereδ0 is
the estimated momentum aperture, is used in our example
simulation.

We examined the scattering rate that each simulated par-
ticle represents and, not surprisingly, found a large varia-
tion. Some simulated particles represent very likely scat-
tering events, while some represent very low probability
events. We sorted all simulated particles by the associated
scattering rate. Figure 10 illustrates the sum of the scatter-
ing rate (

∑
ri) vs. the number of simulated particles (

∑
i

).

Figure 10: Integrated scattering rate vs. number of simu-
lated particles. Particles are sorted with increasing associ-
ated scattering rate.

From this plot we can see that about5% of simulated
particles represent about99% of the scattering rate. If we
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Figure 11: Simulated loss rate vs. position for various val-
ues of the scattering rate cut-off.

make use of an estimate of the local momentum aperture,
which we do, then a large portion of the simulated particles
will be lost somewhere along the beamline. Of those, we
need only track that5% of the particles, which represents
99% of the scattering events. The resulting error will be
negligible. Figure 11 compares the computed loss rate for
tracking scattered particles with95%, 99%, and100% of
the total scattering rate, respectively. It’s clear that the dif-
ferences are small. In practice, the user can determine what
percentage of scattering they would like to simulate, and
elegant will choose the corresponding high-probability
scattering events automatically for beam loss study. This
strategy makes the calculation even more economical.

An application to the APS ERL upgrade is shown in
Figure 12. Without optimized sextupoles installed in the
turn-around-arc (TAA) section, the beam loss rate is too
high. After optimization of the sextupoles configuration,
the beam loss rate in the APS ring portion (from about
2600m to 3600m) is reduced significantly, to a level that
is safe for operation.

Figure 12: Simulated loss rate vs. position for APS ERL:
(a) without sextupole optimization; (b) with optimized sex-
tupoles

IBS EFFECT

The IBS effect is another widely studied beam-scattering
effect in storage rings. The emittance growth rateτd in the
directiond (x, y, orz) is given by the Bjorken-Mtingwa [2]
formula for a Gaussian-distributed beam:

1
τd

=
π2cr2

0
m3NlnΛ
γΓ

f, (9)

wherec is the speed of light,r0 is the classical particle
radius,m is the particle mass,N is the number of particles
per bunch (or in the beam for the unbunched case),lnΛ
is a Coulomb logarithm,γ is the Lorentz factor,Γ is the
6-dimensional invariant phase-space volume of the beam

Γ = (2π)3(βγ)3m3εxεyσpσz, (10)

andf is a complicated function of beam size.
As for the Touschek effect, for a non-Gaussian beam

Equation (9) is no longer valid, and we have to search for a
new method. Due to the different natures of IBS and Tou-
schek scattering, we care more about beam size evaluation
than the real particle distribution, so we choose to continue
to use the Bjorken-Mtingwa formula with some modifica-
tions. Figure 2 shows that the major difference between a
linac beam and a Gaussian beam is in the longitudinal di-
rection. The “intrinsic” energy spreadσp is much smaller
than the bunch’s energy spread, and

1
τd

∝
1

γεxNεyNσpσz

f. (11)

This difference could result in many orders of magnitude
error in the computation ofτd and must be taken into ac-
count. Inelegant we provide a slice method to overcome
the problem.

First, the beamline is divided into several sections by
inserting a special elementISCATTER in the beamline,
similar to what we did in the Touschek simulation. Un-
like the Touschek simulation, it is not necessary to put as
manyISCATTER elements asTSCATTER elements along the
beamline, due to the fact that IBS effects need time to de-
velop. AnIBSCATTER element is only needed when beam
size has a noticeable change due to the IBS effect.

For each section of beamline, the bunch is sliced longi-
tudinally at the beginning of the section. The beam param-
eters and optical functions are calculated for each slice and
propagated to the end of the section. To deal with a bunch
traveling through a linac with energy variation, normal-
ized beam parameters are used and are assumed to be un-
changed for each section. Because there are no synchrotron
oscillations for a linac bunch, the longitudinal growth rate
is increased by a factor of 2 based on Piwinski’s [12] for-
mula

1
τz

[linac-bunch] = 2
1
τz

[circulating-bunch] , (12)

and the effective bunch length isσz = 1
√

2π
c∆t, where∆t

is the slice duration.
Each slice is assumed to be Gaussian distributed in trans-

verse coordinates and energy spread, and to be uniformly
distributed in the longitudinal direction. The Bjorken-
Mtingwa formula is used to calculate the growth rateτd

locally and is integrated over the entire section for each
slice. At the end of the section (just prior to the location
of the nextIBSCATTER element), particles in each slice are
scattered smoothly or randomly based on the calculatedτd.
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Particles are then put back together as a whole bunch, and
all is ready for simulation of the next section of beamline.

We applied this method to the same APS ERL lattice
used for our Touschek studies. Figure 13 shows the IBS
growth rate with and without slicing beam. It’s clear that
the IBS growth rate of each slice is higher than if calcu-
lated for the whole bunch, especially in the longitudinal
direction.

(a) (b)

Figure 13: IBS growth rate for sliced bunch (black, each
dot represents a slice) and unsliced bunch (red): (a)τx, (b)
τz.

Figure 13 also shows that the longitudinal IBS growth
rate is much higher than the transverse growth rate; this
is expected due to the fact that the beam is much cooler
in the longitudinal dimension. Figure 14 shows the beam
dimensions at the end of the linac with (77pC) and with-
out (0 pC) IBS effect. There is no noticeable change in
the transverse dimension. In the longitudinal, the energy
spread at the center of the bunch increases due to the IBS
effect. The change of energy spread is small and mainly
happens at the center of the bunch. There should be no sig-
nificant effect on brightness or FEL gain. It is possible that
it may reduce CSR effects. Figure 15 shows the evaluation
of energy spread of the entire bunch. There is no noticeable
difference with and without the IBS effect.

Figure 14: Particle distribution vs. longitudinal position
(t) at the end of beamline with/without IBS: (a) normalized
emittance; (b) energy spread.

Figure 15: Bunch energy spread evolution vs. s.

CONCLUSION

We developed a method based onelegant to simulate
beam-scattering effects for a linac beam with energy vari-
ation. The beam loss rate and location can be obtained by

tracking scattered particles from Monte Carlo simulation,
using realistic beam distributions. Beam-size evaluationis
obtained by applying the Bjorken-Mtingwa formula to a
sliced bunch. After applying the tools to an example APS
ERL lattice design, we found that the Touschek scattering
effect is significant. The momentum aperture of the lattice
needs to be optimized carefully, and a beam collimation
system can be designed based on the simulation results.
The IBS growth rate is also very high for such a beam, but
due to the fact that the time to travel through the linac is
very short, the IBS effect has not enough time to develop.
Hence there is no obvious effect on the machine’s perfor-
mance.
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THE SIMULATION OF THE ELECTRON CLOUD INSTABILITY IN 
BEPCII AND CSNS/RCS* 

Y. D. Liu#, N. Wang 
Institute of High Energy Physics, CAS, P.O. Box 918, 100049, Beijing, China

Abstract 
Electron Cloud Instability (ECI) may take place in any 

positively charged particle circular accelerator especially 
in positron and proton storage rings. This instability has 
been confirmed to be a serious restriction to the beam 
stabilities. The physical model on the formation of 
electron cloud in various kinds of magnetic fields was 
introduced in the first section of the paper. The transverse 
and longitudinal wake field model to present the 
interaction between electron cloud and beam were 
introduced in another section of the paper. As an example, 
in positron storage in  BEPCII and RCS of CSNS, the 
densities of electron cloud and beam instabilities caused 
by the accumulated electrons were simulated. 

INTRODUCTION 
The electron cloud accumulated in the vacuum chamber 

is usually associated with the transverse coupled bunch 
instability, bunch blow up and bunch lengthening. 
Experimental studies and numerical simulation have been 
developed for these phenomena [1]. Now BEPC has been 
upgraded to a two-ring collider, namely BEPCII, with 
electron and positron beams circulating in each separate 
ring. In its commissioning operation, ECI is much weaker 
because of many restraining methods used in positron ring. 
The effects of these restraining methods have been 
validated. In this paper, the simulation to electron cloud in 
different restraining conditions was introduced.  

CSNS is a proton accelerator facility with consists of a 
linac and a rapid cycling synchrotron (RCS). Two 
bunches with a population of 1.88x1013 will be 
accumulated and accelerated in the RCS ring, and the 
electron-proton instabilities might happen in such high 
intensity proton ring. The ECI in CSNS/RCS is 
investigated in the last section. The main parameters of 
the BEPCII and CSNS/RCS ring are summarized in Table 
1 and Table 2, respectively [2].  

 

FORMATION OF ELECTRON CLOUD IN 
BEPCII AND CSNS/RCS 

Electrons sourced from the (1) photoelectrons arising 
from the synchrotron radiation hitting the wall of the 
vacuum chamber, and (2) secondary emission from 

electrons hitting the walls, are attracted by the beam 
electric field and accumulate around the positron beam. 
Photoelectrons are produced in the chamber and 

antechamber by the photons hitting the wall with yield 
rate Y~0.1 and reflectivity R~0.1. If there is photon 
absorber, the Y and R become as small as Y~0.02, R~0.1. 

 

Table 1: Parameters of the BEPCII 

Parameters Value 

Beam energy E(GeV) 1.89 
Bunch population Nb(1010) 4.84 
Bunch spacing Lsep(m) 2.4 
Bunch number n 93 
Average bunch length z(m) 0.015 
Average bunch sizes x,y(mm) 1.18,0.15 
Chamber half dimensions hx,y(mm) 60,27 
Synchrotron tune Qs 0.033
Tune Qx,y 6.53,7.58 
Circumference C(km) 0.237 
Average beta function <>(m) 10 

 

Table 2: Parameters of the CSNS/RCS 

Parameters Symbol, unit Value 

Inj./Ext. Energy Ein/Eext, GeV 0.08/1.6 
Circumference C, m 248 
Bunch population Np, 1012 9.4 
Harmonic number H 2 
Repetition freq. f0, Hz 25 
Betatron tune x/y 5.86/5.78 
Beam pipe radii a/b, cm 10 
Proton loss rate Ploss, turn1 1.3310 4 
Proton e yield Yp, e/p/loss 100 

Ionization e Yi, e/p/loss 1.3110 5

 
The percentage of photoelectron escaping out of the 

antechamber depends on the width of antechamber. In the 
simulation the beam field is presented by B-E formula and 
the numerical solver of Poisson-Superfish in the central 
region of (10σx,10σy) and out of this region, respectively. 
In the simulation we assume that secondary electrons 
yield (SEY) with and without TiN coating in the chamber 
is 1.06 and 1.8, respectively. 

Simulation results show that the EC density can be 
reduced by about: 5x if the antechamber is adopted, 6x if 
the TiN is coated only, 3x if the photon absorber is made 
in the wall of the chamber only,  and 5x  if the electrode is 
installed in the beam chamber. In BEPCII, the 
antechamber, the photon absorber, and the TiN coating 
approaches have been adopted. With these three effects 
taken into account in the simulation, the electron density 
will be decreased about 80 times, i.e., from 1.1x10 13 m-3 
in the case without any restraining method to 1.3x1011m-3, 

*Work supported by National Natural Science Foundation of China 
(10605032)  
#liuyd@mail.ihep.ac.cn 
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which is lower than the threshold causing the strong head-
tail instability as described in later sections.  

Figure 1 shows the electron cloud distribution in the 
vacuum chamber with different transverse shapes with or 
without electrodes.  

 

 

 
Figure 1: The EC distribution in vacuum chamber (a; 

elliptic pipe; b: antechamber pipe; c: antechamber with 
electrodes). 

 
In the above simulation, we don’t consider the effect of 

magnetic fields including dipole, quadrupole, sextupole 
and solenoid fields. In the region of dipole magnetic field 
without considering the fringe field, the magnetic field is 
only in vertical direction, B=By. For a quadrupole 
magnetic field, B can be expressed by  
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where B is magnetic rigidity. For a sextupole magnetic 

field, B can be expressed by 
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In uniform solenoid field, the magnetic field is only in 

longitudinal direction, B=Bz. 

According to the simulation in Figure 2, it is clear that 
in the magnetic fields, the electron cloud density is much 
lower than the density in drift region. The uniform 
solenoid field is the most effective way to confine the 
photoelectrons. All of the photoelectrons are confined to 
the vicinity of the vacuum chamber wall. So in the 
positron ring of BEPCII, the solenoid has been winded on 
the vacuum chamber of straight section and the magnetic 
field designed to be 30 gauss, which will be enough to 
clear the electron cloud in the central region. 

 

 
Figure 2. Distribution of electron cloud in various kinds 

of magnetic field (left: antechamber chamber; right: 
elliptic chamber; a: free field region; b: dipole field; c: 
quadrupole field; d: sextupole field; e: solenoid field 

Bz=10 G ). 

 
In CSNS/RCS, the photoelectron effects are much 

smaller. So there are three candidate mechanisms of 
electron production considered in this article, including: 
lost protons hitting the chamber wall, electrons produced 
by residual gas ionization, and secondary electron 
emission. 

The electron yield due to residual gas ionization is 
determined by the ionization cross section and the 
vacuum pressure in the beam chamber. Residual gases of 
CO and H2 are considered, whose ionization cross 

sections are σ(CO)=1.3x1022m2 and σ(H2)=0.3x1022 m2. 

The corresponding electron yield at vacuum pressure 
p=10 nTorr and room temperature (T = 294 K) is 1.22x105 
e/p/turn. The electrons are produced along the beam 
trajectory. 

The mechanism of electron yield due to proton loss is 
not yet well known. In the simulation, we use the simple 
model proposed by Furman et al [3], that the number of 
electrons generated by lost protons hitting the vacuum 
chamber wall is NpxYxploss, per turn for the whole ring, 
where Y is the effective electron yield per lost proton, and 
ploss is the proton loss rate per turn per beam particle. 
According to the beam loss tracking simulation of the 

a 

c 

b 
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RCS ring, a total beam loss of 6% mostly occurs in the 
collimation region during the first 1 ms. by using the 
assumption of 100 e/p/loss, we obtain an electron 
production rate of 1.16x102 per turn, which is 3 orders 
higher than that of gas ionization. We assume the lost 
proton time distribution to be proportional to the 
longitudinal bunch intensity. 

 In the simulation, the electrons are simulated by macro 
particles. We use 1000 macro-particles to represent 
primary electrons generated when each bunch slice passes 
through the electron region. The secondary electron 
emission occurs when the particles hit on the beam 
chamber wall. The macro-electrons are tracked 
dynamically in the transverse plane. The space charge 
force is computed by the PIC method and applied to 
particles at each slice in the bunch and each step in the 
gap. The motion of macro-electrons and macro-protons 
are tracked during the EC region. After that, the bunch is 
transformed according to the six-dimensional linear 
equation. Figure 3 shows the building progress of the 
electron cloud in RCS with different proton loss. The 
results show maximum electron density at the bunch tail, 
and the electron density keep almost unchanged at the 
bunch head.  

0 500 1000 1500 2000 2500

10
−6

10
−4

10
−2

10
0

t, nsec

el
ec

tr
on

 li
ne

 d
en

si
ty

, n
C

/m

ploss=1.33×10−3

ploss=1.33×10−4

ploss=1.33×10−5

 
Figure 3: The density of EC for different proton losses. 

THE TRANSVERSE AND 
LONGITUDINAL INSTABILITY CAUSED 

BY THE ELECTRON CLOUD 
In the simulation to the coupled bunch instability, a 

bunch is expressed as a macro-particle and the EC can be 
represented by macro-particles. The force between the 
bunch and electron is represented by the Bassetti-Erskine 
formula and the solver of Poisson-Superfish in the central 

region of (10σx,10σy) and out of the region, respectively. 

By tracking the motion of the bunch and the formation of 
the EC in the same time, the oscillation amplitudes of 93 
bunches and the EC density are recorded. The growth 
time can be obtained by fitting the amplitude of the 
oscillation. From the previous results, without any 
restraining methods the EC density is 1.03×1013m-3, but 
when using the antechamber, photon absorber and TiN 
coating, the density will be decrease to 1.35×1011 m-3. In 
these two conditions we track the coupled bunches 

oscillation in vertical direction, obtaining the growth time 
τ1y~0.08ms and τ2y ~4.3ms. The Growth behavior of the 
coupled bunch oscillation and the sideband spectra are 
shown in Figure 4. 

Based on the head-tail model, a code was developed to 
simulate the beam size blow up. In the model, 
concentrating electron cloud at one location s of the ring, 
the EC and the bunch are represented by 

eN  and 
pN  

macro- particles with transverse uniform and Gaussian 

distributions, respectively. We use vectors ),( ee xx  and 

),( ee yy  to describe the transverse motion of electron 

respectively, without considering the longitudinal force 
imposed by the EC. The particle’s synchrotron oscillation 
in a bunch being included, the motion of bunch macro-
particles are described by the 3D vector, 

),,,,,( P
P

pppp zyyxx  . The bunch is divided into sN  

slices, which interact with the EC one another and cause 
the distortion of the EC distribution. The macro-particles 
in different slices can change their positions as the 
synchrotron oscillation occurs. 

 

 
Figure 4:  Growth behavior of coupled-bunch oscillation 

(Tracking result: a and b;  sideband spectra: c and d ). 

 
After tracking the motions of bunch macro-particles for 

4096 turns in the different EC densities, we find that the 
threshold by simulation is comparable to the analysis 
result. The tracking results are shown in Figure 5. It is 
clear that the threshold of the blow up of electron cloud is 
about 1.01012 m-3. 
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Figure 5:  Beam vertical  size in the different EC densities. 

The same method was used to calculate the transverse 
bunch oscillation in RCS. There we include the RF 
acceleration progress.  
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Figure 6: Bunch transverse RMS in RCS. 

 
On the other hand, the positron bunches have to lose 

some mount of their kinetic energy to build the electron 
cloud during the interaction with the electrons. The 
energy variation inside the bunch can be seen as a 
longitudinal wake. The bunch particles have an additional 
energy spread due to the longitudinal wake from the 
electron cloud. the longitudinal electric field of the 
electron cloud is expressed as,[4] 


a

r rz drjZE 0 ,                                       (3) 

where 0Z the impedance in free space and rj is 

transverse current density of electron cloud. 
As an example of BEPCII, assuming the bunch current 

is 9.8mA, the electric field caused by different electron 
cloud  density is shown in Figure 7.  
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Figure 7:  Longitudinal electric fields for different 

electron cloud densities. 

 
The bunch length and energy spread varied due to the 

longitudinal wake caused by the electron cloud. The 
longitudinal interaction between bunch and electron cloud 
depends on the bunch current and density of electron 
cloud. A normal method to simulate the process of bunch 
lengthening is to track the motions of many macro-
particles presenting the bunch. The motion of macro-
particles is described in the longitudinal phase by [5] 
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where )(ni  and )(nzi  are the energy and position 

coordinates of the ith particle after n revolutions in the 

storage ring. 0T  is the revolution period;   the damping 

time; 0U  the energy lost per turn; s  the synchronous 

phase; h  the harmonic number; C  the ring 

circumference; E  the bunch energy;   the momentum 

compaction factor; 0  the natural energy spread; iR  a 

random number obtained from a normal distribution with 

mean 0 and RMS 1. The wake potential iV  caused by the 

electron cloud depends on the longitudinal electric field 

of zE .  

In the simulations 106 macro-particles are tracked over 
6 longitudinal damping times and the bunch length are 
calculated by averaging particle positions in the last 
damping time. For BEPCII, positron bunch current 
9.8mA, bunch natural length 13.53mm, the longitudinal 
electric field and the tracking result for bunch length in 
different electron cloud density are shown in Figure 8. 
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Figure 8:  Bunch length for different electron densities. 

 
Synchrotron tune shift is reduced about 5% of the 

undisturbed tune with the electron cloud density of 
1.0x1014m-3, as shown in Figure 9. The longitudinal action 
between electron cloud and bunch can be seen as an 
electron cloud potential well, which causes the possible 
bunch distortion. 
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Figure 9: Synchrotron tune shift by the electron cloud. 

 
According to the simulation results for bunch length in 

different electron cloud density, the electric field due to 
electron cloud can lead to the bunch lengthening. The 
bunch initial Gaussian distribution is shifted slightly in 
the forward direction for compensating the additional 
energy loss to the electron cloud. The longitudinal action 
between electron cloud and bunch can be seen as an 
electron cloud potential well which cause the possible 
bunch distortion. 

CONCLUSION 
With simulation, the efficiency for antechamber with 

photon absorber, TiN coating and clearing electrode to 
reduce the EC density is explored. All of these results are 
very meaningful for understanding the mechanism, as 
needed for the design and operation of storage rings for 
factory-like colliders. Particularly we have decided to 
adopt antechamber with photon absorber and TiN coating 

in the BEPCII to cure the ECI. The EC density can be 
suppressed to below the threshold of strong head-tail like 
instability, while the coupled bunch instability can be 
damped with feedback system. The longitudinal effect of 
electron cloud serves as a potential well to interact the 
dynamics of bunch particles. Tracking methods to 
simulate the bunch length in different electron cloud 
density  show that the bunch lengthening caused by the 
electron cloud density 1.0x1014m-3, is just 2.0% of  the 
natural bunch length. Its effect appears to be negligible 
for BEPCII. 
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MODELING LASER STRIPPING WITH THE PYTHON ORBIT CODE 

T. Gorlov, A. Shishlo, ORNL, Oak Ridge, Tennessee, 37831, U.S.A.

Abstract 
Laser assisted hydrogen stripping has become a widely 

discussed alternative to the existing stripper foil approach. 
A simulation tool for this new approach is presented. The 
application is implemented in the form of an extension 
module to the Python ORBIT parallel code that is under 
development at the SNS. The physical model in the 
application utilizes quantum theory to calculate the 
evolution and ionization of hydrogen atoms and ions 
affected by the superposition of electromagnetic and laser 
fields. The algorithm, structure, benchmark cases, and 
results of simulations are discussed for several existing 
and future accelerators. 

INTRODUCTION 
One of the serious problems with operating the SNS 

facility in Oak Ridge involves the injection system of the 
accumulator ring. The current system uses a thin carbon 
foil to convert H- beam from the linac to protons at the 
ring injection point. The planned upgrade of SNS 
involves a power increase of the injected beam that will 
lead to excessive heating and to rapid failure of the 
stripper foil. For this reason SNS is developing alternative 
injection processes for higher powers. 

There are two such investigations at SNS. The first 
involves the development of better stripper foils [1] and 
the second is the replacement of the stripper foil by a 
laser-assisted stripping (LS) process [2]. Moreover, LS is 
an attractive method for other projects using conversion-
injection of H- beam. This paper presents a computational 
model for the three step LS developed at the SNS [3-5], 
and that can also be applied to other projects. 

Basically, the theoretical description of LS requires the 
self-consistent application of quantum mechanics, laser 
physics, and accelerator physics. The central problem is 
the excitation-ionization of a hydrogen beam in a 
superposition of electromagnetic and laser fields 
H0+γ→H0*→p+e-. Success of the ionization process for 
each particle of the beam can be predicted with 
probability P using quantum mechanics. The problem of 
LS injection is conditioned by the requirements of the 
total LS efficiency P|||| and output emittance parameters of 
the proton beam. By solving the problem one can 
determine the requirements on the input hydrogen beam 
and the laser beam parameters for successful injection. 

The LS is a new scientific field [3-5] with no 
established computational component. The proof-of-
principle (POP) of LS has been successfully demonstrated 
at the SNS [3]. To computationally support the 
experiment a simple quantum model [4] of adiabatic rapid 
passage (ARP) was applied. The model considers a two 
level hydrogen atom and linear frequency growth in time 
of the laser field in the atom’s rest frame. The model 
consists of a system of two linear differential equations 

that can be solved by any Math package. Many physical 
phenomena taking place in a real experiment and 
significantly affecting the final LS efficiency are not 
included in the model. Nevertheless the model yields a 
good estimation of LS efficiency and can be used both as 
an initial stage for LS calculation and for benchmarking 
more detailed models. It should be noted that the purpose 
of the POP experiments was to demonstrate feasibility of 
the LS idea founded on the basic principles of quantum 
mechanics. The expectation of the model was 
successfully met experimentally. 

For the next experiments planned in the SNS project it 
is necessary to demonstrate the feasibility of LS injection 
for the detailed SNS requirements. Experimental LS 
involves many different phenomena that should be 
included in the calculation. These include: the Stark effect 
and splitting of the hydrogen atom energy levels; 
spontaneous decay; electric field ionization; and possible 
circulation of the external electromagnetic field. 
Computing the LS for the next experiments is necessary 
for determining the simplest technical equipment and for 
optimizing the LS efficiency over the numerous 
parameters in the LS scheme. 

A short description of the LS physical model, taking 
into account all the listed phenomena, can be found in [3]. 
A computer model of LS presented in this paper has been 
realized in form of an extension module in the PyORBIT 
parallel code developed at the SNS [6]. The choice of the 
implementation is conditioned by the general direction of 
development of accelerator codes at the SNS. The main 
advantages of the chosen direction are: rapid and pure 
object oriented prototyping of applications at the Python 
level; the widespread use and detailed documentation of 
Python; high performance execution of the classes at the 
C++ level; simple writing of extension modules; and 
parallel computing with PyORBIT based on MPI library. 
Moreover the present PyORBIT already contains 
templates for developing extension modules. If the 
developer has a unique physical problem requiring 
different classes than those in PyORBIT, he can create 
new extension modules to solve the problem. 

This paper is organized as follows. Section 2 gives a 
short overview of the physical model of the LS and 
formulates the mathematical problem for computing the 
LS. The purpose of the section is to show the amount and 
kinds of computations required for solving the problem of 
LS. Section 3 describes the organization of the LS code 
and classes for getting the most efficient computations. 
Section 4 presents benchmarks and tests of the LS code. 
Section 5 outlines the scope of problems that can be 
solved by the code. Section 6 summarizes the paper 
summarizing and suggests some problems to be treated in 
the future. 
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OVERVIEW OF PHYSICAL MODEL 
A brief description of the complete physical model for 

the three step LS process can be found in [5]. The first 
step of LS deals with the Lorentz stripping of the H־ ion: 
H־ØH0+e־. This is a probabilistic process that can be 
calculated with a simple semi-empirical formula [7, 8]. 
This overview of physical model is devoted mainly to the 
second and third steps of the LS, namely the excitation 
and ionization of the H0 beam. In the absence of 
interaction between particles, each particle of the beam 
can be treated independently and then the total effects of 
the LS can be calculated statistically. 

The model assumes that after the first step of the LS 
process there is a hydrogen atom in the ground state with 
initial position and momentum {r0, p0}i in the laboratory 
frame (LF) (Fig. 1a). The atom moves under the influence 
of a strong high frequency laser field and a slowly 
oscillating external electromagnetic field.  

 

 
a b 

 
c d 

Figure 1. Schematics of a hydrogen atom in different 
frames considered for solving the excitation-ionization 
problem: a-laboratory frame, b-particle rest frame 
(inertial), c-particle rest frame (non-inertial) with z axes 
directed along the E field and t=0, d-the same as c but 
with t>0. The laser and external field vectors are shown 
as red and blue arrows, respectively. The orange figure 
represents the electron cloud of the atom. 

 
The state of the atom travelling in the superposed 

electromagnetic and laser fields evolves. The problem is 
to find the probability of ionization of the hydrogen atom 
as a function of time. The state functions calculated for 
each H0 particle will determine the further evolution of 
the beam. As a result it will be possible to calculate 
emittance parameters and currents of the H0, p, and e־ 
beams. The evolution of the hydrogen atom implies 
evolution of the electron wave function in the atom 

Ψ(r, t). The probability of ionization of the H0 atom can 
be calculated via the wave function by the following 
expression:  p(t) = 1 - ! Ψ*(r, t)Ψ(r, t)d3r. 

The quantum problem for the hydrogen atom is solved 
in the particle rest frame (PRF). A first step is to Lorentz 
transform the fields and time from the LF (Fig. 1a) to the 
PRF (Fig. 1b). Theoretically, it is possible to solve the 
quantum problem in the new frame using either of two 
approaches: application of the Schrödinger equation (SE) 
for the wave function or application of the master 
equation (ME) for the density matrix (DM). The first 
method does not take into account the phenomenon of 
spontaneous decay but the second one does. In other 
respects, both methods equally well solve the problem of 
the hydrogen atom in the superposition of laser and 
external electromagnetic fields taking into account the 
Stark effect and field ionization. 

The SE in the inertial frame (Fig. 1 b) can be written in 
the following form: 
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∂
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Here Ĥ0 - operator of the unperturbed hydrogen atom, 
ĤE,B -interaction between electron and the electromagnetic 
field, and V{(t) - interaction between electron and the laser 
field. In principle, equation (1) can be solved directly. 
However, this is a 4D partial differential equation of the 
second order that is difficult to solve without simplifying 
assumptions. All magnetic fields in the PRF can be 
omitted in comparison with the electric fields in 
determining the evolution of the atom. Next, for solving 
the problem it will be convenient to transform equation 
(1) and the electric fields into a frame where the external 
electric field (non laser field) is directed along the z axis 
(Fig. 1c). The new frame is non-inertial and equation (1) 
is transformed into the following: 
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Here M=M(nE) is a transformation matrix from the 
inertial frame r (Fig.1 b) to the non inertial frame r’ 
(Fig.1 c) r’=Mr. If the circulation of the field in the 
inertial PRF is zero ωE=0 then the new frame (Fig. 1c) is 
inertial and equation (2) will look like the usual SE (1). 
Equation (2) can be solved by the well-known method 
[5], [9] in which the solution Ψ(r, t) is represented in the 
form of an eigenfunction expansion: 

 

   
=

=Ψ
N

n
nn rtctr

1
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where the ψn(r) are stationary parabolic wave functions of 
the hydrogen atom in an electric field satisfying the 
equation: (Ĥ0+ĤE)ψn = (E0n - iΓn/2)ψn. Here ĤE=-μzEz(t) 

Proceedings of ICAP09, San Francisco, CA TH3IOPK03

Beam Injection/Extraction, Transport and Targetry

185



is the interaction operator between the electron and the 
external quasi-static electric field which leads to the Stark 
splitting of the hydrogen atom into a multi level system. 
In this model we assume that Ez(t) is a quasi-static field 
not leading to atomic excitation or transitions between 
levels. It follows that it is necessary to solve the problem 
of the Stark effect prior to equation (2) and to find 
E0n(Ez), Γn(Ez) and ψn(Ez) in parabolic coordinates as 
functions of the field Ez. 

The dependences E0n(Ez) and Γn(Ez) were calculated 
numerically in the form of tables by the method described 
in [10] for Ez in the range between 0 and the threshold 
fields at which the level disappears. The functions ψn(Ez) 
were calculated using second-order perturbation theory 
[11]. 

Substituting (3) into (2), after some manipulation we 
obtain a system of linear differential equations for 
complex parameters cn(t) that can be solved numerically 
by the Runge-Kutta method. Finally, the system of 
equations has the following form: 
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  (4) 

 
The initial condition of the equation is the ground state of 
the atom at the initial instant: cn(t0) = δ1n. The functions 
fnm(t) contain parameters of the hydrogen atom (Stark 
parameters and wave functions) and the laser field. The 
number of equations, N, is defined by the number of 
hydrogen levels involved in the problem. Each level with 
the principal quantum number n has n2 Stark sublevels. If 
we consider the excitation of nth level then we should 
include N=11+22+…+n2 = n(1+n)(1+2n)/6 levels into 
equations (3) and (4). 

The DM formalism is another approach for solving the 
problem that takes spontaneous decay into account. DM 
elements for the wave function (3) ρnm(t) = cn(t)c

*
m(t) 

n, m=1…N  define the state of the quantum system and 
the wave function (3). The ME for evolution of the 
density matrix can be obtained similar to the SE. Finally, 
the system of differential equations for the DM elements 
has the following form: 
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with the initial conditions defined by the ground state of 
the atom at the initial instant: ρnm(t0) = δ1n δ1m. The DM 
elements are complex and satisfy the relation ρnm(t0) = 
ρ*

mn(t0). Functions aknm(t) and bknm(t), similar to (4), 
contain the parameters of the hydrogen atom and laser 
field. The ME is bigger then the SE by a factor of N and 
consists of N2 = (n(1+n)(1+2n)/6)2 differential equations, 
as can be seen by comparing Eqs. (4) and (5). If we 
consider the excitation of the n=3 level, then it will be 
necessary to solve a system of 196 differential equations 
for complex elements of DM. 

After solving the equations (4) or (5) it is easy to 
calculate the function of ionization probability. 
Substituting (3) into the definition of the ionization 
probability we obtain: 
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The quantum mechanical model of LS described above 

covers many phenomena, excluding spin-orbital 
interaction and fine structure splitting. However the 
question of the applicability of the model and code for the 
calculation of LS in extremely strong external 
electromagnetic fields requires special consideration. In 
this case, perturbation theory can yield incorrect wave 
functions. For correct solution of the SE (1) or (2) it is 
necessary to take into account continuum spectra in the 
quantum problem without using perturbation theory. 

COMPUTER CODE 
The code consists of many classes responsible for 

different functions. This section reviews the basic classes. 

Laser field 
This class provides the components of the electric and 

magnetic laser field as a function of particle coordinates 
and time in the laboratory frame (Fig. 1a). Most laser 
beams can be well approximated by the elliptical 
Gaussian mode [12]. In the LS problem the components 
of the laser field are represented in a complex form for 
simplification of mathematical equations and the code: 
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where k=2π/λ, P is the power of the beam and c is the 
speed of light. The magnetic field B can be written as 
B=E/c. The elliptical Gaussian laser beam (7) is specified 
by four geometrical parameters: wx, wy – horizontal and 
vertical waists, and fx, fy - positions of the waists. 

In general, the result of the interaction of a particle 
beam with the laser beam depends on the local 
characteristics of the laser beam at the point of 
interaction. For this reason, it is convenient to operate 
with rx, ry - sizes of the beam and αx, αy - angles of 
divergence of the beam at this point. The local parameters 
can be expressed mathematically using the first four 
parameters. 

The expression (7) defines a continuum laser beam. For 
the next LS experiments at the SNS a pulsed laser source 
(τ~50 ps, λ=355 nm) will be used. Because this is not an 
ultrashort laser pulse, the temporal shape of the laser 
power P in (7) can be described by a Gaussian function: 
exp[-4·Ln(2)·(t-z/c)2/τ2]. Here τ is the full width at half-
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maximum FWHM. The electric field (7) should be 
multiplied by the square root of this function. 

Stark effect 
This class provides Stark parameters for equations (3) 

and (4) as functions of the electric field. These functions 
have been calculated previously by another code and 
stored as data files. The energy E0n and lifetime-1 Γn are 
stored in the form of numerical functions and the dipole 
transitions dnm = !ψ*

n(r) er ψm(r)d3r are stored as 
coefficients of the power series expansion dnm(Ez) = 
d0+d1Ez+d1Ez

2. 
A resonant phenomenon occurring at the interaction of 

the laser field and the atom significantly affects the 
efficiency of LS. This phenomenon, mathematically 
contained in equations (3) and (4), strongly depends on 
the precision of the energies E0n(Ez). For this reason, the 
more exact method [10] was used for computation of the 
energies. For computation of the dipole transitions 
playing a minor role, the perturbation theory has been 
applied. 

Two level atom 
This is a class for computation of laser stripping based 

on the SE or ME when only two levels N=2 are included 
in the series expansion (3). The two level atom model for 
the interaction of light with matter leads to the system (4) 
consisting of two equations. Practically, the approach is 
valid only when: no external static field is applied to the 
atom; the electric field is directed along the z axis in the 
PRF (Fig 1.c); and the eigenfunctions (3) are expressed in 
spherical coordinates. In other words, the class can be 
applied for computation of LS without external static 
electric fields in the PRF and for linearly polarized laser 
fields. From the point of view of computing, this is a high 
performance class that can be used for initial estimations 
of LS. 

Schrödinger equation 
This class performs the calculation using the SE 

approach described in the previous section. It takes into 
account everything except spontaneous decay from upper 
to lower levels. Nevertheless the class can be used for the 
calculation of LS in the presence of external quasi-static 
fields for atoms having small time of interaction with 
laser field. The validity of the computation requires a 
negligible spontaneous decay rate, or small evolution 
times in contrast with lifetime of an exited atom. 
Practically, this is the best class when considering the 
performance-potentialities relationship, and it is useful for 
optimization of the laser and external field parameters. 

Density matrix 
This class is based on the DM approach described in 

the previous section. Although the method includes many 
phenomena, it is computationally too slow to be used for 
optimization requiring multiple computations. Practically, 
the method can be used for the final calculation of LS 
efficiency after optimization by the SE method. 

Diagonal density matrix 
In the absence of laser fields the master equation (5) is 

modified such that the equations for the diagonal 
elements ρnn(t) are separated from those for nondiagonal 
elements. As a result we obtain system of N linear 
differential equations for the diagonal elements of DM: 
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This class, as well as the previous class, can be applied 
for computation of LS after calculation by the SE method. 
However in contrast to the previous class for calculating 
the 2nd and the 3rd steps of the LS this class calculates 
only the 3rd step and has much faster performance then 
the previous one. This class, in combination with (6), is 
very useful for the computation of emittance growth of 
stripped atoms, which can be very important for some 
projects. The derivative of (6) ∂p(t)/∂t gives the spatial 
distribution of the current density of stripped atoms. The 
density is nonzero only in the presence of transverse 
magnetic field in the LF. The space distribution leads to 
the spread of trajectories of the stripped particles in the 
magnetic field and to emittance growth. 

Another important application of the class is for 
computation of beam losses during foil stripping. In this 
case the beam loss is due to the few percent of partially 
stripped beam that remains neutral H0 after passing 
through the foil. The empirical distribution of the initial 
exited states ρnn(t0)=f(n) of the neutral beam can be found 
in [13]. After applying this class it is possible to calculate 
the evolution of the beam and its losses. 

A similar thing can be done for LS. The initial 
distribution of exited states of the H0 beam ρnn(t0)=f(n) 
can be written analytically without numerical simulations 
and the class can be applied to compute losses and 
emittance growth due to LS. 

Ionization of H־ beam 
This class calculates the stripping of H־ beam travelling 

in external electromagnetic fields. This is the first step of 
the LS. In this case only one state of the ion is possible. 
The system of equations (8) is transformed into the single 
equation: 

 
)())(()( 1111 ttEt ρρ Γ−=   (9) 

 
with the condition ρnm(t0) = 1. The empirical dependence 
Γ(E) for the H־ ion can be found in [7, 8]. 

BENCHMARKS 
This section presents benchmarks of the LS code based 

on: fulfilment of quantum mechanical laws; comparison 
of the classes with each other; and checking the results of 
computation with a simple analytical case. Let us begin 
with a particular case that can be calculated analytically. 
This method was applied for checking the two-level 
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model [4]. Let the electric component of the laser field in 
the PRF have the following form: 
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where ω0 is a resonant frequency between the 1st and the 
2nd level of hydrogen. Assume that the frequency of the 
laser field grows linearly with time, passing through 
resonance at t=0: ω(t) = ω0 + Γt. We direct the field E0 
along z axes and after calculation we obtain the following 
evolution of the 1s and 2p states in the spherical basis 
(Fig 2). The population of the upper state (2p-state) 
calculated in our case as |c2p|

2 can be predicted 
analytically [4] at tØ∞. The numerical results are in good 
agreement with the analytical formula. 
 

a b 
Figure 2. Evolution of populations of 1s-2p states of a 
hydrogen atom in a benchmark laser field. 
 
The result should not depend on the coordinates we use to 
solve the problem, spherical or parabolic. Let us direct 
vector E0 in (6) along n = {1, 1, 1} direction for 
generality and solve the problem in parabolic coordinates 
by the SE. Then we obtain the following picture (Fig 3.) 
that shows that the evolution in the parabolic basis 
matches the evolution in the spherical basis (Fig. 2a).  
 

a b 

c d 

e f 
Figure 3. Evolution of populations of parabolic states with 
principal quantum numbers n=1, 2 for hydrogen atom. 

 
The sum of the populations of the 2nd states in the 
parabolic basis shown in Fig. 3f matches the population 

of the 2p state in the spherical basis (Fig. 2b). If we 
exclude spontaneous decay from ME and solve Eq. (5), 
then we obtain exactly the same results shown in Fig. 3 
for the diagonal elements of DM. As expected, the results 
are matching because equation (5) follows directly from 
(4) when spontaneous decay in (5) is omitted. The sum of 
all populations is 1 for all 3 methods. 

If we set Γ=0 in (10), then the atom will be affected by 
the resonant frequency ω0 and we will observe Rabi 
oscillations. These can be also described analytically and 
shown to match for all the methods. In this way, we tested 
different classes and found them to be in agreement with 
the basic principles of quantum mechanics, with the 
analytical formulas, and with each other. 

Another instructive example is a computation of the 
atom evolution in an external static electric field while 
applying the same laser field (10). The result of the 
calculation is shown in Fig. 4, both for the SE and the 
ME. One can see that the different parabolic states with 
different energies will be excited in different moments of 
time. This happens due to resonance physics of the 
excitation process and the linearly changing frequency of 
the laser field. 
 

a b  

c d  

e f  
Figure 4. Evolution of populations of parabolic states with 
principal quantum numbers n=1, 2 in the presence of an 
electric field directed along the z axis. 
 
This picture corresponds to the realistic LS excitation by 
the laser field (7) showing behaviour similarly (10) in the 
PRF and realizing the idea of the ARP. 

APPLICATIONS OF THE CODE 
The purpose of the code is the optimization of laser 

stripping systems. Below we list only a few of the 
questions that can be resolved using these models. One of 
the main technological problems of LS is getting a high 
efficiency while using a relatively low power laser. Let us 
consider the LS scheme with a single pass laser beam (7). 
The parameters rx, ry, αx, αy of the beam can be optically 
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adjusted. The optimization of these parameters can be 
easily realized using the code together with an 
optimization package. 

Another problem is the possible modification of the 
temporal shape of the laser pulse, which can become very 
important for LS. A laser micropulse with a given peak 
power and FWHM can be extremely non-optimized for 
stripping of a hydrogen beam with given FWHM. In this 
case it is reasonable try to modify the laser micropulse 
shape while conserving the pulse energy. The LS code 
can provide parameters of the laser pulse optimized for 
best LS efficiency. 

In most cases, σ – the polarization of the laser field in 
the PRF, provides better LS efficiency in contrast with π -
 polarization because of less Stark splitting of energies 
ΔEn of exited states. In any particular case, questions 
about polarization can be resolved with the code. 

The three step LS scheme for intermediate experiments 
at the SNS is shown in Fig. 5. Two dipole magnets of 
opposite polarities provide stripping of the first and the 
second electrons. The magnetic field in the region of 
interaction between the magnets is minimal and can be 
described by formula B = C(xez + zex) where C (T/m) is 
obtained from the distance between the magnets and their 
strength. 

 

 
 

Figure 5. Schematics of laser stripping for the SNS. 
 
Using the code it is possible optimize the distance 

between the magnets. On the one hand, increasing the 
distance between the magnets decreases the field strength 
in the interaction region. This leads to a decrease of 
perturbation of the atom, less Stark effect, and 
improvement of the resonant excitation and LS efficiency. 
On the other hand, greater distance between the magnets 
leads to longer travel times of excited atoms from the 
interaction point to the second magnet. This circumstance 
increases the effect of spontaneous decay and decreases 
total LS efficiency. From the point of view of the code the 
distance between the magnets can be considered as a 
parameter that can be optimized. 

Computations for the next LS experiments at the SNS 
conclude that it is possible to obtain 90% of LS excitation 
using a single pass laser micropulse with 2 MW peak 
power and 50 ps FWHM in time. The H0 beam is 
considered to have the same temporal FWHM and given 
parameters of emittance. More details about the 
estimations can be found in [14]. 

SUMMARY 
• A new code for the calculation of the three-step laser 

assisted stripping of H- beams has been developed. 
• The computational model was implemented as an 

extension module for the PyORBIT parallel code 
developed at the SNS. 

• Benchmarks of the code demonstrate its reliability 
and confirm its correspondence with the 
mathematical model and with the basic principles of 
quantum mechanics. 

• The code was used for optimizing the laser stripping 
experiments for the SNS project. 

• In the future it will be necessary to perform 
theoretical investigations on the excitation of 
hydrogen atoms in a strong static field. It will then be 
necessary to include continuum spectra into the 
quantum mechanical problem. 
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USING GEANT4-BASED TOOLS TO SIMULATE A PROTON
EXTRACTION AND TRANSFER LINE

F.W. Jones, R. Baartman, and Y.-N. Rao
TRIUMF∗, 4004 Westbrook Mall, Vancouver V6T 2A3, Canada

Abstract

The simulation toolkit GEANT4 has been used to create
high-level tools for specific user groups, such as SPENVIS
in space physics and GATE in medical imaging. In Accel-
erator Physics, comparable efforts are being devoted to de-
velop general-purpose programs for simulating beam lines
and accelerators, allowing access to Geant4’s facilities for
3D geometry, tracking, and interactions in matter without
the need for specialised programming techniques. In this
study we investigate the use of two high-level tools based
on Geant4, BDSIM and G4BEAMLINE, to model a 65-
meter beam line supplying protons from the TRIUMF cy-
clotron to the ISAC Rare Isotope Beam facility. We outline
some features of the codes and comment on their differ-
ent approaches to defining the beam line geometry. Due to
its ability to model some important aspects such as rectan-
gular dipoles and magnetic fringe fields, G4beamline was
utilized for the simulations presented here, for validation of
the model and the investigation of beam losses.

INTRODUCTION

In using simulation tools to investigate particle losses in
accelerators and beam lines, the effects of particle inter-
actions in matter, and in particular the secondary particles
arising from electromagnetic and hadronic interactions, are
very important for safety issues, loss monitoring and diag-
nostics, and radiation damage and activation of hardware.

The Geant4 simulation toolkit[1] offers a versatile way
to track particles in an accelerator or beam line geometry,
with realistic fields. For interactions in matter it offers a
wide range of physics processes and models and a host of
other facilities for studying losses with tracking of all rel-
evant secondaries. The choice of physics models allows
tuning of the simulation to the particular energy range and
particles of interest.

Tapping into the power of Geant4 generally requires fa-
cility in C++, as the user must supply C++ code to define
and implement the geometry, to specify the sampling of
track information in sensitive detectors, and to instantiate
the necessary “manager” objects to initialize and coordi-
nate the simulation. Although C++ skills are part of the
culture of high energy particle physics, they are not always
as easy to find in other fields, and this has prompted the
development of higher-level tools built from Geant4.

Accelerator physicists can benefit from two such tools,

∗TRIUMF receives federal funding via a contribution agreement
through the National Research Council of Canada

BDSIM and G4Beamline. In the following we will de-
scribe some of the capabilities of these tools and our de-
velopment of a prototype model of a TRIUMF beam line
in each code. A limitation in BDSIM (being addressed by
the code authors at the time of writing) prevented us from
advancing to a full simulation, but in G4Beamline we pro-
ceeded to refine the model and to validate its tracking and
optical properties against measured beam profiles. The val-
idated model enabled us to perform simulations aimed at
estimating the influence of multiple scattering in the cy-
clotron extraction foil on losses in the beam line, of which
some first results will be presented.

GEANT4, BDSIM, AND G4BEAMLINE

GEANT4

Geant4 provides a software toolkit for tracking and sim-
ulation, in a 3D geometry, of particle interactions in matter.
It is object-oriented and scalable to very large and diverse
applications. A key characteristic of its design is to allow
the user to plug in new or modified simulation components
without the need for any modification of the Geant4 code
itself.

The code is written in C++ and is implemented as a col-
lection of class libraries in various categories. For a given
application, the user provides code for a main program and
auxiliary classes which instantiate the components of the
simulation: geometry, particles, physics processes, data
collection objects (sensitive detectors), and so on. The
main program also invokes the “glue”, or manager, classes
from the toolkit which initialize and coordinate the simu-
lation run. For each instance of an application, the main
program and user-written classes are compiled and linked
together with the Geant4 libraries to make an executable.

This approach follows the principle that for a simulation
code the most powerful and general input language is the
language the code is written in. For Geant4 any input sys-
tem less complex than C++ code may limit the expression
of complex problems. A somewhat gentler principle is that
a scripting language for object-oriented simulation should
itself be object-oriented.

On the other hand, simpler and easier input methods
can be devised for problems with a specialized and well-
defined scope, particularly if the scale of the problem is
relatively small. For accelerators and beam lines, BDSIM
and G4Beamline provide the needed functionality using in-
put methods similar to basic scripting or shell languages.
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BDSIM

BDSIM[2] has been in development since c.2000 and
was originally motivated by studies of backgrounds and
other issues in the beam delivery systems of next-
generation linear colliders (first CLIC and later ILC). The
program is conceived in a sufficiently general way to sup-
port many other beam line applications. Notably, it incor-
porates an input parser which allows beam lines defined in
MAD(X) language to be rapidly brought into BDSIM with
the addition of only a few parameters such as the beam pipe
radius and the outer dimensions of magnetic elements.

The other feature that puts BDSIM into a special class
of beam simulation programs is that particle tracking in
vacuum is done by element transfer maps, as in matrix-
based codes such as DIMAD and TRANSPORT. The step-
wise Geant4 tracking is invoked only when a particle en-
ters a material. Hence, particles that remain in the vacuum
chamber are tracked very quickly through the beam line.
In studies of beam losses, this allows reduced computation
time and improved statistics since the “uninteresting” par-
ticles that do not hit anything will be disposed of quickly.
This feature also allows easy comparison and benchmark-
ing against other map-based optics and tracking codes.

For the present study, BDSIM presented some limita-
tions that revealed its origin in high-energy collider simu-
lations. Dipole magnets are only of sector bend type (edges
perpendicular to the reference path) and edge angles can-
not be specified. Although a rectangular bend (RBEND)
element is documented, it is in fact implemented as a sec-
tor bend. Moreover, the volumes representing dipoles and
quadrupoles in the geometry always have circular cross
sections. These conditions are not realistic for our appli-
cation, in which the bends are of rectangular shape, and in
which the edge focusing and fringe fields play a significant
role in the optics of the beam line.

G4Beamline

G4Beamline[3] has been in development since 2002 and
was conceived as a general and flexible interface to Geant4
for studying beam lines. It offers a wide range of beam
line components, including the basic magnetic elements as
well as rf cavities, solenoids, absorbers and other struc-
tures. User-defined elements are also available via a col-
lection of basic Geant4 shapes, with flexible methods for
inputting or defining electric and magnetic fields. Each el-
ement is described in detail by a set of parameters which
can be specified by constants, variable substitution, and
general mathematical expressions. For magnets, parame-
ters for gap, field, and iron dimensions, as well as full con-
trol over placement and alignment, allow some realism in
the geometry and layout of the beam line. A built-in opti-
mization facility allows element parameters to be tuned to
specific centering or focusing objectives, or in general to
any goal expression in terms of test-particle coordinates.

G4Beamline contains extensive data-collection and pro-
cessing facilities, including cut-planes, sensitive detector

volumes (phantom or inside real elements), powerful event
and track cut mechanisms, and beam profile readouts. Data
can be output as ascii files, or as Root n-tuples, which
can be processed and plotted by the HISTOROOT program
supplied with G4Beamline.

Figure 1: Geant4 visualizations with OpenInventor. The
start of BL2A in BDSIM (left) and the end of BL2A in
G4Beamline (right) with proton beam emerging

User Experience

Although these programs differ considerably in what is
implemented, with G4Beamline generally having a more
diverse set of features, the processes of setting up a simu-
lation are quite similar, and the input usually has a 3-part
structure: (1) Definition of beams, reference parameters,
and other global options; (2) Definition of element proto-
types; (3) Layout of the beam line.

Both BDSIM’s GMAD input language and the shell-like
language used in G4Beamline support element prototypes
defining common features, as well as element instances de-
rived from the prototypes and corresponding to individual
elements of the beam line. The instances can have spe-
cific names assigned to them, can set additional element
parameters, and can override parameters in the prototype.
This gives the input an object-oriented structure without the
need for formal class definitions.

We also note that both programs can be used interac-
tively with access to Geant4’s diverse visualization facil-
ities, which are invaluable for debugging, diagnostic, and
informational purposes. The OpenInventor visualization
(via Coin3d libraries) in particular offers an efficient and
functional interactive 3D viewer for the beam line geome-
try and particle trajectories, as exemplified in Figure 1.

The two programs differ fundamentally in the way the
reference path (also called the “reference trajectory” or
“design orbit”) of the beam line is defined. In BDSIM the
reference path is defined by the sequence of elements, and
is composed of line segments and circular arcs, the latter
being defined by the effective lengths and bending angles
of the dipole magnets. This makes it extremely easy to lay
out the simulated beam line, and follows the convention of
many optics and tracking codes. On the other hand, it can
be restrictive because in real life some steering dipoles do
not involve a bend in the layout of the beam line.

In contrast, in G4Beamline the reference path must be
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Figure 2: TRIUMF Beam Line 2A, showing final arc and quadrupole doublet (right) for delivery to ISAC target

explicitly defined by the user as a series of connected line
segments. No arcs can be used, and the path through
dipoles must be given in a piecewise-linear form, e.g. by
bending the path by one-half the bending angle at the en-
trance and exit of the dipole. Once defined, this path acts as
the moving origin for the local coordinate system, in which
elements can be positioned and particle trajectories output.
This offers greater flexibility and is closer to the way real
beam lines are laid out and aligned, but it means that parti-
cle coordinates inside dipoles deviate widely from the ref-
erence path and are not directly comparable to accelerator
coordinates in the conventional curvilinear system.

BEAM LINE 2A

As well as assessing Geant4-based simulation methods,
the present study is motivated by their potential application
to TRIUMF beam lines, and in particular to Beam Line 2A
(BL2A, Figure 2) which supplies 500 MeV protons from
the TRIUMF cyclotron to ISOL targets providing rare iso-
tope beams for the ISAC and ISAC II facilities. The reli-
able performance of BL2A is essential to these multi-user
facilities which support experiments in atomic and nuclear
physics and nuclear astrophysics.

The beam line, shown schematically in Figure 3 is capa-
ble of switching between two independent targets, via the
Y-magnet B3, however for present purposes we have mod-
elled only the right-hand branch.

Figure 3: Schematic view of BL2A

BL2A has been providing reliable and stable beam up to
70µA for a number of years, however it has performance
issues which motivate further study: (1) It is difficult to
tune: doublets and triplets are tightly spaced and focusing
is weak in the long straight section; (2) Performance is lim-
ited by continuous low-level beam losses, as indicated by
beam spill monitors at 38m, 45m and 56m, and by radiation

damage on vacuum flange seals at various locations; (3)
These losses are not well understood, and it is not known
whether tune modifications could reduce the losses.

Extraction to BL2A from the H− cyclotron is via a 3–5
mg/cm2 carbon stripping foil at 500MeV radius, convert-
ing the H− to protons which follow exit orbits as shown in
Figure 4. This is one of several foils allowing simultaneous
extraction to multiple beam lines. The extraction energy
can be varied by moving the foil radially and the extracted
beam current can be varied by the amount of dipping of the
foil vertically into the circulating beam.

Figure 4: Top view of extraction region for beam line 2A
(to the right) and beam line 2C, showing proton orbits.

DEFINING THE STARTING BEAM

Beam characteristics at the extraction foil

The initial conditions of the extracted beam are strong
determinates of the beam line optical behaviour and per-
formance. In the extraction process, the location where a
circulating H− ion hits the foil depends on its energy (ra-
dius) and on its radial velocity. As shown in Figure 5 this
induces a characteristic shape on the extracted beam in hor-
izontal phase space[4] which is not well described by the
usual beam ellipse parameters and therefore needs to be
input explicitly to G4Beamline. We therefore have used
a cyclotron tracking code COMA[5] as a “pre-processor”
for G4Beamline to generate up to 106 macroparticle coor-
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dinates representing the beam distribution at the foil. The
COMA coordinates give a good description of the horizon-
tal phase space and the energy distribution of particles. Due
to the extreme edge angles of the cyclotron sector magnets,
the vertical tracking in COMA is not very accurate. In the
following section we describe a different approach used to
populate the vertical phase space of the starting beam.
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Figure 5: Scatterplot of COMA coordinates at the extrac-
tion foil

Optical model

The code TRANSOPTR has been used[6] to develop a
model of BL2A which accurately describes the RMS beam
characteristics. In this model, the beam sigma matrix pa-
rameters at the foil were fitted to beam profile measure-
ments taken from monitors throughout the beam line, using
the known dipole and quadrupole settings and estimates of
the edge-focusing parameters at the exit from the cyclotron.
Although the edge-focusing of the cyclotron magnet is not
well quantified in detail, it was found that the aggregate
effect could be modelled accurately by using the exit edge-
angle of the optical model as an additional free parameter,
thus obtaining the improved fit shown in Figure 6 (top).

We used the vertical emittance and ellipse parameters
from this model in another simulation code ACCSIM[7]
to generate the vertical phase space coordinates for our
G4Beamline simulation. The simulation thus has two pre-
processors, with the coordinates being merged (consistent
with the correct total momentum vector) into an ascii input
file which can be sequentially read by G4Beamline.

THE CYCLOTRON FIELD AND EXIT
REGION

As seen in the optical model, the edge focusing as
the proton beam exits the cyclotron, and in particular the
edge angle, are important to the correct behaviour of the
model throughout the length of the beam line. Although
G4Beamline has an analytical treatment of the fringe fields
in dipole magnets (and quadrupoles) it provides only rect-

1. fit with edge angle=−68.5◦:

2. fit with edge angle=−59◦:

1

Figure 6: TRANSOPTR envelopes for different (simu-
lated) cyclotron magnet edge angles, compared with mea-
sured beam profiles

angular and sector dipole shapes and does not allow an ar-
bitrary edge angle to be specified.

To simulate the −68.5◦ exit edge angle we used a rect-
angular bend displaced from the reference path and rotated
(Figure 7) so that protons start at the “side” of the mag-
net and exit at the appropriate angle from the “end” of the
magnet, where the fringe field is modelled by G4Beamline.

Figure 7: Rotated dipole and central proton trajectory in
G4Beamline

Although this scheme gave the correct nominal bending
and exit angles, we found that it could not reproduce or
even approximate the horizontal focusing and vertical de-
focusing as seen in the beam envelopes in the optical model
and supported by measurements. Although the fringe field
depth is an adjustable parameter in G4Beamline we did not
find that it was effective, either alone or in conjunction with
the dipole edge angle, for tuning the integrated effects of
the horizontal and vertical field components to obtain the
correct beam envelopes at the cyclotron exit.

This issue will require further study and possibly a dif-
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ferent approach to describing the dipole fringe fields. In
the meantime we opted to bypass these difficulties by us-
ing ACCSIM to track the ensemble from the foil to the cy-
clotron exit and then export the coordinates to G4Beamline.

VALIDATION WITH ACCSIM +
G4BEAMLINE

The simulation code ACCSIM combines matrix tracking
with some basic interactions in matter, including Coulomb
scattering, energy loss, and nuclear elastic scattering. No
secondaries from inelastic interactions are tracked, how-
ever virtually all of these from the foil will be outside the
acceptance of the beam line and in any case are unlikely to
survive the first arc and contribute to downstream losses.

With pre-tracking by ACCSIM, in which a conventional
edge-matrix represents the cyclotron edge focusing and
fringe field effects, the envelopes of the optical model could
be readily and precisely matched using the edge angle as
a tuning parameter. Without a foil, the simulation yielded
beam envelopes (RMS beam sizes) in good agreement (Fig-
ure 8, top) with those of the TRANSOPTR optical model.
Introducing the foil in ACCSIM, the resulting envelopes
(Figure 8, bottom) agreed very well with measurements,
generally within ∼1mm, and in some cases better than the
TRANSOPTR envelopes which are derived using an RMS
estimate of the emittance growth due to foil scattering.

In view of the sensitivity of the envelopes to initial con-
ditions, and the fact that Geant4 is actually integrating
through the dipole and quadrupole fields (with quadrupole
strengths identical to those of TRANSOPTR), the close
agreement of beam envelopes to the measured ones is re-
markable and provides a strong validation of the model
construction and of the precision of tracking in Geant4.

LOSSES DUE TO THE CYCLOTRON
EXTRACTION FOIL

In a 5 mg/cm2 extraction foil, Coulomb scattering is
by far the dominant process contributing to the initial loss
of protons in the cyclotron exit region and the first arc of
BL2A. There are much smaller contributions from nuclear
interactions, at about the 10−5 level, and from the very long
but very sparsely populated Landau tail of the ionization
energy loss distribution.

Most protons scattered to angles of more than a few mil-
liradians will be lost within the cyclotron tank itself or in
the exit horn region. Of the remainder initially accepted
into BL2A, most will be lost in the first arc. A long-
standing question is whether foil scattering plays any role
in the distributed low level losses downstream. Initially we
observed no losses at all when we introduced the extraction
foil, either in a full G4Beamline simulation (with exagger-
ated envelopes due to the aforementioned cyclotron field
problems) or in the ACCSIM-pre-tracked simulation. In
both cases, multiple-scattering models are used which are
not at their best in such thin layers of material.
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Figure 8: Beam envelopes from TRANSOPTR and
G4Beamline compared for unscattered beam (top) and
compared with measurements for scattered beam (bottom)

Scrutinizing the multiple scattering in ACCSIM, which
is based on Molière theory with subsequent corrections and
refinements, we observed that for this foil the unprojected
scattering angle cuts off at around 3 milliradians, whereas
the angular acceptance of the beam line with respect to the
foil is roughly 10mr. Neither model includes the H− strip-
ping, but the preliminary analysis of the foil in ACCSIM
indicated that protons traversing the entire foil thickness
would undergo an average of only ∼125 scatters.

Fortunately ACCSIM also has an iterated-single-scatter
model for use in very thin foils. This model revealed
the shortcomings of the multiple scattering treatment: for
statistics of 106 protons a fraction of 4.2×10−4 of the
beam was scattered into angles >3mr and extending out
to ∼100mr. This fraction is significant for a 70µA beam,
since previous experiments with BL2A[8] established that
mis-steering as little as 1 nA of beam at the first dipole
resulted in measurable losses at the downstream spill mon-
itors.

Accordingly we “forced” the single-scatter model in
ACCSIM and used it to generate a “halo beam” consist-
ing only of protons scattered beyond 3mr (Figure 9). This
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Figure 9: ACCSIM-generated halo beam around 3mr cone

ensemble was pre-tracked in ACCSIM to the cyclotron exit
and then tracked in G4Beamline. Geant4 by default tracks
all secondaries from the proton interactions, so we invoked
G4Beamline’s kill=1 option on all the beam line compo-
nents. This option stops protons as soon as they hit any-
thing, and thus indicates the location of primary particle
losses.
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Figure 10: Left: survival of 3mr halo primary protons (all
protons stopped on impact). Right: survival of charged par-
ticles (all secondaries tracked). Note lower axis limits.

As shown in Figure 10, about 65% of the halo beam is
transmitted by the beam line. Of the remainder, almost all
is lost within 12m, comprising the first arc and following
quadrupole doublet. However, about 1% of the halo sur-
vives until ∼45m where it is lost in the next 7m (Q13/14
region). This region is of interest due to somewhat ele-
vated routine spill monitor readings and radiation damage
observed on a flange seal near the final arc.

In a subsequent run all secondaries were tracked and the
resulting flux of charged particles (in principle detectable
by spill monitors) is shown in Figure 10. Although de-
tectable losses do propagate downstream, there is the indi-
cation of a “shadow” due to Q14 at 53m which may limit
the diagnostic capacity of spill monitor BSM32 at 56m.

These results represent the rather ideal situation of a
nearly perfectly-centered (within 0.5mm) beam line with
perfectly-aligned elements free of field errors. In geomet-
rical terms at least, this is the first tangible evidence that
extraction foil scattering may contribute to losses far down-
stream from the foil location.

CONCLUSIONS AND
ACKNOWLEDGMENTS

Using input methods similar to those of optics and track-
ing codes, BDSIM and G4Beamline fulfill the promise of
being able to develop a full-fledged Geant4 simulation of a
beam line without any need for C++ programming and with
much less effort. Although BDSIM was not completely
adaptable to our application, we expect that it will continue
to be developed and generalized, as it occupies a unique po-
sition with its combination of fast transfer maps in vacuum
with Geant4 tracking in materials.

In G4Beamline we were able to proceed to an accu-
rate model which was validated against measured beam
envelopes. Using an iterated single-scatter treatment of
Coulomb scattering in the cyclotron extraction foil, we
established a baseline loss rate due to foil scattering of
∼1.4x10−5 of the total beam intensity for a 5mg/cm2 foil.
The G4Beamline model will be used to explore other pos-
sible loss mechanisms, such as field and alignment errors,
as well as to study possible improvements in loss control,
detection and monitoring.

These programs are significant achievements in the quest
for realistic and predictive simulations of beam lines. We
would like to thank the authors of BDSIM (Graham Blair,
Ilya Agapov, Steve Malton, Lawrence Deacon) and the au-
thor of G4Beamline (Tom Roberts) for sharing their work
and for answering many email queries as well as providing
indispensable guidance and advice.
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Abstract 

During the last year several numerical investigations 
have been started at GSI in order to improve the 
performance of the linear accelerator facility. The main 
activities regard the upgrade of the high current 
UNILAC accelerator including the severe upgrade of 
the HSI injector, the HITRAP decelerator and, in the 
frame of the future FAIR project, the development of 
the new dedicated proton linac. End to end beam 
dynamics simulations are a powerful tool concerning 
the machine design, commissioning and optimization. 
Particle distributions, generated from beam emittance 
measurements, are transferred through the whole chain 
of accelerating structures and beam transport lines. 
Detailed calculations of space charge effects as well as 
external and measured mapping of the electromagnetic 
fields are used to provide the most reliable results. The 
paper presents a general overview of all activities 
performed at GSI concerning the linear accelerator 
complex. 

INTRODUCTION 
The scientific program at FAIR requires a sever 

upgrade of the existing GSI linear accelerator complex 
in terms of beam brilliance and absolute beam current.  
To fulfill the experimental heavy ion requirements the 
UNILAC must provide up to 3.3 x 1011

 U28+particles 
within macropulses of 100 μs long [1].  At the final 
energy of 11.4 MeV/u the beam will be injected into 
the SIS18 with a repetition rate up to 4 Hz. 

 
Fig.1: The present linear accelerator complex at GSI. 
 
On the other side, FAIR will provide up to                    

7 x 1010 p-bar/h which, taking into account the 
antiproton production and cooling rate implies a 
primary proton beam of 2 1016 p/h. This intensity is far 
beyond the capabilities of the existing UNILAC and, 
for that reason, a new dedicated proton injector has to 
be built [2]. 

In parallel, activities on linear accelerators at GSI are 
not only focused on the FAIR project. Recently, in the 
frame of the atomic physics HITRAP project [3], a 

4.00 Mev/u Ni28+ beam coming from the ESR was 
decelerated to 6 keV/u making available high charged 
and cooled beams for trapping experiments. 
 
UNILAC UPGRADE 

The next upgrade activities are mainly focused on 
the low energy front end which represented a 
bottleneck concerning operation with higher brilliance. 
The High Current Injector [4] consists of a 36 MHz IH-
RFQ from 2.2 keV/u to 120 keV/u and a short 11 cell 
adapter RFQ called Super Lens. The following 
acceleration step is performed by two IH-DTL’s which 
deliver a 1.4 MeV/u beam. After the stripping in a 
supersonic gas jet, uranium beams with charge state of 
28+ are delivered to the Alvarez-DTL and accelerated 
to 11.4 MeV/u with minor losses.  
 
 Upgrades of the HSI 
 

The first upgrade of the HSI-RFQ was performed in 
2004 after five years of continuous operation. New 
electrodes were produced increasing the quality of 
surfaces and thus reducing the RF power consumptions 
from 650 kW to 380 kW. Additionally, the RFQ Input 
Radial Matcher (IRM) was redesigned to improve the 
beam transmission through the whole front-end system.  

DYNAMION calculations were performed using 
particles distributions generated by measured 
emittances and predicted an intensity gain of up to 15% 
for high current uranium beam (15 mA). Those 
simulations were later on perfectly confirmed by 
measurements [5].  
 

 
Fig.2: The HSI simulated performance before the 2009 
upgrade for different input current in comparison with 
the requirements for FAIR.   
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This first upgrade increased the measured 
transmission up to 55 % but, as Fig 2 shows, even in 
simulations it was not possible to match the current 
requirements of FAIR. For this reason, in 2009 a new 
design of the RFQ was investigated in order to increase 
the phase advance and the acceptance of the 
accelerating focusing channel [6]. The new electrode 
profile was designed with higher voltage, keeping the 
maximum field at the electrode surface and with the 
same total length of the previous design. To 
compensate the change in resonance frequency the 
carrier ring design was consequently modified as well.  
The Input Radial Matcher was also redesigned in order 
to improve the beam matching to the RFQ by means of 
the LEBT quadrupole.  

Beam dynamics in the beginning of the gentle 
buncher was optimized to provide for rapid and 
uniform (as possible) separatrix filling. To avoid an 
excessive RF-defocusing and a significant space charge 
influence, the modulation and the synchronous phase in 
the gentle buncher increase considerably slower 
compare to the existing RFQ-design. Dedicated code 
DESRFQ developed at ITEP, Moscow, was used to 
perform those studies. 

A comparison between the new and the old design of 
the HSI RFQ is summarized in Tab.1. 

 
Tab. 1: Comparison between the 2009 design and the 
old one of the    HSI-RFQ.  

 
Simulation Results 

Particle simulations were performed with 
DYNAMION including integrated external 3D 
mapping of the electromagnetic fields. Exact topology 
of the Super Lens was included into DYNAMION and 
the intrinsic 8-terms field calculator was compared 
with the external 3D field mapping generated with EM 
Studio. The same method was applied as well to 
simulations of the HSI-RFQ high energy end. In 
particular, the use of EM Studio allowed to reproduce 
the exact geometry of the rods end, including curvature 
and shape as well as the real topology of the end 
flange. This combination between the intrinsic Laplace 
solver of DYNAMION and the external mapping 
generated with EMS resulted in reliable beam 
dynamics simulations.  

 
 Fig.3: A detail of the modeling with EMS of the 

Super Lens RFQ. End flanges are not shown here but 
present in calculations. 

 
Fig.4 shows the calculated the beam transmission 

through the new RFQ as a function of input beam 
current when input emittance or brilliance are kept 
constant. At the FAIR requirements of 18 mA 
transmission of around 85 % at constant emittance can 
be reached while 78 % of the beam reaches the end if 
the brilliance is preserved. 
 

 
Fig.4: The transmission plot for the new HSI-RFQ 
when input emittance or brilliance are kept constant. 
 

Fig.5 shows a comparison between the old and the 
new design of the beam current inside a given 
emittance at exit of the RFQ: the requirements for 
FAIR are fulfilled within a reasonable emittance of 20 
mm mrad . Moreover, the behavior of the beam curve 
is a serious proof that the core of the beam remains 
well compact during the acceleration process. 

 
Fig.5 Beam current as function of the emittance for the 
old and the 2009 design. 

Parameter 2009 1999 
Voltage [kV] 155 125 
Avr. Radius [cm] 0.6 0.55-0.50-0.7 
Maximum Field [kV/cm] 312 318 
Min. Aperture [cm] 0.41 0.38 
Min Trans. σ [rad] 0.55 0.45 
Norm Trans Accep. [mm rad] 0.86 0.73 
Total Length [cm] 9217 9217 
No. of modulated cell 394 343 
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The new HSI RFQ has been commissioned in July 
with high current Argon beam. Experimental results 
are in agreement with the calculations performed with 
DYNAMION and a detailed comparison is in 
preparation 

 
The FAIR Proton Injector 
 A significant part of the scientific program at FAIR 

will be dedicated to antiproton physics. The 
acceleration chain for the production of the intense p-
bar beam is shown in Fig.6 and it starts with a 
dedicated proton linac. 

 
Fig.6: The FAIR accelerator chain showing the path 

for the production of cooled antiproton beams. 
 

Tab.2: The main parameter of the FAIR proton injector 

 
This new injector will be operated at 325 MHz and it 

has to provide a 35 mA beam pulse of 36 μs. The final 
energy is fixed at 70 MeV in order to avoid any jump 
in resonance frequency and to allow an efficient and 
fast cooling rate. The ion source will be an ECR 2.45 
GHz delivered by CEA, Saclay, and can provide 100 
mA of proton beam at the extraction energy of 95 keV.  
Afterwards a four rod RFQ designed by Frankfurt 
University will accelerate the beam to 3 MeV where 
the main linac begins. Even if 35 mA are required for 
the multiturn injection into the synchrotron, the design 
of the linac assumes higher current, up to 100 mA from 
the ion source. 

An example of two RFQ output distributions are 
shown in Fig.7 where 45 mA and 100 mA, 

respectively, are injected into an RFQ optimised for 45 
mA. As once can see there are no major differences 
between the two distributions, showing that the RFQ 
design is very robust against higher current intensity.  

 

 
Fig.7:  A 45 (top) and a 100 mA RFQ output 

distribution.  
 

Tab3.: RMS emittance for two RFQ output 
distributions at different current 

  45 mA  100 mA 
RMS ε norm hor 0.26 0.25 
RMS ε norm ver 0.26 0.25 
RMS ε norm Δφ ΔW 1.29 1.25 

 
After the RFQ the beam is matched into the main 

linac by mean of an independent phase buncher; the 
MEBT includes an XY steerer and a current 
transformer placed immediately after the RFQ. Two 
focusing elements placed in front and beyond the 
buncher, respectively, ensure the full transmission 
while the diagnostics is completed by a compact phase 
probe placed just in front the main linac. 

Status of the Project  
In the frame of FAIR the proton injector is well 

advanced. Agreement with CEA, Saclay, has been 
reached regarding the ion source while IAP Frankfurt 
has sent in production the second resonator of the DTL. 
The first 2.5 MW klystron from Toshiba was delivered 
in 2008 and, presently, the design of a high power RF 
test bench is in progress at GSI. Measurements on the 
first coupled CH are expected to be started in 2010. 

 
Beam Dynamics through the DTL 

 
The main linac is based on 12 CH cavities developed 

at Frankfurt University [7]. Those kind of cavities in 
combination with the KONUS beam dynamics allow 
an extremely efficient acceleration process in the low-
medium beta range. In order to reduce the RF 
requirements the 12 CH cavities are grouped in six 
independent coupled resonators. A 1:2 scaled model 
built at Frankfurt University [ref] has demonstrated the 
validity of this concept while construction of the FAIR 
second resonator is at the moment in preparation.  

Source H+, 95 keV, 100 mA 
LEBT (2 solenoids foc.) 95 keV, 100 mA 
RFQ (4-rod) 3 MeV, ε= 2 μm 
CH-DTL 325 MHz 
Current [mA] 
RF Pulse [μs] 
Beam Pulse [μs] 
Repetition Rate [Hz] 
Norm. Transv. Emitt. [μm] 
Relative Momentum Spread 
Length [m]  

70 MeV 
35 in operation 
70 
 36 
4 
< 2.8  
< 1 ‰ 
~ 23 

Total Length  [m] < 40 
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An extended diagnostics section is integrated into the 
DTL after the 3rd coupled module. This section will 
also include scrapers to dump of outer particles and 
keep the beam core as compact as possible. 

Fig.8 shows the general layout of the proton linac 
including an alternative design discussed later on 

. 

Fig.8: The general layout of the FAIR Proton injection 
showing the two options under discussion 

Fig.9 shows a comparison of the 99% beam 
envelopes for 45 and 100 mA, respectively. The design 
reveals to be very stable against current intensity 
variation and, even with quadrupoles optimized for the 
45 mA case,        100 mA are transported with less than 
1 % beam losses.  

Fig.9: 99 % beam envelopes for two different RFQ 
output distributions. On top, 45 mA and bottom 100 
mA 

Examples of the output distribution for those two 
cases are shown in Fig.10 while Tab.4 summarizes the 
100 % RMS at the output energy.  In both cases the 
emittance requirements for the multiturn injection into 
the SIS18 are fulfilled 

 

  
Fig.10: The transversal and longitudinal distribution 
for 45 mA (top) and 100 (bottom). 
Tab.4: The rms parameters as dependence of the input 
current at the output of the proton linac 

Parameter 45 mA 100 mA 
RMS ε norm X-X'  mm  mrad 0.40 0.383 
RMS ε normY-Y'   mm mrad 0.44 0.409 
RMS ε normΔΦ- ΔW keV/ ns 2.09 2.09 

Alternative Layout  
The use of the KONUS allows to build long 

accelerating sections without any focusing element. 
For the proton linac, this feature could be fully 
exploited in the second part of the DTL after the 
diagnostics section where the space charge effect is 
already strongly reduced. The coupled cavity could be 
replaced by long standard CH-DTL leading to a 
general simplification of the mechanical design and to 
a reduction of the number of focusing elements. This 
concept is under investigation at GSI and preliminary 
results with a beam current of 45 mA are promising 
[8]. As one can see from Fig.11 and Fig.12, the beam is 
full transmitted through the long sections and the 
output distribution and RMS emittances are 
comparable with the original design. At present further 
investigations are in progress in order to test the 
robustness of this solution with higher current and 
against possible misalignments and operational errors.  

 

Fig.11: 99% beam envelopes for the alternative design 

 
Fig.12: The output distributions for the alternative 
design for an RFQ output current of 45 mA. 
 
Tab5: Rms emittance for the alternative design at 45 
mA 

RMS ε norm X-X'  mm mrad 0.383 
RMS ε normY-Y'   mm mrad 0.409 
RMS ε normΔΦ- ΔW keV/ ns 2.09 

 
 
HITRAP 
In the frame of the atomic and nuclear physics 

program a new cooling trap called HITRAP, Heavy Ion 
TRAP, is under commissioning at GSI. The scientific 
program aims for investigations of high charged ions in 
the region of   Zα ≈ 1 where no perturbation method 
can be applied. The experimental area which can be 
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covered by HITRAP is wide and includes, among 
others, investigation of the g-factor of bound electrons 
and alpha particles, hyperfine and X ray spectroscopy, 
mass measurements and surface interactions. 

The general scheme of HITRAP is shown in Fig.13. 
A 4 MeV/u beam with q/A =1/3 covering 238U92+ is 
extracted by the ESR, bended by two dipole magnets, 
focused by a quadrupole duplet and decelerated to   
500 keV/u by a 108 MHz IH-DTL. A 4-rod RFQ 
performs the last stage of deceleration to 6 keV/u.  The 
phase and energy matching from the ESR to the IH is 
ensured by two independent bunchers resonating at 108 
and 216 MHz, respectively. 
 

 
Fig.13: The location of HITRAP at GSI and a detail 

of the decelerator complex after the ESR.  
 
Beam Dynamics and Ion Optic 
 
The starting point for the optics calculations was the 

extracted beam from the ESR. Concerning the 
matching the acceptance of the IH (2.2 and 2.3 mm 
mrad) was used even if the emittance of the ESR is 
expected to be smaller (by a factor two or more).     
Fig. 14 shows the beam envelopes, from the exit of the 
ESR to the IH entrance. 

The first 4 gap buncher accepts (into a single bucket) 
100° out of the cw beam corresponding to 28% of 
intensity. The following rebuncher, operating at double 
frequency, reduces further the phase spread to 10° 
before the injection into the IH. It's important to remark 
that particles escaping the first RF bucket are not 
necessarily lost but will be transported without full 
deceleration through the IH. 

The IH consists of 25 gaps for a total voltage of 
11.15 MV. The focusing scheme is based on a KONUS 
lattice with an internal triplet placed behind 15 gaps.  

 
Fig.14: The beam envelopes between the ESR and the 
IH.  
 

The total length is around 4 meter and the power 
consumption is kept lower than 180 kW.  Fig.15 shows 
the beam distribution for a single RF bucket at the 
beginning of the deceleration line and at 500 keV/u 
after the IH. 
 

 
Fig.15: The beam distribution at the beginning of the 
decelerating line, namely in front of the first buncher 
(top), and after the IH (bottom) within a single RF 
bucket. 

 
The design of the 4 rod-RFQ is modelled along the 

GSI HLI RFQ, which serves as injector for moderate 
charge states (q/A > 1/9). The HITRAP decelerator is 
designed for high charge states of q/A> 1/3, which 
reduces the RF-power requirements and allows for a 
shorter structure. The RF consumption is 80 kW and 
the total length is around 1.9 m with an aperture of      
4 mm in radius. 

The crucial RFQ-design parameters are the 
longitudinal emittance, the energy spread, and the 
phase width of the beam. The required output 
emittance restricts the possible input phase width and 
energy spread. A value of an energy spread of 
∆W/W=1% at the RFQ-high energy input would 
translate to 66% at the low energy end.  

The developed deceleration scheme reduces the   
output-energy spread to ± 6%. With an input-phase 
width of ∆φ < 20° and asynchronous deceleration, the 
beam pulse can be kept compact with reduced phase 
oscillations. An energy spread of 2% is the upper 
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useful limit while, for the radial emittance, a value of 
0.24 π mm mrad has been used for input. 
 

Fig.16: Particles distribution at the exit of the RFQ 
assuming an energy spread of 2 % as input parameters 
 
Presently, the HITRAP facility is under commissioning 
at GSI [9] and in early 2009 6 keV/u Ni28+ particles 
were detected at the end of the RFQ.  

 
MILESTONES AND CONCLUSIONS 
 
At GSI several activities run in parallel concerning 

the linear accelerator complex. The high intensity beam 
requirement of the FAIR project was the main 
motivation for a new concept design of the HSI RFQ 
which has been successfully commissioned in 2009. 
This new design was accomplished by an intense 
simulation campaign. Particle distributions were 
generated by measured emittances and external 3D 
mapping reproducing the exact topology of the 
accelerator components were integrated into the 
simulations code.  

The R&D activities for FAIR are not limited to the 
existing facility since the antiproton program requires a 
complete new dedicated proton injector. Beam 
dynamics simulations are in progress applying different 
beam current and, concerning the structure 
development, the first coupled CH cavity is under 
fabrication. The first RF klystron has already been 
delivered and a high power test bench is going to be 
prepared at GSI. 

Beside the FAIR project, recently a decelerating 
beam line called HITRAP has been commissioned 
delivering highly charged ions for trapping 
experiments. 
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APERTURE AND BEAM-TUBE MODELS FOR ACCELERATOR
MAGNETS∗
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Abstract

Standard 2D magnetodynamic finite-element models for
accelerator magnets are accomplished by dedicated mod-
els for the aperture and for the beam-tube end parts. The
resulting hybrid and coupled models necessitate the appli-
cation of specialized algebraic solution techniques in order
to preserve the computational efficiency, i.e., matrix-free
iterative solvers combined with fast Fourier transforms and
Schwarz-type preconditioners.

INTRODUCTION

3D finite-element (FE) models of accelerator magnets
may become prohibitive when transient phenomena at
small temporal and spatial scale should be resolved, i.e.,
eddy current effects in windings, beam tube and yoke or
filamentary and coupling effects in superconductive cables.
Simulation times of several hours have been reported. As
a consequence, such calculations are only feasible at later
stages of the design process, when geometry, materials and
operating conditions are more or less fixed. At an earlier
design stage, parameter variations and optimization steps
are carried out, almost exclusively on the basis of semi-
analytical formulae. It makes sense to support this design
phase by FE models that succeed in attaining lower but ac-
ceptable accuracies within substantially smaller simulation
times, compared to transient 3D simulation [3]. Efforts in
the direction of this goal consider 2D FE models where
extensions are implemented that deal with typical 3D ef-
fects and model some small-scale effects in a problem spe-
cific way. In this paper, two extensions for 2D and 3D FE
models are proposed. The high-resolution aperture model
and the beam-tube end model developed here, both signif-
icantly increase the modeling power for superconductive
magnets and succeed in keeping the computation time for
transient 2D FE simulation as low as a few minutes.

APERTURE MODEL

Domain Decomposition and Mixed Formulation

The magnet geometry is divided in two parts: an outer
domain Ω1 including the windings and yoke and a cylindri-
cal inner domain Ω2 in the magnet aperture (Fig. 1). The

∗This work was supported by the Helmholtzzentrum für Schwerionen-
forschung GmbH (GSI), Darmstadt and by the Katholieke Universiteit
Leuven under grant STRT1/09/041.

† herbert.degersem@kuleuven-kortrijk.be

Ù1

Ù2

Ã12

Figure 1: Magnet model: FE mesh for the outer part and
tensor-product grid for the aperture.

interface is denoted by Γ12 = Ω1 ∩Ω2. A mixed magneto-
quasistatic (MQS) formulation is applied:

∇×
(
ν∇× �A

)
+ σ

∂ �A

∂t
= �Js in Ω1 ; (1)

−∇ · (μ∇ψ) = 0 in Ω2 , (2)

where �A is the magnetic vector potential, ψ the magnetic
scalar potential, �Js the applied current density, μ the per-
meability, ν = 1/μ the reluctivity and σ the conductiv-
ity. The normal continuity of the magnetic flux density
�B = ∇× �A = −μ∇ψ and the tangential continuity of the
magnetic field strength �H = ν∇× �A = −∇ψ are enforced
at the interface Γ12. The domains are equipped with dif-
ferent formulations that are dual with respect to each other.
The MQS formulation in terms of �A is capable of consider-
ing the eddy current phenomena in the yoke, beam tube and
windings, at the expense of being a vectorial partial differ-
ential equation (PDE). On the contrary, the MQS formula-
tion in terms of ψ is static but is a scalar formulation. Such
so-called mixed formulations have been frequently used for
MQS simulation in the eighties, especially because of the
relatively small number of degrees of freedom which was
beneficial for the direct and Krylov-type solvers used at that
time [11]. A drawback of a mixed formulation is the fact
that the computed magnetic energy and power loss do not
converge monotonically with respect to the mesh size as is
the case for the non-mixed formulations. The motivation
for choosing a mixed formulation will become clear below.

Discretization and System Properties

�A is discretized in Ω1 by the standard lowest-order edge
elements �wj , whereas ψ is discretized in Ω2 by standard
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lowest-order nodal elements Nq:

�A =
∑

j

uj �wj in Ω1 ; ψ =
∑

q

vqNq in Ω2 . (3)

where the degrees of freedom (DoFs) for �A and ψ are
stored in the vectors u and v, respectively. The applica-
tion of the Ritz-Galerkin approach results in the coupled
system of equations[

K + M d
dt

B
BT −G

][
u
v

]
=

[
f
0

]
, (4)

further also denoted by Ax = b [1]. Eq. (4) is transferred
in frequency domain or discretized in time by any implicit
time-integration technique. For conciseness, this is not ex-
plicitly carried out in the formulae. The matrix entries are

Kij =
∫

Ω1

ν∇× �wj · ∇ × �wi dΩ ; (5)

Mij =
∫

Ω1

σ �wj · �wi dΩ ; (6)

Biq = −
∫

Γ12

(∇Nq × �wi) · d�Γ ; (7)

Gpq =
∫

Ω2

μ∇Nq · ∇Np dΩ ; (8)

fi =
∫

Ω1

�Js · �wi dΩ . (9)

The matrices K and M are both sparse, symmetric and pos-
itive semi-definite. The zero eigenvalues of K are related
to the undetermined gradient fields, whereas the zero eigen-
values of M are related to the non-conductive model parts.
The MQS formulation in terms of the magnetic scalar po-
tential leads to a sparse, symmetric, positive definite system
matrix G. The mixed system (4) is sparse, symmetric and
indefinite. The indefiniteness is related to the mixed char-
acter of the formulation. If the inverse of G can be obtained
or applied in a cheap way, the possibility exists to turn over
to the Schur complement system⎛

⎜⎜⎝K + M
d
dt

+ BG−1BT

︸ ︷︷ ︸
S

⎞
⎟⎟⎠u = f . (10)

The Schur complement matrix S is symmetric and positive
semi-definite. S contains large dense blocks due to G−1.
Its application in the form of (10) is therefore substantially

more expensive than the application of K + M d
dt

. The
sparsity structure of the Schur complement system is the
same as for a FE, boundary-element (BE) coupled formu-
lation where the normal derivatives are eliminated [8].

The mixed system can be solved by the Minimal Resid-
ual (MINRES) method [10]. MINRES requires a positive
semi-definite preconditioner. As a first choice,

Ã−1

1
=

[
L̃−1 0
0 G̃−1

]
(11)

is proposed. Here, L̃−1 denote any possible positive semi-
definite approximation to (K + M d

dt
)−1 such as, e.g.,

an Incomplete Cholesky (IC) preconditioner or Algebraic
Multigrid (AMG) approach. As a second diagonal block,
an operator G̃−1 is used as an approximation to G−1.
It has been shown that the convergence of the MINRES
method with this preconditioner is not optimal, even if no
approximations are used for the diagonal blocks. Better is

Ã−1

2
=

[
S̃−1 0
0 G̃−1

]
(12)

where S̃−1 is an approximation to the inverse of S. If no
approximations are introduced, this preconditioner causes
the MINRES algorithm to converge in exactly 2 iteration
steps. The construction of an approximation to S is not
trivial. The additive Schwarz-type preconditioner

S̃−1

2
=

(
K + M

d
dt

)−1

+ BGB−1 (13)

is known to be a simple and effective possibility [12]. Al-
ternatively, it is possible to solve (10) by the Conjugate
Gradient (CG) method. As preconditioners, either the ap-
proximation S̃−1

1
= L̃−1 or the approximate inverse S̃−1

2

to the Schur complement system can be used.

Spectral Resolution and System Representation

The spatial resolution in the aperture can be improved
considerably by choosing an orthogonal set of basis func-
tions instead of the set of standard lowest order nodal
shape functions {Nq}. The cylindrical aperture domain
Ω2 = [−R, R] × [0, π[ × [−Z, Z] has a radius R and a
length 2Z centered with respect to the z = 0 plane. In
the spectral-element (SE) approach, basis functions of the
form

Mq(r, θ, z) = Tq1

( r

R

)
e−jλθ Tq2

( z

Z

)
(14)

are considered at a cylindrical tensor-product grid (Fig. 1).
In the r- and the z-direction, the shape functions vary as
Chebyshev functions, whereas in the θ-direction harmonic
functions are used. To avoid a clustering of collocation
points at the r = 0 axis, the r-coordinate is taken from
−R to R, the θ-coordinate is restricted to [0, π[ and an even
number of collocation points is used in the r-direction. The
matrices B = ZT QT D̂ and G = DHμD are available
in factorized form. Here, Z interpolates the fictitious in-
terface currents between the spectral collocation points of
the tensor-product grid and the edges of the FE mesh, Q
selects the spectral DoFs at the collocation points at the in-
terface, D = [ Dr Dθ Dz ]H and Dr, Dθ and Dz are
the spectral differentiation matrices along r, θ and z. The
particular choice of the collocation points allow to invoke
each of these differentiation matrices by means of the Fast
Fourier Transform (FFT):

Dr = Dθ = Dz = F−1UF , (15)
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where U is a diagonal matrix [13]. The spectral differen-
tiation matrices are fully populated. The operator Q can
be represented by an index set. The interpolation operator
Z is stored in a sparse matrix format. The coupling ma-
trix B has a sparse row structure related to the FE DoFs
and a dense column structure related to the SE DoFs. The
Schur-complemented FE-SE system is comparable to a FE-
BE coupled system [8] and equivalent to the FE system in
which the SE domains are considered as specialized Robin-
type boundary conditions applied at Γ12 [2].

A SE discretization is known to attain an exponential
convergence of the discretization error with respect to the
number of DoFs. Because a part of the model remains dis-
cretized by FEs, the convergence of the overall model is
limited to the convergence of the FE part. Nevertheless,
the SE discretization of the aperture allows to considerably
reduce the number of DoFs required to sufficiently resolve
the aperture field.

During the system-solving phase, most of the computa-
tion time is spent to the multiplication by the system matrix
and the application of the preconditioner. Commonly, the
matrices A and S are stored in a compressed way. The
preconditioner steps are available by operations on the fly
making use of the stored system matrices. This may be-
come inefficient for the coupled FE-SE matrices which are
substantially more dense than their pure FE counterparts.
The use of properly located collocation points allows for
the use of FFTs. Then, only the operations K + M d

dt
,

L̃−1 and Z are carried out using a sparse storage system.
Q corresponds to selecting a subset of the DoFs of v us-
ing an index set. Now, the matrices A and S are no longer
given explicitly and pure algebraic preconditioning tech-
niques such as e.g. IC, are no longer available. The pre-
conditioners Ã−1

1
, Ã−1

2
, L̃−1 and S̃−1

2
, however, remain

available.
The expected computational effort of a pure FE model

is of order O(n3), where n is a measure for the number of
DoFs counted along one spatial direction. This complexity
is related to the application of K, M and L̃−1. The applica-
tion of 2D FFTs scales like O(n2 ln n) which is asymptot-
ically below O(n3). Hence, the complexity of the coupled
FE-SE model is expected to be comparable to the complex-
ity of a pure FE model. This is no longer true when the
coupling matrices B and spectral system matrix G are rep-
resented by algebraic matrices. The full population of B
and G causes their application to scale by O(n4), which
would dominate the overall calculation.

Numerical Experiments

The different iterative solution techniques are compared
for a 2D quarter model of a superconductive dipole mag-
net. The iron yoke is substantially saturated. The yoke
and the windings are discretized by FEs where the aperture
is discretized by the spectral basis functions Mq(r, θ) =
Tq1

(
r
R

)
e−jλθ. The SE technique supports an easy calcu-

lation of the harmonic field coefficients that determine the

Table 1: Computation times (in seconds) for the proposed
iterative solution methods for the mixed FE-SE system and
the Schur complement system using the compressed row
storage (CRS) form or the matrix-free solution techniques
techniques; comparison with respect to a homogeneous
FE model used as a reference (indicated by the subscript
”ref”); approximation to FE system matrices are created
using the IC technique without fill-in.

model system solver precond. CRS matrix-free
FE Lref CG L̃−1

ref 27.23 -
FE-SE A MINRES Ã−1

1 9.06 11.02
FE-SE A MINRES Ã−1

2 8.55 7.56
FE-SE S CG S̃−1

1 78.34 5.58
FE-SE S CG S̃−1

2 55.34 3.25

quality of the accelerator magnet.
As an approximation to the FE system part, an IC factor-

ization without fill-in is used. The performance of the pro-
posed solution techniques is compared in Table 1, both in
the case where the system is assembled into a compressed
row storage (CRS) format and used in matrix form as in the
case where matrix-free techniques and FFTs are applied.
The experiments clearly illustrate the computational effi-
ciency of the matrix-free techniques. The FFTs solving the
SE subproblem are responsible for less than 10% of the
overall computation time. The experiments show that solv-
ing the positive semi-definite Schur complement system is
more efficient than solving the mixed system, as long as
matrix-free techniques are used. The numerical tests in-
dicate the advantage of a additive-Schwarz-type precon-
ditioner over a preconditioner only accounting for the FE
part. When carried out using matrix-free techniques, all
hybrid FE-SE discretizations outperform the model with a
pure FE discretization attaining a comparable spatial reso-
lution.

BEAM-TUBE MODEL

Beam-Tube Modeling

The beam tube in an accelerator magnet consists of a
thin pipe with a circular or elliptical cross-section. The
beam tube should support the inner vacuum and is com-
monly made of conductive material in order to carry a blind
current. During the ramping of the magnet, eddy currents
are generated in the beam tube. These currents cause addi-
tional losses and may deteriorate the quality of the aperture
field. The calculation of these eddy currents necessitates
transient simulation, which is time consuming, particularly
in combination with 3D FE models [5]. Explicitly resolv-
ing the beam-tube thickness is commonly avoided in order
to restrict the model size. Moreover, as accelerator mag-
nets exhibit a translational symmetry, relevant simulation
results can already be generated on the basis of 2D FE mod-
els. A 2D model is not capable of modeling the closing
paths of the beam-tube eddy currents at the front and back
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Figure 2: Accelerator magnet with beam tube: computa-
tional domain and magnetic flux lines.

side of the accelerator magnet. These closing paths are ex-
pected to have a significant influence on the distribution
of eddy currents along the circumference of the beam-tube
cross-section. This section is dedicated to the addition of a
model part accounting for these closing paths.

2D FE Model and Thin-Sheet Approximation

The central part Ω1 of the accelerator magnet is transla-
tionally symmetric along the z-direction: Ω1 = Γ1 × 	z

where Γ1 is the cross-section and 	z is the length along the
z-direction (Fig. 2). The translational symmetry of Ω1 is
reflected in the choice of the edge shape functions �w j for
discretizing the magnetic vector potential �A:

�wj =
Nj(x, y)

	z
�ez (16)

where Nj(x, y) are lowest-order nodal shape functions de-
fined at a triangularization of Γ1 and �ez is a unit vector in
the z-direction.

The thickness δ of the beam tube is much smaller than
the skin depth

δskin =
√

2
ωσtubeμtube

. (17)

related to the beam-tube conductivity σtube and permeabil-
ity μtube and expected for the relevant angular frequencies
ω. This allows to assume a current density which is homo-
geneously distributed along the beam-tube thickness. The
cross-section of the beam tube with Γ1 can be represented
by Υtube× [− δ

2
, δ

2
] where Υtube is a contour in Γ1 (Fig. 2).

The beam-tube cross-section is not explicitly resolved by
the mesh. The eddy currents in the beam tube are included
by augmenting the conductance matrix Mσ with the line

integrals

Mthin

σ,ij =
∫

Υtube

σtube �wj · �wiδ	z ds (18)

where σtube is the conductivity of the beam-tube material.
This approach corresponds to the most simple form of a
thin-sheet model [9, 7]. In this paper, this 2D thin-sheet
model is accomplished by an additional treatment for mod-
eling the closing paths of the beam-tube current.

End Effects

End effects are the effects due to the broken translational
symmetry at the front and rear sides of the model. In the
center of the magnet, the beam-tube eddy currents are per-
pendicular to the magnet cross-section. At the end parts,
some of the current lines may proceed to the next magnet
and other current lines may close in a more or less circular
path on the surface of the beam tube. The fact that the dif-
ferent closing paths feature a different impedance, disturbs
the translational symmetry of the model. The constructed
2D FE model considers a perfectly conductive connection
at the front and rear end. Several approaches exist to ac-
count for the additional impedances of the closing paths,
while sticking to a 2D model. A common approximation is
to consider the beam-tube parts exceeding the magnetically
active part by decreasing the conductivity of the beam-tube
material, i.e.,

σtube → σtube

	z + 	end

	z
(19)

where 	end denotes the length of the outside beam-tube
parts. This approach does not account for the consider-
ably longer closing paths of the beam-tube currents at the
magnetic symmetry plane compared to those at the electric
symmetry plane (Fig. 2).

Beam-Tube End Model

Besides the magnetically active model part Ω1 = Γ1 ⊗
[0, za], an additional domain Ω3 = Γ3 ⊗ [− δ

2
, + δ

2
] is con-

sidered (Fig. 2). Here, Γ3 = Υtube ⊗ [za, zb] is the beam-
tube surface outside the active magnet part. By construc-
tion, the intersection of both domain parts is Ω1 ∩ Ω3 =
Υtube ⊗ [− δ

2
, + δ

2
]. The coupled formulation reads

∇×
(
ν∇× �A

)
+ σ

∂ �A

∂t
+ σ∇ϕ = �Js in Ω1 ;(20)

−∇ ·
(

σ
∂ �A

∂t

)
−∇ · (σ∇ϕ) = 0 in Ω3 ,(21)

where ϕ is the electric scalar potential. In Ω1, the elec-
tromagnetic field is computed by (20), incorporating both
inductive and resistive field effects. In Ω3, the inductive ef-
fects are neglected with respect to the resistive effects. This
allows to use the stationary-current formulation.
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Discretization

The applied FE shape functions are

�wj(x, y, z) = Nj(x,y)

za
�ez in Ω1 ;

Pq̃(s, z) = Mq̃(s, za) z
z1

in Ω1 ;
Pq(s, z) = Mq(s, z) in Ω2

(22)

where Nj(x, y) and Mq(s, z) are nodal shape functions de-
fined on triangulations of Γ1 and Γ3, respectively (Fig. 2).
The indices i, j ∈ I1, p, q ∈ I3 and p̃, q̃ ∈ I1 ∩ I3 and the
index sets I1, I3 and I1 ∩ I3 refer to the nodes of Γ1, Γ3

and Υtube = Γ1 ∩ Γ3, respectively. The potentials are{
�A =

∑
j uj �wj

ϕ =
∑

q̃ vq̃Pq̃
in Ω1 ; (23)

{
�A = 0
ϕ =

∑
q vqPq

in Ω3 , (24)

where the DoFs are gathered in the algebraic vectors u and
v. The DoFs vq̃ are a subset of all DoFs vq. They share the
shape functions Pq̃ defined in Ω1 and Pq defined in Ω3 and
therefore enforce the continuity of ϕ at Υ tube.

The FE shape functions serve for discretizing (20) and
(21) at Ω1 and Ω3, respectively. Eq. (20) is weighted by �wi

whereas (21) is weighted by the functions Pq . The resulting
coupled system of equations reads[

K + M d
dt

BT

B d
dt

G

][
u
v

]
=

[
f
0

]
(25)

where

Ki,j =
∫

Γ1

(
νy

za

∂Ni

∂x

∂Nj

∂x
+

νx

za

∂Ni

∂y

∂Nj

∂y

)
dA ;

Mi,j =
∫

Γ1

σ

za
NiNj dA ; (26)

fi =
∫

Γ1

Js,zNi dA ; (27)

Bp̃,j =
∫

Υtube

σ

za
Mp̃Njδ ds ; (28)

G =
∫

Γ3

σ∇Γ3Mp · ∇Γ3Mqδ dA . (29)

Here, ∇Γ3 denotes a gradient operator accounting for the
curvature of Γ3. This system is symmetric and positive
definite and can be solved by a preconditioned CG method.

Also here, it is possible to eliminate the additional de-
grees of freedom v related to ϕ from the system. The re-
sulting Schur complement system reads

Ku +
(
M − BT G−1B

) du
dt

= f . (30)

The matrix Mschur = M − BT G−1B can be interpreted
as a modified FE conductance matrix accounting for the
closing paths outside of the 2D cross-sectional model. It is
easily shown that Mschur is symmetric and positive semi-
definite, similar to M. Solving (30) can be done by a pre-
conditioned CG method, but may be computationally ex-
pensive because of the dense blocks BT G−1B.

SIMULATION RESULTS

The additional aperture and beam-tube end model parts
are applied in combination with a transient simulation of
the SIS-100 superconductive magnet which is part of the
Facility for Antiproton and Ion Research (FAIR) project of
the Helmholtzzentrum für Schwerionenforschung (GSI) in
Darmstadt, Germany [6]. The eddy-current losses in the
yoke have already been reported in e.g. [4]. 3D simu-
lations for the beam-tube losses have been studied in [5].
This paper is concerned with 2D simulations providing a
comparable accuracy at a significant lower computational
costs.

The elliptical cross-section of the beam-tube do-
main is parametrized by (ξ, η, z), i.e., (x, y, z) =
(ρ cosh ξ cos η, ρ sinh ξ sin η, z). The corresponding
Laplace-Beltrami operator is

∇2

Ω3
=

1
ρ2

(
cosh2 ξ − cos2 η

) ∂2ϕ

∂η2
+

∂2ϕ

∂z2
. (31)

The discretization of the model is carried out as described
above. The duty cycle of magnet operations is shown in
Fig. 3a. During the ramping of the aperture field, eddy cur-
rents are induced in the beam tube. The final mesh ob-
tained after a few adaptive mesh refinement steps as well
as the magnetic flux lines are shown in Fig. 3d. Fig. 3e
and Fig. 3f compare the equipotential lines for the elec-
tric scalar potential ϕ and the arrows for the electric field
strength for the connected and unconnected cases, respec-
tively. The figures correspond to the coordinate system
(ξ, z) and show a flat projection of the beam-tube surface
seen from above. The top side of the figure corresponds to
the interface Υtube between both model parts. The left and
right sides fall together with the magnetic symmetry plane.
The vertical center line falls together with the electric sym-
metry plane. The bottom side of the figure corresponds
to the connection of the beam tube to the next-in-line ac-
celerator component. The closing paths of the beam-tube
currents outside the magnetically active part depend on the
fact whether an electric connection exists to the following
component of not (compare Fig. 3e to Fig. 3f). The influ-
ence of this connection seems to be negligible. Neverthe-
less, the difference between the results for the model with
perfectly conductive front and rear planes and the results
for the model with the additional beam-tube end model, are
significant, which indicates the relevance of the beam-tube
end model. The double 2D model is substantially more
efficient than a full 3D model. Therefore, the computa-
tional resources can be spent to achieve a finer resolution
in the cross-sectional plane, e.g. to tackle the severe fer-
romagnetic saturation of the magnet yoke (Fig. 3d). The
beam-tube losses for the duty cycle of Fig. 3a are shown
in Fig. 3b. The dependence of the losses on time is mostly
constant because the aperture field is ramped at a constant
rate. Due to the saturation in the middle of the duty cycle,
the magnetic flux density does not increase further at linear
rate, which explains the slightly smaller beam-tube losses.

TH4IOPK03 Proceedings of ICAP09, San Francisco, CA

Superconducting Magnets

206



(a)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time (s)

without beam tube

elliptical beam tube 0.3 mm

elliptical beam tube 0.5 mm

a
p

e
rt

u
re

m
a

in
fi
e

ld
(T

)

(b)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time (s)

elliptical beam tube 0.3 mm

elliptical beam tube 0.5 mm

lo
s
s

p
o
w

e
r

(W
)

(c)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

-4

time (s)

without beam tube

elliptical beam tube 0.3 mm

elliptical beam tube 0.5 mm

re
la

ti
v
e

3
rd

h
a
rm

o
n
ic

n
o
rm

a
l
c
o
m

p
o
n
e
n
t

(d) (e) r (m)θ

beam tube

0 0.02 0.04 0.06 0.08 0.1 0.12

0

0.02

0.04

0.06

0.08

0.1

z
(m

)

(f) r (m)θ
0 0.02 0.04 0.06 0.08 0.1 0.12

0

0.02

0.04

0.06

0.08

0.1

z
(m

)

beam tube

Figure 3: Transient simulation results for the SIS-100 magnet: (a) magnetic flux density in the aperture; (b) power loss;
(c) sextupole field component; (d) mesh and magnetic flux lines at maximal aperture field; (e-f) distribution of the current
on the beam-tube end surface with (e) and without (f) electric connection to the next magnet.

The beam-tube eddy currents have a disadvantageous ef-
fect on the quality of the aperture field as is clear for the
sextupole component from Fig. 3c.

CONCLUSION

A cheap transient 2D FE model for accelerator magnets
becomes valuable by increasing the resolution of the aper-
ture by a SE discretization and by including end effects in
the beam tube by an additional 2D model. The relevance
of this technique is given by the fact that the overall tran-
sient simulation only takes a few minutes of calculation
time and, hence, can be inserted in a flexible design pro-
cess.
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Abstract

The Vlasov equation can describe the evolution of a par-
ticle density under the effects of electromagnetic fields and
thus it is possible to describe the evolution of a charged
particle beam within an accelerator beam line. The Vlasov
equation forms a partial differential equation in a 6D phase
space witch renders it very expensive if it is solved via clas-
sical methods. A more efficient approach consists in rep-
resenting the particle distribution function by a discrete set
of characteristic moments. For each moment a time evo-
lution equation can be stated. These ordinary differential
equations can then be integrated efficiently by means of nu-
merical methods if all acting forces together with a proper
initial condition are given. The beam dynamics simulation
tool V-Code has been implemented at TEMF on the basis of
the moment approach. In this paper the numerical model,
main features and designated use cases of the V-Code will
be presented.

INTRODUCTION

The distribution of particles in the 6-dimensional (6D)
phase space can be described by a density distribution func-
tion f(�r, �p, τ) with space coordinates �r = (x, y, z), nor-
malized momentum �p = (px, py, pz) and equivalent time
τ = c · t. Their evolution in the phase space can then be
expressed by the Vlasov equation

∂f

∂τ
+

∂f

∂�r
· �p

γ
+

∂f

∂�p
·

�F

m0c2
= 0 (1)

where γ represents the relativistic factor, �F the applied
forces, m0 the particles rest mass and c the speed of light
in free space.
Equation (1) is applicable for any forces �F with slow vari-
ation in space [2]. Coulomb forces within an charged par-
ticle beam as well as forces from external electromagnetic
fields meet this condition. Thus, the Vlasov equation is ap-
plicable for beam dynamics simulations of charged particle
beams in accelerators.
It is very expensive to solve such a partial differential equa-
tion via classic numerical methods for a time varying 6D
density distribution function.

∗Work supported by DFG through SFB 634.
∗∗franke@temf.tu-darmstadt.de

MOMENT APPROACH

A more efficient approach is to consider a discrete set of
characteristic moments of the particle distribution function
instead of the function itself [3]. Following this approach
the problem can be reduced to a set of ordinary differen-
tial equations which can be evaluated by means of standard
time integration methods.

Moment Definition

The classical raw moments <μ> are obtained from the
distribution function f by a weighted integration over the
whole phase space Ω

<μ> =
∫

Ω

μ f(�r, �p, τ) dΩ. (2)

Here, the normalized density distribution function to ensure

1 != < 1 > =
∫

Ω

f(�r ) dΩ (3)

has to be applied for proper algebraic relations.

A numerically advantageous choice of moments witch
ultimately allows the determination of the overall position
and the overall momentum of a particle distribution is
given by the first order raw moments

μ ∈ {x, y, z, px, py, pz} (4)

in Cartesian coordinates.

By choosing the higher order moments in a central-
ized notation

μ ∈ {(x−<x>)l1 · . . . · (pz−<pz>)l6 , . . .} (5)

one automatically obtains a translatory invariant descrip-
tion of the shape of the particle distribution function.
For example, a subset of the second order moments

σx
2 =<(x−<x>)2 >

σy
2 =<(y−<y>)2 >

σz
2 =<(z−<z>)2 >

then identify the important variances of the underlying par-
ticle distribution.
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Moment Evolution

The time evolution of the moment parameters can be ex-
pressed as follows:

∂ <μ>

∂τ
=

∂

∂τ

∫
μf dΩ =

∫
(f

∂μ

∂τ
+ μ

∂f

∂τ
) dΩ. (6)

Here, the Vlasov equation can be used to completely elim-
inate the time derivative of the distribution function and
substitute it with a spatial expression instead:

∂f

∂τ
= −(

∂f

∂�r
· �p

γ
+

∂f

∂�p
·

�F

m0c2
). (7)

Further, the time derivative of the moment parameter can
be reformulated like

∂μ

∂τ
=

∂μ

∂ <�r>

∂ <�r>

∂τ
+

∂μ

∂ <�p>

∂ <�p>

∂τ
. (8)

Inserting (7) and (8) in equation (6) and applying a partial
integration together with the moment definition (2) allows
to state the following fundamental time evolution equation

∂ <μ>

∂τ
= <

∂μ

∂ <�r>
><

�p

γ
> + <

∂μ

∂ <�p>
><

�F

m0c2
>

+ <
∂μ

∂�r

�p

γ
> + <

∂μ

∂�p

�F

m0c2
> (9)

In order to enable the evaluation of (9) by means of a time
integration method all arguments on the right hand side
have to be expressed in terms of time dependent bunch
parameters i.e. by moments of the settled form. This can
be achieved by Taylor expanding 1

γ and �F in an operation
point defined by the particle distribution and utilizing a
truncation according to the regarded order of moments.

If the energy spread is small compared to the mean
energy of the whole bunch a linear approximation of γ is
adequate

γ =
√

1 + px
2 + py

2 + pz
2 (10)

but in general higher order forms are possible.

The series expansion for internal space charge forces
and forces due to external fields can be performed inde-
pendently. External fields are observed in radio frequency
cavities (RF-cavities) or any kind of magnetic multipole
for example.

External Field Representation

From the Maxwell equations in frequency domain and
isotropic homogeneous linear media one can describe the
fields within RF-cavities in cylindrical coordinates:

Er =
−1

jωμε

∂Bϕ

∂z
, Br =

1
jω

∂Eϕ

∂z

Eϕ =
1

jωμε
(
∂Br

∂z
− ∂Bz

∂r
), Bϕ =

−1
jω

(
∂Er

∂z
− ∂Ez

∂r
)

Ez =
1

jωμε

1
r

∂(rBϕ)
∂r

, Bz =
−1
jω

1
r

∂(rEϕ)
∂r

.

In this formulation the field components Br, Eϕ, Bz are
completely decoupled from Er, Bϕ, Ez . Within acceler-
ating cavities it is appropriate to consider the latter ones
exclusively.
By defining �B = curl �A and applying Bernoulli’s separa-
tion approach

�A(r, z) = �ezAz(r, z) = �ez

∞∑
i=0

Ai(z)ri (11)

it is possible to describe Er, Bϕ, Ez solely with derivatives

of the z-component of the vector potential �A

Bϕ =−2A
2
· r − 4A

4
· r3 − 6A

6
· r5 − . . . (12)

Er =
1

jωμε

(
2A′

2
· r + 4A′

4
· r3 + 6A′

6
· r5 + . . .

)
(13)

Ez =
−1

jωμε

(
4A

2
+ 16A

4
· r2 + 36A

6
· r4 + . . .

)
. (14)

Evaluation on the axis (r = 0) results in

Ez|r=0
= −4 · A

2

jωμε
, (15)

which allows to determine the coefficients consecutively

A
2

= − 1

4
jωμε · Ez|r=0

(16)

A
4

= −1

16
· (A′′

2
+ ω2μεA

2

)
(17)

A
6

= −1

36
· (A′′

4
+ ω2μεA

4

)
(18)

... .

By successively inserting the coefficients in (12) - (14) one
obtains the field components in cylindrical coordinates in
terms of a series expansion

Bϕ = 1

2
jωμε Ez0

r− 1

16
jωμε

(
E′′

z0
+ω2με Ez0

)
r3+. . .

(19)

Er =− 1

2
E′

z0
r+ 1

16

(
E′′′

z0
+ ω2με E′

z0

)
r3+. . . (20)

Ez =Ez0
− 1

4

(
E′′

z0
+ω2με Ez0

)
r2+. . . . (21)

The function of this expansion constitute the paraxial
approximation of the field distribution within a RF-cavity.

For multipole magnets a similar approach to approx-
imate the three dimensional field distribution inside the
source free vacuum tube is possible. The Maxwell equa-
tions for magnetostatic problems in source free vacuum ar-
eas can be reduced to the following equations:

curl �B = 0 (22)

div �B = 0. (23)

This allows to state the scalar potential equation

ΔV = div grad V = 0 with �B = −grad V. (24)
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Applying Bernoulli’s separation approach together with a
series expansion for magnetic 2n poles leads to

Br =(rn−1 α(z) − (n + 2) rn+1 α′′(z)
4(n + 1)n

+ . . .) · sin(nϕ)

(25)

Bϕ =(rn−1 α(z) − rn+1 α′′(z)
4(n + 1)

+ . . .) · cos(nϕ) (26)

Bz =(
rn α′(z)

n
− rn+2 α′′′(z)

4(n + 1)n
+ . . .) · sin(nϕ) (27)

with the multipole strength α along the longitudinal axis z.

Force Calculation

The forces resulting from the external fields can now be
calculated by applying the Lorentz equation

�F = q( �E + �v × �B). (28)

As stated before the terms < �F > and <μ�F > in (9) have to
be expanded such that the resulting expression can be used
to setup a moment description form.
A multipole expansion splits the force naturally in constant,
linear, quadratic, etc. terms. By applying the moment defi-
nition (2) they can be expressed as follows:

• For constant forces Fν = a one gets
<Fν >= a and <μFν >= 0.

• For linear forces Fν = bμ one gets
<Fν >= 0 and <μFν >= bMμμ.

• For quadratic forces Fν = cμ2 one gets
<Fν >= cMμμ and <μFν >= cMμμμ

Hence, the order of the moments has to be at least one order
higher then that of the significant terms of the multipole
expansion.

Space Charge Forces

In order to determine the space charge forces a model to
reconstruct the charge distribution within the particle bunch
from the moment description is needed. The simplest ap-
proach is to assume a homogeneously charged ellipsoidal
bunch. Starting from the force acting between two particles
moving together with constant speed one gets the space
charge force F (�r) in an arbitrary point of observation �r
within the bunch by integrating over the bunch volume. In
order to avoid the singularities of the integrand in the prox-
imity of the point of observation one can omit a symmetric
area surrounding this point when integrating. Within this
area the space charge forces compensate themselves. Fol-
lowing this approach one gets

�F (�r) ≈ G

(
2γσz

σx + σy

)
· eQ0

γ2
· �r − 〈�r〉

VG
(29)

with

G (u) = (1 − exp (−u)) ·
⎛
⎝ 1 0 0

0 1 0
0 0 γ/u

⎞
⎠ . (30)

The moment approach is not limited to this linear space
charge model. The particle density reconstruction can also
be done by other techniques like moment matching or the
maximum entropy method.

Time Integration

The time evolution of all moments <μ> is specified by
the stated set of fundamental differential equations (9). By
defining a single comprehensive vector �ψ which includes
all considered moments one can state the new time depen-
dent variable �ψ(t). The whole physical model can then be
written in the standard mathematical form

�ψ′(t) = �φ(t, �ψ(t)), �ψ(t0) = �ψ0, (31)

where �ψ′ denotes the time derivative and �φ summarizes
all kinematic and kinetic effects of the forces mentioned
above. If an initial set of moments �ψ0 is provided the prob-
lem can be solved by standard time integration methods
[1].

Multi Ensembles

In order to reproduce more complex particle interactions
a multi ensemble model is possible. In this approach a par-
ticle distribution is represented by several sets of moments
each of them defining an ensemble as shown in Fig. 1.

Figure 1: A 2D example of a multi ensemble setup. The
red ellipsoids show four ensembles representing the parti-
cle distribution. The green dashed shape describes the set
of moments obtained through weighted averages over the
moments of the four single ensembles.

The time evolution of the several ensembles are calculated
according to the procedure for single ensemble bunches de-
scribed above. At any time a set of moments representing
the whole bunch can be obtained from the moments of the
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ensembles. The density distribution function for the whole
bunch composed e.g. of two ensembles is defined as

f(�r ) = f1(�r ) + f2(�r ). (32)

This leads to the following equations for the charge Q:

Q = Q

∫
Ω

f1(�r ) dΩ
︸ ︷︷ ︸

Q1

+Q

∫
Ω

f2(�r ) dΩ
︸ ︷︷ ︸

Q2

(33)

and defines the local density distribution functions via the
relations

1 =
∫

Ω

Q

Q1

f1(�r ) dΩ 1 =
∫

Ω

Q

Q2

f2(�r ) dΩ. (34)

The first order moments of the whole bunch can then be
obtained from the first order moments of the individual en-
sembles <μ>f1 and <μ>f2 as follows:

<μ>=
Q1

Q
<μ>f1 +

Q2

Q
<μ>f2 . (35)

For the second order centralized moments

Muv =<(u−<u>) · (v−<v>)>

with u, v ∈ {x, y, z, px, py, pz} one obtains

Muv =
Q1

Q
· Muv,f1 +

Q1

Q
(〈u〉f1 − 〈u〉) · (〈v〉f1 − 〈v〉)

+
Q2

Q
· Muv,f2 +

Q2

Q
(〈u〉f2 − 〈u〉) · (〈v〉f2 − 〈v〉).

(36)

Additional higher order moments can be calculated simi-
larly.

APPLICATIONS

Based on the moment approach the fast online beam dy-
namics simulation tool V-Code was implemented at TEMF.
The aim of several further developments was to increase the
application range to various accelerator designs. For exam-
ple dipole bending magnets were introduced in [6] in order
to simulate recirculating machines. The V-Code can be uti-
lized for the design phase as well as during the accelerator
operation.

Beam Line Design and Optimization

At the Superconducting Darmstadt Linear ACcelerator
S-DALINAC the V-Code has been used during the design
process of the injector for the new 100 keV polarized elec-
tron source. Starting from an initial ensemble issued from
a simulation of the electron source with the CST code
MAFIA [4] the entire beam line was modeled within the
V-Code and simulated as a whole. The results of detailed
simulations can be found in [5].

triplets

Wien filter

dipole magnet

prebuncher

α magnet

100 keV
source

Figure 2: Schematic computational model of the compact
injector design for the new polarized electron source at the
S-DALINAC.

Operator Support

Fast beam dynamics simulations can advantageously as-
sist the machine operators at various particle accelerator
machines because of a flexible parameter variation com-
bined with nearly simultaneous solution responses giving
a detailed insight into the actual machine status. A user
friendly front end was implemented for this purpose, giving
the operator the possibility to comfortably change the pa-
rameter setup and receiving a well-arranged overview over
the actual beam status.

Automatic Beam Adjustment

Finding an optimal parameter setup for an accelerator
beam line is a tedious and laborious task as the number
of variable parameters is typically very large. A fast sim-
ulation code opens the possibility to analyze a multitude
of parameter sets in a reasonable time. By implementing
objectives and valuation rules this procedure can be auto-
mated. Further, a connection between the simulation code
and the accelerator diagnostic software allows to take into
account measured parameters in the automated optimiza-
tion process.
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DISCRETIZING TRANSIENT CURRENT DENSITIES
IN THE MAXWELL EQUATIONS∗

Mark L. Stowell, Daniel A. White,†

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore CA, 94551, USA

Abstract
We will briefly discuss a technique for applying tran-

sient volumetric current sources in full-wave, time-domain
electromagnetic simulations which avoids the need for
divergence cleaning. The method involves both “edge-
elements” and “face-elements” in conjunction with a
particle-in-cell scheme to track the charge density. Re-
sults from a realistic, 6.7 million element, 3D simulation
are shown. While the authors may have a finite element
bias the technique should be applicable to finite difference
methods as well.

INTRODUCTION

The Maxwell Equations
The Maxwell Equations with a current density source

term can be written

∂

∂t
~D = ∇× ~H − ~J

∂

∂t
~B = −∇× ~E

where
~D = ε ~E and ~B = µ ~H

These equations are commonly discretized using “edge-
elements”, or discrete 1-forms, for the electric field and
“face-elements”, or discrete 2-forms, for the magnetic flux
density. This scheme requires that ~J also be approximated
with edge-elements, which works quite well in many situa-
tions. However, this scheme does have certain drawbacks.

One difficulty with 1-form current densities is that they
can spread through material interfaces into non-physical re-
gions. For example, consider a vacuum region abutting a
weak conductor which contains a constant current density.
What value for ~J should be applied to the edges which are
shared between these two regions? If the constant ~J value
is used, then the conducting region will contain the correct
value but the vacuum region will also contain a non-zero
current density. If a value of zero is applied on these edges,
then the vacuum region will correctly have zero current but
the conductor will contain less current density than desired.

Another difficulty, and the one we will focus on, arises if
the current density is transient and the primary interest is to
∗This work performed under the auspices of the U.S. Department of

Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344, UCRL LLNL-CONF-420323.
† stowell1@llnl.gov, white37@llnl.gov

determine how a cavity will resonate after a current pulse
passes through it. The problem here is that the continuity
equation for the electric charge,

∂ρ

∂t
+∇· ~J = 0,

is only weakly satisfied. Therefore, current densities can,
and often do, leave behind non-physical charge densities
after they pass through the computational mesh. These
charge densities can, in turn, produce a non-physical, static,
electric field which not only adds unexpected, mesh depen-
dent, features to field plots but can also reduce the accuracy
of the meaningful portion of the solution.

Integrating the charge continuity equation over time we
obtain

ρ(tb)− ρ(ta) = −
∫ tb

ta

∇· ~Jdt.

Assuming ta and tb are chosen such that ~J is everywhere
equal to zero before ta and after tb with no charges being
left behind anywhere within the problem domain we would
have ρ(ta) = ρ(tb) = 0 and so∫ tb

ta

∇· ~Jdt = 0.

This is the constraint that we hope to satisfy. The accuracy
with which this can be accomplished will hinge on our abil-
ity to accurately represent the divergence of the vector flux
density ~J .

Discrete Differential Forms
Differential Forms provide a general mathematical for-

malism to describe not only Div, Grad, and Curl but also in-
tegral relationships like the fundamental theorem of calcu-
lus, Kelvin-Stokes theorem, and the Divergence theorem.
For example these three theorems can each be described by
the generalized Stokes’ theorem:∫

Ω

dω =
∮

∂Ω

ω (1)

Where “ω” is a differential form and “d ” is the exterior
derivative appropriate for that form type. Specifically, if ω
is a 1-form (a standard vector field), this expression states
that ∫

Σ

∇×ω ·~n dA =
∮

∂Σ

ω ·d~r (2)

which is the classical Kelvin-Stokes theorem. Another im-
portant characteristic of differential forms is that for any
k-form, ω, its exterior derivative, dω, is a (k+1)-form.
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Form Field Space Meaning of DoFType Type

0 Scalar H(Grad) Value
at Point

1 Vector H(Curl) Path Integral
Along Edge

2 Pseudo H(Div) Surface Integral
Vector Over Face

3 Scalar
L2

Volume Integral
Density Over Cell

Table 1: This table lists the type of field that each form type
is best suited for, the Hilbert space that the basis functions
belong to, and how the degrees of freedom are computed.

Discrete Differential Forms [1][2], see Table 1, are fi-
nite element basis functions designed to satisfy the same
differential and integral relations as their continuous coun-
terparts. To achieve this the degrees of freedom of a k-form
are associated with topological entities of dimension k: 0-
forms are associated with nodes, 1-forms with edges, etc..
The value assigned to a degree of freedom (DoF) is the inte-
gral of the field over the corresponding entity: 0-form DoFs
are point-wise evaluations of the field at the nodes, 1-form
DoFs are line integrals along edges, etc.. These degree of
freedom assignments make certain integrals trivial to com-
pute. For example the surface integral of a 2-form field can
simply be computed by summing up the DoF values from
a series of faces approximating the surface of interest.

Form Field Exterior Weak
Type Type Derivative Derivative

0 Scalar ∇ 7→ T01 None

1 Vector ∇×7→ T12 ∇· 7→M−1
0 TT

01M1

2 Pseudo ∇· 7→ T23 ∇×7→M−1
1 TT

12M2Vector

3 Scalar None ∇ 7→M−1
2 TT

23M3Density

Table 2: This table lists the discrete derivative operators
appropriate for each form type. WhereMp is a p-form mass
matrix and Tpq is a topological derivative matrix acting on
p-forms and producing q-forms.

Certain derivative operators, see Table 2, are also quite
simple to apply. This stems from the generalized Stokes’
theorem, equation (1). Consider the Curl of a 1-form, equa-
tion (2) shows that the 2-form DoF of∇×ω on a particular
face is simply a linear combination of the 1-form DoFs of
ω which form the boundary of that face. For first order
basis functions the coefficients are just ±1. These coeffi-
cients are chosen to produce the correct orientation of the

path for the line integral. In fact the Gradient of a 0-form,
the Curl of a 1-form, and the Divergence of a 2-form can
all be computed in this manner. These derivatives only re-
quire knowledge of the topology of the mesh and not its
geometry. This follows from the fact that the geometry is
incorporated into the value of the degree of freedom itself.

An important consequence of this separation of the ge-
ometry and topology of the mesh is that certain vector
calculus identities can be satisfied to machine precision.
Specifically, the identities ∇×∇φ = 0 for all scalar func-
tions φ and ∇·∇× ~F = 0 for all vector functions ~F are
precisely reproduced by the discrete operators Tpq , i.e. the
matrix products T12T01 and T23T12 are equal to zero to ma-
chine precision.

For a more complete treatment of discrete differential
forms see [3].

Example Problem
Consider a laser target chamber, which is roughly cylin-

drical with a height of nearly one meter and a radius of
one meter. The chamber also has several port holes for di-
agnostic equipment as well as the input port for the laser
beam. When a high power laser beam enters the chamber
and strikes its target, it will partially vaporize the target and
generate a flux of electrons which are propelled towards the
outer walls of the chamber.

The charge packet in the simulations that will be dis-
cussed consists of 1012 electrons moving at essentially the
speed of light from a target post in the center of the cham-
ber towards the wall on the right in the upcoming images.
The maximum current was 1.5 kA. The packet fans out in
a conical shape as it progresses and has a Gaussian shape
along the direction of propagation with a full width at half
maximum of 3 cm. Therefore we expect the signal to have
significant frequency content out to roughly 4.5 GHz.

We are primarily interested in the pulse of electromag-
netic waves radiated by this charge packet so we do not
model the incoming laser beam or the vaporization of the
target. Also, we do not currently attempt to model the
charge packet as a plasma, it is simply a known charge den-
sity moving through the mesh in a prescribed fashion. This
approximation is valid for this particular problem because
the liberated electrons have very high energies.

SOLUTION TECHNIQUES

Typical E/B Formulation
As mentioned previously a standard E/B formula-

tion [4][5][6] of the problem requires that ~J be approxi-
mated by discrete 1-forms with degrees of freedom on the
edges of the mesh.

∂

∂t

(
ε ~E
)

= ∇× 1
µ
~B − ~J

∂

∂t
~B = −∇× ~E
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In discrete form these equations become:

M1(ε)
en+1 − en

∆t
= TT

12M2(µ−1)bn+ 1
2
−M1jn+ 1

2

bn+ 3
2
− bn+ 1

2

∆t
= −T12en+1

Where Mp(α) represents a mass matrix computed using
p-form basis functions and a material parameter α, T12 is
the discrete Curl operator shown in Table 1, and lower case
letters with subscript n, for example, obviously represent
vectors of degrees of freedom at time n∆t.

If we take the divergence of Ampère’s law and make use
of the fact that the charge density is related to the electric
displacement via ∇ · ~D = ρ, we derive the charge conser-
vation equation:

∂ρ

∂t
+∇ · ~J = 0.

In discrete form this becomes:

1
∆t

M0 (ρn+1 − ρn) + TT
01M1jn+ 1

2
= 0

Where ρn is a 0-form, i.e. nodal, representation of the
charge density at time n∆t. The divergence of a 1-form
can only be defined in a weak sense, i.e. as a type of
least squares best fit. Hence this continuity equation for
the electric charge may not be locally satisfied everywhere
although it should be nearly satisfied globally.

Figure 1: A toy problem illustrating the difficult of moving
a charge density from one node to another using only a
current density on the edge shared by the two nodes.

Consider the seemingly simple problem of moving a
charge from one node to another along a particular edge
of a mesh as shown in Figure 1. How much current density
should be applied to the edge connecting nodes 0 and 1 to
move all of the charge density from node 0 to node 1? Even
this simple, two element, problem is over determined and
cannot be solved.

ρn = (ρ̃0, 0, 0, 0)
ρn+1 = (0, ρ̃1, 0, 0)
jn+ 1

2
= (j̃01, 0, 0, 0, 0)

We have two unknowns; the charge density ρ̃1 deposited
on node 1, and the current density j̃n+ 1

2
, but we have four

equations leading to insolubility. This toy problem, even if
it could be solved, would be difficult to efficiently extend
to realistic situations involving charge densities traversing
meshes in three space dimensions.

The simplest method to implement this type of current
source is to simply compute the current density on each
edge as the projection of a prescribed function onto the
edges of the mesh and hope that the continuity equation
will be satisfied closely enough that the errors will not
be noticeable. In many cases this does indeed work well
enough.

(a) Standard E/B Formulation

(b) E/B with Divergence Cleaning

(c) D/H Formulation with PIC Source

Figure 2: The Divergence of the vector field ~D plotted on
a logarithmic scale.

Figure 2a shows an example of a charge density plot for
our model problem. The image clearly shows the charge
packet itself just to the right of center. Unfortunately, it
also shows a large non-physical charge buildup left behind
in the wake of the packet. The boundary of the computa-
tional domain is assumed to be a perfect electrical conduc-
tor so the charge near the boundary can be interpreted as
being related to the surface charge density. This is actu-
ally another oddity of the E/B formulation, surface charges
appear smeared into the volume elements which touch the
surface. This may not be an attractive feature of the image
but at least it has a reasonable physical interpretation.
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Figure 3: Logarithmically scaled contour plot of the mag-
nitude of the electric field computed using the E/B formu-
lation with divergence cleaning.

Divergence Cleaning
The non-physical charge buildup can be removed by per-

forming divergence cleaning when deemed necessary or
perhaps even at every time step. This is the process of
adding something to the field so that its divergence has a
desired value but its curl remains unchanged [7][8][9]. For

the model problem we can add a ~̃J to the source so that the
divergence will match the desired change in charge den-
sity given by ρ̇. We assume that the correction to ~J is the
gradient of a scalar field ψ so that it will have zero curl.

ρ̇ = −∇ · ~J (the computed change in ρ)

ρ̇ = ρ̇+ ˙̃ρ = −∇ · ~J −∇ · ~̃J (the desired change)

∇ · ~̃J = −ρ̇−∇ · ~J (the necessary correction to ~J)
∇2ψ = −ρ̇−∇ · ~J

In discrete form this becomes:

S0ψ = −M0ρ̇− TT
01M1jn+ 1

2

j̃n+ 1
2

= T01ψ

Where S0 is the 0-form stiffness matrix. Each divergence
cleaning operation then requires an additional linear solve
to compute the scalar field ψ. It should be noted that it
is generally more difficult to solve a stiffness matrix than
a mass matrix so obtaining this correction is not a trivial
computation in comparison to updating the electric field at
each time step using Ampère’s law.

With this correction we see that the divergence of ~D,
shown in figure 2b, now matches the desired charge den-
sity. Again, note that the charge density near the surfaces
is due to the presence of a surface charge density.

Unfortunately, this method has a drawback when the
charge density has a velocity near the speed of light. The
correction introduces a small quasi-static field centered on
the charge density, which appears to propagate faster than
the speed of light. Figure 3 shows a logarithmically scaled
contour plot of the electric field magnitude which clearly
shows contours well beyond the charge packet, which is
located near the innermost contour. In figure 2b this com-
ponent of the field can also be seen because it introduces
surface charge densities on the metal object ahead of the
charge packet and on several sharp corners farther away.
These non-physical charge densities are obviously due to
the global solve necessary to compute ψ.

D/H Formulation
Obviously, the difficulties discussed in this paper stem

from the treatment of ~J as a 1-form vector field. Current
density is, however, a flux vector, i.e. the amount of charge
crossing a given area per unit time. Flux vector fields are
more naturally described using 2-forms, so we should have
more luck if we approximate Ampère’s law using discrete
2-forms.

∂

∂t

(
µ ~H
)

= −∇× 1
ε
~D

∂

∂t
~D = ∇× ~H − ~J

In discrete form these become:

M1(µ)
hn+1 − hn

∆t
= −TT

12M2(ε−1)dn+ 1
2

dn+ 3
2
− dn+ 1

2

∆t
= T12hn+1 − jn+1

In this formulation the curl of ~D must be computed in the
weak sense. This weak form requires the solution of a lin-
ear system to update ~H using Faraday’s law. In the standard
E/B formulation it is the curl of ~B that must be computed
in the weak sense, requiring a linear solve in Ampère’s law
to update ~E. Normally this linear solve allows us to apply
voltage boundary conditions on ~E where we can specify
that the tangential component of ~E is zero on perfect elec-
trical conductors. In the D/H formulation this constraint
becomes unnecessary because the natural boundary condi-
tion is that the tangential component of ∇× ~H = 0 but, of
course, this equation is consistent with the tangential com-
ponent of ~E = 0 on the boundary (assuming that, on the
boundary, n̂× ~E = 0 at time t = 0 and n̂ × ~J = 0 for all
time.)

Simply treating ~J as a 2-form does not magically solve
all of our problems. What it does is convert our charge
buildup problem from a global least-squares fit into much
more simple local charge conservation problem. Comput-
ing the divergence of Ampère’s law in discrete form now
leads to:

1
∆t

(
ρn+ 3

2
− ρn+ 1

2

)
+ T23jn+1 = 0.
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Figure 4: A toy problem illustrating the problem of moving
a charge density from one element to another using only a
current density on the face shared by the two elements.

Now our toy problem can be expressed in terms of a
charge moving from one element to another, see Figure 4,
by crossing the face shared by the elements. The problem
is now well defined.

ρn+ 1
2

= (q0, 0)

ρn+ 3
2

= (0, q1)

jn+1 = (I01, 0, 0, 0, 0)

T23 =
(

1 1 1 0 0
−1 0 0 1 1

)
We still have two unknowns; the amount of charge de-
posited in element 1, and the current crossing the interven-
ing face. However, we now have only two equations(

0
q1

)
+ ∆t

(
I01

−I01

)
=
(
q0

0

)
which in this case stipulate that the current is given by
I01 = q0/∆t and the charge in element 1 is q1 = ∆tI01

or simply q1 = q0. This trivial solution is exactly what
we would expect and it is as simple as our intuition would
suggest.

Figure 5: An example mesh illustrating charge carrying
rays piercing the faces of an irregular mesh. The curved
contours represent the locations at which the current fluxes
must be computed as the charges progress through the
mesh.

To extend this solution method to a realistic three dimen-
sional mesh is fairly straightforward. One way to accom-
plish this is to use a particle-in-cell (PIC) technique. For
our purposes a very rudimentary PIC method will suffice.
Simply split up the trajectory of the charge packet into a
group of rays and imagine the charges themselves as beads
moving along these rays. At each time step we compute
the fraction of each charge which crosses each face to com-
pute the total current density. The use of fractional charges
serves two purposes; to smooth out the charge packet even
in coarse meshes, and more importantly to account for ir-
regular mesh spacings. Figure 5 demonstrates a typical sit-
uation.

To achieve charge conservation we must ensure that the
total amount of charge entering an element equals the that
leaving. The use of rays makes this much easier as we can
then require that the rays will enter and exit each element
through unique faces rather than allowing charges to split
and leave through two different faces. Of course this is a
simplification which would have to be removed in a proper
PIC simulation. The problem of charge conservation then
becomes one of choosing current fluxes Ii(t) which satisfy:

N∑
n=0

Ii(n∆t) =
N∑

n=0

Ij(n∆t)

Where indices i and j indicate any two faces pierced by a
particular ray and T = N∆t is chosen large enough that
the charge packet will have passed both faces by time T
(we must also assume that Ii(0) = 0 for all faces but this
is certainly reasonable.) If we use the first face pierced by
the ray as a reference and label it with index 0 we can then
chose all other current fluxes along that ray to be:

Ii(t) = αiI0(t− ni∆t) + (1− αi)I0(t− (ni + 1)∆t)

Where ni is the integer part of di/(v∆t), αi is the frac-
tional part, di is the distance from face 0 to face i, and v is
the speed of the charge packet. With these choices it is easy
to show that the total current crossing each face along a par-
ticular ray, given by the above sums, must be equal aside
from numerical errors due to finite precision arithmetic.

If enough rays are used and there are enough beads
strung along each ray, then the source will appear reason-
ably smooth. The simulation discussed in this paper re-
quired fewer than 250 rays with 160 charges along each
(i.e. less than 40,000 particles) to achieve acceptable re-
sults. We should emphasize that this does not constitute a
self-consistent PIC simulation. The fields do not effect the
motion of the charge packet in any way. We are simply us-
ing the PIC concept as a bookkeeping scheme to maintain
charge conservation. Although this rigid beam approxima-
tion is valid for our test problem it is not a requirement of
this method. The accuracy, and ease of implementation, of
this method relates to the identification of the degrees of
freedom of ~J with the precise values of the charge fluxes
across the mesh faces. In a more elaborate PIC simula-
tion these fluxes could still be used to precisely balance the
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Figure 6: Logarithmically scaled contour plot of the mag-
nitude of the electric field computed using the D/H formu-
lation with a PIC source.

charges within each element although the bookkeeping and
charge balance equations would become more complicated.

Figure 2c shows a charge density plot produced using
this scheme. Clearly the image shows no sign of non-
physical charge buildup. Additionally, the surface charge
density does not appear. A further advantage of this method
is that the charge density and current density on the sur-
face of perfect electrical conductors can be more accurately
computed, if desired. These surface fields can be directly
computed from the surface degrees of freedom for ~D and
~H respectively.

Figure 6 again shows a logarithmically scaled contour
plot of the electric field magnitude, analogous to that shown
in figure 3. However, in the new plot the non-physical,
quasi-static field contours are no longer present. The fields
now properly propagate within a spherical shell which ex-
pands at the speed of light.

CONCLUSION

We have presented an outline for a charge conserving
method of applying transient volumetric current sources to
the Maxwell Equations in the time-domain. Some of the
advantages of using a D/H formulation of the coupled first
order wave equation have been discussed. The ability to
run charge conserving simulations of transient current den-
sities, while optionally computing accurate representations
of surface currents and charge densities, is very appealing.
The added benefit of more easily coupling to a PIC sim-
ulation, capable of more accurately modeling the motion
of the charge packet itself, provides numerous avenues for
enhancing the modeling of similar problems.

It should also be noted that the standard E/B formulation
and the PIC method placed essentially equivalent demands
on computing resources. Each simulation was performed

using the same number processors and ran for virtually the
same length of time. Conversely, the divergence cleaning
procedure, using an algebraic multi-grid solver, increased
the run time by a factor of roughly 2.8.
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Abstract

The IMPACT code has been utilized for the beam com-
missioning of J-PARC linac. The activity is presented by
reviewing two illustrative topics, where the experimental
data is analyzed to realize a finer tuning. One is the RF
set-point tuning for a DTL tank, where we have a signifi-
cant discrepancy between the experimental result and pre-
diction from a simple numerical model. The other is the
beam profile measurement, where significant beam quality
deterioration is found to develop in a characteristic way. In
both cases, the IMPACT code has helped us to deepen our
insight into the beam behavior.

INTRODUCTION

The beam commissioning of J-PARC linac was started
in November 2006, and its initial stage was completed in
October 2007 by achieving the linac beam power of 1.2
kW [1]. This beam power corresponds to 20 kW from the
succeeding 3-GeV RCS (Rapid Cycling Synchrotron), and
it is sufficient for the initial beam commissioning of the
downstream facilities. Since then, J-PARC linac has been
operated to provide a stable beam for the commissioning of
downstream RCS, MR (Main Ring), and their beam lines
to the experimental targets. After succeeding in delivering
the first beams to all the experimental targets in May 2009,
we are now in the next stage where we seek the operation
with higher beam power.

J-PARC is a high-power frontier machine aiming at 1-
MW beam power from RCS (133 kW from linac) in the
final phase. Accordingly, it is of essential importance to
reduce the uncontrolled beam loss, and hence, to avoid ex-
cess radio-activation of the accelerator components so as
to maintain its hands-on maintenance capability. This is
the case even in the early stages of the beam commission-
ing, and we need to reduce the integrated beam loss during
the beam tuning. Therefore, it is required to realize a more
sophisticated and efficient tuning rather than a traditional
trial-and-error tuning. To this end, a simple and fast on-
line numerical model plays an essential role in the beam
commissioning of J-PARC linac.

On the other hand, the beams in a high-intensity linac are
subject to strong space-charge forces. It often invokes col-
lective and nonlinear phenomena, such as emittance growth
and halo formation, being accompanied with the various
operational errors. As these phenomena often lead to unde-
sirable beam losses, we need to realize a precise tuning in

beam-power ramp-up. Even a very small fraction of beam
loss can cause serious radio-activation in a high-intensity
operation. Therefore, more thorough and fine-grained un-
derstanding of the beam behavior and the space-charge-
driven phenomena is required in ramping up the beam in-
tensity. To this end, we need a precise and detailed sim-
ulation of the beam behavior with a time-consuming PIC
(Particle-In-Cell) tracking.

In the beam commissioning, we fully utilize two numeri-
cal models which complement each other. One is an on-line
envelope model, and the other is an off-line PIC model.

As an on-line model, we have adopted XAL originally
developed for SNS [2]. XAL is a JAVA-based high-level
software development framework dedicated to accelerator
beam commissioning, and it includes an envelope model
to be utilized as an on-line model. This model is capa-
ble of calculating the evolution of rms beam widths and
a beam center orbit swiftly. However, it can not simulate
the space-charge-driven emittance growth and halo devel-
opment. This model has been used for various beam tuning
in J-PARC linac directly connected with high-level soft-
ware [3].

As an off-line model, we have mainly adopted the IM-
PACT code developed at LBNL [4]. IMPACT is a fully
three-dimensional PIC code optimized for parallel com-
puting, which is suitable for the detailed simulation for
the space-charge-driven phenomena including emittance
growth, halo formation, and resulting beam loss. We use
IMPACT for the beam simulation from the RFQ (Radio
Frequency Quadrupole linac) exit to the injection point to
RCS. The initial distribution for the IMPACT simulation is
generated with the PARMTEQM code [5].

In this paper, we show some examples of the studies

Figure 1: Schematic layout of J-PARC linac.
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where the IMPACT code is used to analyze the experimen-
tal data obtained in the beam commissioning of J-PARC
linac. In particular, we here take up the following two top-
ics where the detailed simulation with the IMPACT code
have helped us to deepen our understandings on the beam
behavior in J-PARC linac. One is the phase-scan tuning
of RF set-points for the first DTL tank (or DTL1), where
the experimental observation shows significant discrepancy
from a simple numerical model. The other is the analysis
of the beam profile measurement at the exit of DTL section
and SDTL (Separate-type DTL) section. In these measure-
ments, we have observed a substantial beam quality deteri-
oration which develops in a characteristic way. As we lack
sufficient beam diagnostics in the DTL section, we have
performed an IMPACT simulation to reproduce its charac-
teristic features and then to infer its underlying mechanism.

These two topics have already been discussed in other
literatures [6, 7] in detail. Then, we here try to present a
brief review of these studies instead of delving into details.

LAYOUT OF J-PARC LINAC

Before proceeding to the simulation study, we here run
through the basic layout of J-PARC linac. As shown in
Fig. 1, J-PARC linac consists of a 50-keV negative hydro-
gen ion source, 3-MeV RFQ, 50-MeV DTL, and 181-MeV
SDTL. We also have a 3-m long matching section between
RFQ and DTL, to which we refer as MEBT (Medium Beam
Energy Transport).

MEBT consists of eight quadrupole magnets, two
buncher cavities, an RF chopper system, and various beam
diagnostics including four wire-scanner beam profile mon-
itors. It also has a 45-deg bend magnet followed by a trans-
verse emittance monitor of double-slit type.

In contrast to MEBT, the DTL section has very limited
number of beam diagnostics. The DTL section consists of
three DTL tanks, and its total length is 27 m. As it has
no available space for beam diagnostics inside the tank, it
only has a beam current monitor and a beam phase monitor
at each inter-tank spacing.

In SDTL section, the quadrupole magnets are placed be-
tween tanks instead of inside the drift tube. Therefore, it
has a longer inter-tank spacing which can accommodate
various beam diagnostics. In particular, we have an array
of four wire scanners periodically placed at the inter-tank
spacings at the DTL exit (or the most upstream portion of
the SDTL section). From the measurement with these wire
scanners, we can calculate the transverse Twiss parameters
and the rms emittance assuming a design Twiss parameters
and the emittance in the longitudinal direction. We also
have a similar setup at the exit of the SDTL section and
some downstream locations. The SDTL section consists of
30 tanks, and its total length is about 84 m.

To be noted here is that we lack the instrumentation
for longitudinal profile measurement throughout the linac,
while we are planning to introduce a few bunch shape mon-
itors of INR type [8].

DTL PHASE SCAN

The set-points of RF phase and amplitude for a cavity are
important parameters to be determined with a beam-based
tuning. To find an adequate set-point, we have performed
a so-called phase scan tuning. In this tuning, the phase set-
point of a cavity is scanned with a fixed amplitude while
measuring the output beam energy with the TOF (Time Of
Flight) method. The phase scan provides us with a depen-
dence of the output energy on the tank phase, to which we
refer as a “phase scan curve”. We iterate the same proce-
dure with different amplitude settings, and then compare
the obtained phase scan curves with a numerical model. As

Figure 2: Measured and simulated phase scan curves for
DTL1 (top), DTL2 (middle), and DTL3 (bottom). The
scaled RF amplitude A is annotated for each curve. The
measured results are shown with circle markers, and those
from PARMILA modeling are shown with solid lines.
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the phase scan curve of a DTL tank has a peculiar shape,
we can find an adequate RF set-point with their signature
matching. This tuning is performed one klystron at a time
from the upstream end.

Figure 2 shows the phase scan result for DTL tanks,
where we adopt the simple beam centroid motion simu-
lated with PARMILA [9] as the reference for the tuning.
In this figure, ΔΦ denotes the phase shift from the design
phase setting and A is the RF amplitude scaled by its de-
sign value. It is readily seen in Fig. 2 that the measured
phase scan curves are thoroughly reproduced by the numer-
ical model for DTL2 and DTL3. However, it shows notable
deviations in DTL1 especially for the case with an RF set-
point away from its design value. Furthermore, the trend of
the phase scan curve is totally different when the amplitude
setting is lower than the design value. Even with higher
amplitude, the experimental curve shows a large deviation
from the modeling for a large phase shift from the design
value. These disagreements prevent us from performing an
accurate phase signature matching, and has motivated us
to establish a more rigorous numerical model employing a
fully three-dimensional multi-particle tracking.

To investigate the disagreement between the simulated
beam centroid motion and the measurement for DTL1, a
parallel PIC simulation has been performed with the IM-

Figure 3: The longitudinal phase space distribution at the
DTL1 exit simulated with the IMPACT code. Top: ΔΦ =
−29.5 deg and A = 1.02, and bottom: ΔΦ = 25 deg and
A = 1.00. The measured beam energy is shown with a
broken line, and the centroid of the simulated distribution
with a solid line.

Figure 4: Measured and simulated phase scan curves for
DTL1 with a restricted parameter range. Two phase scan
curves are shown for A = 0.99 and 1.00 as annotated in the
figure. The measured results are shown as circle markers,
and the curves from PARMILA modeling are shown with
solid lines.

PACT code. The tracking is performed from the exit of
the RFQ with the initial distribution obtained with the
PARMTEQM [10] (which is the same with the PARMILA
simulation). The nonlinear Lorentz map integrator is uti-
lized to deal with the highly nonlinear RF force which
arises from unusually large RF set-point deviations in-
volved in the phase scan tuning. To attain a reasonable
accuracy, the integration step width is set to about βλ/100
with β and λ being the particle velocity scaled by the speed
of light and the RF wave length, respectively. In the simu-
lation, 95,322 simulation particles and 32×32×64 meshes
are employed.

To illustrate the findings in the simulation study, we
show in Fig. 3 the simulated longitudinal distribution at
the DTL1 exit for two cases with (ΔΦ, A) = (-29.5 deg,
1.02) and (25.0 deg, 1.00). These settings corresponds to
the case where the measured phase scan curves show a sig-
nificant deviation from the model. It is clearly seen in Fig.
3 that the longitudinal distribution is subject to significant
filamentation with these settings. Furthermore, it has been
confirmed that the extent of the filamentation is substan-
tially dependent on the assumed initial distribution. The
observed discrepancy of several tens of keV in the output
energy is easily caused with a modest difference in the ini-
tial distribution. Meanwhile, we are unable to confirm the
credibility of the assumed initial longitudinal distribution
at the RFQ exit due to lack of longitudinal diagnostics in
MEBT.

In conclusion, the discrepancy between the measured
phase scan curve and that from a numerical model observed
in the DTL1 tuning seems to be mainly attributable to the
generation of a significant filamentation. Because the fila-
mentation depends on the initial distribution, the discrep-
ancy of several tens of keV is unavoidable with the RF
set-point far from the design value. Then, the phase sig-
nature matching is valid only in the narrow region around
the design set-point where the filamentation is sufficiently
modest and insensitive to the initial distribution.
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Figure 5: Typical beam profile measured at DTL exit with 30 mA peak current. Red circle: measurement, blue line:
Gaussian fit. The beam profile measured with an array of four wire scanners are shown. The left two figures are the
results with the first (the most upstream) wire scanner with the horizontal profile on the top and the vertical profile on the
bottom. The mid-left, mid-right, and right figures are respectively results with the second, third, and fourth wire scanners.
The same notation is adopted in Figs. 6, 7, and 8.

The phase scan curves for DTL1 are shown again in Fig.
7, where the parameter range is limited to have modest fil-
amentation. It is readily seen in this figure that the exper-
iment and the numerical model show a reasonable agree-
ment. As seen in this figure, the goal tuning accuracy of 1
deg in phase and 1 % in amplitude is confirmed to be at-
tainable for DTL1 with the narrow range analysis with two
reference curves. It should be stressed here that the ade-
quate phase scan range has been found with a help of the
IMPACT simulation.

BEAM PROFILE MEASUREMENT

To mitigate the beam loss in the linac and the succeeding
RCS, it is practically important to suppress excess emit-
tance growth and beam halo formation. To measure the
transverse emittance and the beam tail shape, we use beam
profile monitors of wire-scanner type installed along the
beam line. As mentioned above, four wire scanners are pe-
riodically installed at the exit of DTL. Then, the rms emit-
tance can be calculated from the rms beam widths mea-
sured with this wire scanner array. With the design peak
current of 30 mA, the obtained rms emittance at the exit of
DTL is 0.42 πmm·mrad in horizontal and 0.36 πmm·mrad
in vertical. On the other hand, the measured emittance at
MEBT is around 0.22 πmm·mrad. All the emittance values
are normalized. These observation indicates that we have
a significant emittance growth in DTL. Besides, the emit-
tance growth is found to be modest with lower peak current
of 5 mA.

We also have similar setups of wire scanners at the exit of
SDTL. In the observation with these wire scanners, there is
no significant emittance growth after the DTL exit in both

5-mA and 30-mA cases. This tendency has also been con-
firmed in more downstream sections.

Another interesting feature of the measurement is the
shape of beam profile. Figure 5 shows a typical beam pro-
file measured at the DTL exit. The beam profile is mea-
sured with four wire scanners in this section, and each wire
scanner is 7 βλ apart. As readily seen in this figure, the
beam profile is virtually Gaussian in spite of the significant
emittance growth in DTL. Contrary to our expectations, the
measured beam profile at the DTL exit lacks beam halo or
“shoulder-like structure”. As the phase advance between
wire scanners is about 60 deg in this region, the halo is
supposed to be detected by some of these wire scanners if
it has been generated. Meanwhile, the halo-like structure is
clearly seen at the SDTL exit as shown in Fig. 6. It should
be stressed here that the halo is generated despite the ab-
sence of significant emittance growth in the SDTL section.

This interesting feature has motivated us to perform par-
ticle simulations. To reproduce the experimental result,
IMPACT simulations have been performed with various
mismatch conditions in MEBT. Needless to say, it is of
practical importance to understand the mechanism of the
emittance growth and find the way to avoid it. Especially,
reduction in the transverse emittance enables more flexible
painting injection into RCS, and it is expected to contribute
to the beam loss mitigation in RCS.

We have performed IMPACT simulation with the same
simulation conditions with those in the previous section ex-
cept for the choice of integrator and its step width. We
here adopt the linear map integrator with the step width of
βλ/10 so that we can survey a wider parameter space.

We have tried several kinds of mismatch at MEBT arti-
ficially introduced in both of the transverse and longitudi-
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Figure 6: Typical beam profile measured at SDTL exit with 30 mA peak current.
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Figure 7: Simulated beam profile at DTL exit with 30 mA peak current assuming a larger longitudinal emittance than the
PARMTEQ prediction.

nal directions. IMPACT simulations reveal that 30 to 40
% transverse mismatch oscillation at the upstream portion
of DTL is anticipated to account for the observed emittance
growth, where we define the degree of mismatch as the mis-
match oscillation amplitude in the rms beam width. Either
of the transverse and longitudinal mismatch in MEBT can
drive the transverse mismatch oscillation in DTL through
the space-charge coupling. We have also found in the sim-
ulation study that the halo develops more rapidly in most
cases than the experimental observation with the assumed
level of initial mismatch. In these cases, a clear halo has
already been generated at the DTL exit, which disagrees
with the experimental observation.

An extensive simulation study reveals that the onset of
halo generation has a certain sensitivity to the kind of mis-
match assumed in the simulation. Actually, the onset is

delayed in some cases with certain types of longitudinal
mismatch. Figures 7 and 8 show an example of these cases,
where a larger longitudinal emittance is assumed than the
PARMTEQM prediction. As readily seen in these figures,
the beam profile at the DTL exit is virtually Gaussian,
while that at the SDTL exit has a clear halo. The emit-
tance growth in SDTL is also confirmed to be modest in
this case.

It is demonstrated in this case that the experimentally ob-
served beam behavior can be qualitatively reproduced with
a particle simulation assuming a certain type of longitudi-
nal mismatch at MEBT. The similarity in Figs. 5, 6, 7, and
8 is significant, while the simulated halo at the SDTL exit is
a little less pronounced than the measurement. This finding
does not exclude the possibility that the actual cause of mis-
match is different from that assumed in this case. However,
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Figure 8: Simulated beam profile at SDTL exit with the same conditions as Fig. 7.

it suggests that we can narrow down the possible source of
mismatch by surveying the parameter space with an exten-
sive and comprehensive simulation. Then, it is supposed to
contribute to identifying the actual cause of the mismatch
utilizing the IMPACT results.

According to the observation with MEBT wire scanners,
it is not likely to have a transverse mismatch of 30 to 40
% at the DTL entrance. Meanwhile, the lack of the longi-
tudinal diagnostics at MEBT is a potential cause of excess
longitudinal mismatch. These also support the hypothesis
that the emittance growth is caused by a large longitudinal
mismatch at MEBT. We are planning to improve the longi-
tudinal matching in the coming beam commissioning runs
by adjusting the amplitude of MEBT buncher cavities.

SUMMARY

We have adopted the IMPACT code as an off-line model
to analyze the experimental results obtained in the beam
commissioning of J-PARC linac. The beams in J-PARC
linac are subject to the strong space-charge forces, and var-
ious undesirable phenomena arise due to its profoundly
nonlinear nature. In the beam commissioning of J-PARC
linac, it is of critical importance to mitigate the uncon-
trolled beam loss below an extremely low level so as to
secure the hands-on maintenance capability. Then, deep
understanding of the space-charge-driven phenomena is es-
sential for its beam commissioning. To this end, detailed
PIC simulation is an essential tool to analyze the experi-
mental data to help understand its underlying physics.

The experimental data obtained in the beam commis-
sioning often fails to be comprehensive due to lack of beam
diagnostics. To make up the insufficient data and to get
physical understanding of it, it is often required to perform
a systematic simulation study covering a wide parameter
space. In this paper, we have shown two illustrative topics
where the IMPACT code is used in the J-PARC linac beam

commissioning. It should be stressed here that we adopt
rather modest number of simulation particles and mesh
grids in these studies compared to the typical numerical
study for the space-charge beam dynamics. Adopting the
modest simulation condition, the IMPACT code can pro-
vide us with the simulation result in a few tens of minutes
to a few years even with a multi-core PC thanks to its fully
optimized feature for parallel computing. This prompt re-
sponse extends the parameter space we can cover in the
simulation study, and widen the possibility of realizing ex-
tremely fine tuning required for a high-power frontier ma-
chine.
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Abstract 
A high intensity compact cyclotron, CYCIAE-100, is 

selected as the driving accelerator for Beijing Radioactive 

Ion-beam Facility (BRIF). At present the physics design 

of this machine has been accomplished. This paper gives 

a brief review of the general design of this machine. For 

further intensity upgrade of this compact machine in the 

future, it is crucial to carry out in-depth study on the self 

fields effects including the contributions of single bunch 

space charge and the interaction of many radially 

neighboring bunches. In order to include the neighboring 

bunch effects fully self-consistently in compact 

cyclotrons, a new physical model is established for the 

first time and implemented in the parallel PIC code 

OPAL-CYCL. After that, the impact of the single bunch 

space charge and neighboring bunches on the beam 

dynamics in CYCIAE-100 for different intensity levels 

are studied by the simulations using the new model.  

INTRODUCTION 

Since 2004 a new exotic beam project, Beijing 

Radioactive Ion-beam Facility (BRIF), has been started at 

CIAE. As a driving accelerator for BRIF[1], CYCIAE-

100 adopts a compact structure with 4 straight sectors. 

The H- ions produced by the multi-cusp ion source are 

accelerated, and the high intensity proton beams are 

extracted through dual stripping. The extracted beam is 

200–500μA featured with energy of 75–100 MeV, which 

is continuously adjustable. Figure 1 shows the overall 

structure of CYCIAE-100 and Table 1 lists its key 

parameters. From the view of beam dynamics, the physics 

problem of this machine is composed of several aspects, 

including axial injection, central region, acceleration, 

stripping extraction and beam lines, which have been 

described in several papers published formerly[2]–[5]. 

The basic physics design and current construction status 

of machine will be briefly reviewed in the following 

section. 

Table 1: Key Parameters of CYCIAE-100 

Item value 

ion source type multi-cusp 

injection current > 5 mA 

number of poles 4 

angle of poles ~47o 

radius of poles 2000 mm 

outer diameter of yoke 6160 mm 

height of magnet 2820 mm 

total iron weight  ~415 t 

field range 0.15–1.35 T 

gap between hills 50–60 mm 

injection  energy 40 keV 

rf frequency               44.32 MHz 

Dee Voltage 60–120kV 

number of cavities 2 

harmonic number 4 

extraction type multi-turn stripping 

 

 

 Figure 1: Sketch of the major parts of CYCIAE-100. 

Beam loss is the key factor which limits the beam 

current of a high intensity cyclotron. Space charge effects, 

being one of the most significant collective effects, play 

an important role in high intensity cyclotron. Space 

charge may cause massive beam loss at the low- and 

middle-energy accelerator. In CYCIAE-100, the injection 

energy is only 40keV and the maximal energy is 100MeV 

(γ=1.106), and therefore, space charge can be remarkable 

under high current conditions.  In addition,   a common 

 ___________________________________________  
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characteristic of high intensity compact cyclotron is that 

dozens of radially neighboring bunches overlap at large 

radii region (therefore multi-turn extraction is adopted). 

Simulation shows that the particles in the extracted proton 

bunch by the stripper come from about 30 injected 

bunches in CYCIAE-100.  This is mainly caused by two 

factors. Firstly, limited by space, the Dee voltage of RF 

cavity is relative small, accordingly, the radial gain per 

turn, or turn separation, is small. Simulation shows that 

the turn separation is reduced to only 3mm at the 

extraction point. Secondly, in order to achieve high 

current, the RF phase acceptance in the central region 

reaches 40o, and limited by space, no flat-top cavity is 

installed. Consequently, the particles at head and tail of 

the bunch gain quite different energy during each gap-

crossing and energy spread is inevitably large, 

accordingly, the radial distribution range of a bunch is big.  

As a result, it is necessary to include the mutual 

interactions of radially neighboring bunches, or 

neighboring bunch effects for short, in space charge 

studies.  

REVIEW OF PHYSICAL DESIGN OF 

CYCIAE-100 

The adoption of a compact structure for CYCIAE-100 

can provide strong vertical focusing to meet the 

requirement of intensive beam acceleration. The carbon 

foils are used to strip the H− with very small beam loss 

during the extraction, the efficiency of which can reach 

99% from our calculation and test. In order to reduce the 

beam loss induced by the Lorentz stripping, the hill field 

at the outer region is less than 1.4T. The vacuum 

dissociation is the other reason inducing beam loss in this 

H− machine, which requires the vacuum in the tank better 

than 5×10−6Pa on average. For the RF system, it adopts 

double Dee structure, and the fourth harmonics w.r.t 

revolution period of accelerated particles. The resonant 

cavity of half wave length is completely installed and 

fixed in the valley of the magnet.  

During the acceleration, the beam corresponding to 

different energy has fixed equilibrium orbit. The betatron 

oscillations around equilibrium orbits at different energies 

up to 100MeV are investigated in detail with many 

magnet structures and their fields. The vertical oscillation 

frequency is higher than 0.5 at most of the acceleration 

region and towards 0.7. This is of advantage to upgrade 

the beam intensity later on. 

After the static study, the accelerating beam dynamics 

is also done in detail. The transverse ellipses along the 

AEO are matched step by step from the central region to 

final energy. The vertical beam profiles with different RF 

phases are simulated and multi-particle tracking is carried 

out to control the beam loss in this small hill gap machine. 

In practice, the imperfection magnetic field exists and the 

deviation of the orbit centre takes place. Under the 

influence of the 1st and 2nd harmonic fields, the beam will 

oscillate about the deviated orbit centre and thus result in 

its radial dimension growth. In order to obtain a good 

beam quality, the simulation results show that the 

magnetic field of the cyclotron should satisfy the 

following condition: the 1st harmonic is less than 2 gauss, 

the 2nd harmonic is less than 40 G, and the gradient of the 

2nd harmonic is less than 8 G/cm. To comply with the 

requirement for being isochronous, it is demanded that the 

deviation between the measured field at medial plane and 

the idea field be approximately below 1.05×10−4. 

NEW PHYSICAL MODEL AND RELATIVE 

CODE DEVELOPMENT 

In 2008, a 3D physical model was built to include 

neighboring bunch effects in the high intensity separated-

sector cyclotrons using single turn extraction [6].  In this 

model, at the beginning only a single bunch is tracked 

until the turn separation is small enough, and then a new 

bunch is injected per revolution period. Two parameters 

M and NB are introduced to set the time of starting 

injecting new bunches and the maximal bunch number 

respectively. The proper settings of these two parameters 

are crucial to precisely evaluate neighboring bunches 

effects. In this model NB must be an odd number. Our 

study object is the central bunch and the other (NB - 1) 

bunches are auxiliary. Therefore we call it “central 

bunch” model hereafter. This model was implemented in 

the code OPAL-CYCL[6], which is one of the flavours of 

OPAL framework[7] and tracks particles with 3D space 

charge including neighboring bunches effects in 

cyclotrons, with time as the independent variable. 

Simulation results using OPAL-CYCL shows that the 

setting with NB = 9 and M = 4.5 gives convergent results 

for the PSI 590MeV Ring cyclotron with 3mA beam 

current[6]. 

However, it is quite difficult to study the neighboring 

bunch effects in CYCIAE-100 and other similar compact 

cyclotrons by using “central bunch” model, because in 

high intensity compact cyclotrons, all the radially 

neighboring bunches overlap heavily and there is no clear 

borderline between the central bunch and the others 

bunches. On top of this, the study on central bunch is 

worthless and insufficient, because in this type of 

machines, multi-turn stripping extraction is used and the 

extracted beam include the contributions of dozens of the 

neighboring bunches. From the view of extraction, study 

on the behaviour of the extracted bunch is more 

significant and valuable.  

“Start-to-Stop” model 

Recently a new physical model was established for 

compact cyclotrons such as CYCIAE-100. In this model 

the multi-bunch tracking is divided into three stages in 

sequence: startup-running-stop. This model imitates the 

stages of an accelerator’s operation period and called 

“Start-to-Stop” model: 

 Startup stage: with bunch injected and without 

bunch extracted 

A new bunch is generated in the injection point per 

revolution period. The existing bunches has not fill 
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all the turns and the first bunch has not reached the 

stripper, so no particle is extracted. 

 Running stage: with bunch injected and bunch 

extracted 

A new bunch is generated in the injection point per 

revolution period; meanwhile, the particles which 

have reached the stripper are extracted. When a 

macro-particle is extracted, its tracking is finished. 

Its phase space variables and the extraction time are 

written into disk and the memory blocks which 

stores its relative data are free. When the extracted 

particle number is equal to the injected particle 

number, the simulation is running under the steady 

state. 

 Stop stage: without bunch injected, with bunch 

extracted 

No bunch is injected, which imitates the ion source 

stops providing particle and the accelerator is still 

working. During every revolution period, there are 

still particles reaching the stripper and being 

extracted. The total particle number is constantly 

reduced until all the existing particles are extracted, 

then the entire simulation is finished. 

Comparing with the “central bunch” model, this model 

still holds the original meaning of the parameter M; 

meanwhile, the parameter NB here means the total injected 

bunch number from start to stop. Its value is a much 

larger one, i.e. larger than the total turn number of a 

cyclotron at least. 

When space charge field is solved using quasi-static 

approximation,  one needs to assure the relative motion of 

particles is non-relativistic, i.e. in the beam rest frame, the 

formula 

0

1
p

m c



                        (1) 

should be fulfilled, where p is the momentum spread 

in the beam rest frame. In the PSI Ring and similar 

separated-sector cyclotrons with single turn extraction, 

the energy gain per turn is large and energy spread is 

small. To meet the requirement of formula (1), “central 

beam” model follows the rule that each energy bin 

corresponds one bunch.  Whereas, in the CYCIAE-100 

and similar compact cyclotrons, the energy gain per turn 

is relatively small and energy spread is relatively large. 

Therefore in the “Start-to-Stop” model, the adaptive 

energy binning technology, which is usually adopted to 

deal with a single beam with large momentum spread[8], 

is introduced in the multiple beams issue of compact 

cyclotrons.  The momentum range of each energy bin 

bin  to some value far smaller than 1, then the 

momentum of the kth energy bin is  

 1

,bin bin minsinh sinhkp k p                  (2) 

Where minp is the lowest momentum of the all the existing 

particles and it defines the first energy bin. The bin index 

k of a given particle with momentum ip  is given by 

1 1

min

bin

sinh sinhip p
k



  
  
 

                 (3) 

After binning we perform the Lorentz transformation, 

calculate the space charge field using FFT based solver 

and perform back-transformation for each bin 

respectively. Finally the field data is summed up to give 

the total space charge force imposed on each particle. 

Recent development of OPAL-CYCL 

Recently we implemented above “Start-to-Stop” model 

in the code OPAL-CYCL, to make it applicable to high 

intensity compact cyclotrons such as CYCIAE-100.  

In order to achieve the best balance between accuracy, 

stability and efficiency, recently a second order Leap-

Frog integrator is implemented into OPAL-CYCL.  

In addition, the computation load and memory load on 

computer nodes now are better balanced by taking 

advantages of the dynamic mesh grid repartition 

functionality of IP2L[9]. Figure 2 shows the speedup at 

different repartition frequency for a production run setup. 

The timings were obtained on the Cray XT5 of the CSCS, 

Switzerland. Each of the computer nodes consists of 2 

quad-core AMD Opteron 2.4 GHz Shanghai processors 

giving 8 cores in total per node with 16 GBytes of 

memory. We can see a significant gain of speedup when 

the repartition is performed once per 20 integration steps. 

 

 Figure 2: Speedup of OPAL-CYCL as a function of 

processors at different repartition frequency for a 

production run setup. 

START-TO-STOP SIMULATION 

In this section, we utilize the “Start-to-Stop” model to 

study the high intensity issues in CYCIAE-100. The 

motivation for this study is to predict the beam’s behavior 

at different current level so as to help the builders achieve 

the aim of the project. Since the aimed beam current of 

this cyclotron is 0.2–0.5 mA and it is planed to improve 

the current to 1mA during future upgrade，the simulation 

is done for 0mA, 0.2mA, 0.5mA and 1mA beam current 

respectively and the results are compared and analysis 

together.  

In CYCIAE-100, the 40keV DC beam is transported 

from the ion source to the central region by the axial 

injection line and the spiral inflector.  After the phase 
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selection and acceleration during the first several turns in 

the central region, at the exit of central region we get a 

bunched beam with energy equal to 1.49MeV and initial 

position 23.14cmR  , 0   . The simulation starts 

from this position. Since it is hard to obtain the precise 

distribution of the beam at present, a 6D Gaussian 

ellipsoid distribution is assumed as the initial distribution. 

The initial phase width (6σ) is set to 6◦ and initial energy 

spread is zero. Both on the radial and vertical phase space, 

the particle distribitons match the eigen-ellipses and the 

rms emittances are 1.2π mm-mrad and 0.4π mm-mrad 

respectively. The beam sizes (6σ) on both directions are 

set to 12mm and the initial distribution is assumed 

uncorrelated in phase space.  

In the simulation ten thousand macroparticles per bunch 

are employed and ultimately more than two million 

macroparticles are injected under the running stage. 

Considering all bunches should lie along the radial 

direction approximately, the mesh size along radial 

direction is set to 256 and on the two other directions is 

32. Figure 3–Figure 6 shows the results given by the 

simulation. 

 

 
 Figure 3: Top view snapshot at the time point bunches 

crossing 0◦ azimuth under the steady state 

Figure 3 shows the top view snapshot at the time point 

bunches crossing 0◦ azimuth under the steady state of 

running stage. It is clear from the simulation that the 

phase width becomes larger along with the current 

increasing. In the final turn the phase width are 2.5◦, 6.5◦, 

10.4◦ and 15.0◦ for 0mA, 0.2mA, 0.5mA and 1mA 

respectively. It is noted that despite the same value of M, 

the transition from single bunch simulation to multi-

bunch simulation happens at earlier turn for higher 

current, because neighboring bunches effects rise up at 

earlier turn for high current.  

In Figure 4 three typical local regions of Figure 3 are 

zoomed in and the distribution for 0.2mA and 0.5mA are 

shown together for comparison. The “vortex” motion can 

be observed clearly at the low energy region. Looking 

into Figure 3 and Figure 4, we can find an interesting 

phenomenon that the beam phase width oscillates along 

the radius when the current is larger than 0.2mA, which is 

believed by the mismatch caused by space charge and 

neighboring bunch effects. This will be studied in detail 

in the future. 

 

(a) 4~8MeV 

 
(b) 31~40MeV 

 
(c) 86~100MeV 

 Figure 4: Zoom-in plot (using the same scales) of Figure 3 

for 0.2mA (red) and 0.5mA (black) beam currents 

In CYCIAE-100, the stripping probe is placed at the 

position 187.55cmR  , 59.6   for 100MeV beam 

extraction. Two electrons of a H- particle are stripped by 

the carbon foil and the resultant proton beam is 

transported out of cyclotron. The distribution of extracted 

beam is crucial for the beam line design. Therefore the 

influence of space charge on the extracted beam is an 

interesting problem. Figure 5 shows the simulation result 

of the R-Z distribution of the extracted beam for different 

beam currents and Figure 6 shows its histograms along 

the radial and axial directions respectively. The beam 

sizes on both directions are expanded along with the 

current increase. On the axial directions more and more 

halo particles are generated along with the current 

increase. So the extraction beam line designer should take 

the beam current into account during beam upgrade so as 

to improve the transmission efficiency and reduce beam 

loss. Fortunately, up to 1mA, the axial beam size is less 

than 1.5cm, still smaller than the gap between hills (5cm)  

and the vertical distance of RF linear (4cm) at this region. 

Therefore, during the acceleration and extraction no 

massive beam loss is caused by the space charge and 

neighboring bunch effects under 1mA current. 
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 Figure 5: R-Z distribution of the extracted beam for 

different beam currents under the steady state.  
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 Figure 6: Comparisons of the histograms along the Z and R 

directions for the extracted beam for different beam 

currents under the steady state. 

CONCLUSION AND FUTURE WORKS 

The physics design for CYCIAE-100 has been 

accomplished. A brief review of the physics design on 

this cyclotron is presented. Then a new established “Start-

to-Stop” model, which was recently implemented in 

OPAL-CYCL, is depicted. The “Start-to-Stop” simulation 

results of CYCIAE-100 shows that space charge and 

neighboring bunch effects will lengthen the phase width 

during acceleration and expand the beam sizes of the 

extracted beam both in the axial and radial directions, 

However, no massive beam loss is caused under 1mA 

current. 

To improve the accuracy of the simulation, further 

investigation will be performed on the beam evolution at 

the central region to obtain the more practical initial 

conditions. In addition, limited by the computer resource, 

only 10 thousand macroparticles per bunch were 

employed to do the above simulation, and the mesh size is 

256 32 32  . A larger scale simulation is planned to 

improve the precision of the simulation. After that, the 

current limit of CYCIAE-100 will be also studied by the 

simulations. 
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SPACE CHARGE SIMULATIONS FOR ISIS
BG Pine, DJ Adams, B Jones, CM Warsop, RE Williamson
Rutherford Appleton Laboratory (STFC), Oxfordshire, UK.

Abstract
The  ISIS  Facility  at  the  Rutherford  Appleton 

Laboratory in the UK produces intense neutron and muon 
beams for  condensed  matter  research.  It  is  based  on  a 
50 Hz  proton  synchrotron  which  accelerates  ~3E13 
protons  per  pulse  (ppp)   from  70  to  800 MeV, 
corresponding to beam powers of ~0.2 MW. Studies are 
under way for major upgrades in the Megawatt regime. 
Underpinning this programme of operations and upgrades 
is  a  study  of  the  high  intensity  effects  that  impose 
limitations on beam power.

The behaviour of the beam in the 50 Hz rapid cycling 
synchrotron (RCS) is largely characterised by high space 
charge levels and the effects of fast ramping acceleration. 
High intensity effects are of particular importance as they 
drive beam loss, but are not fully understood with only 
limited analytical  models  available.  This  paper  reviews 
several  methods  by  which  these  effects  are  explored 
numerically on ISIS, and compares them where possible 
with experimental  or analytical  results. In particular we 
outline  development  of  a  new  space  charge  code  Set, 
which  is  designed  to  address  key  issues  on  ISIS  and 
similar RCS machines.

INTRODUCTION
ISIS high intensity operation is restricted by beam loss, 

as  irradiation  of  equipment  limits  access  for  essential 
maintenance.  Understanding  beam  loss  is  therefore  of 
vital importance, however due to the complex interactions 
between the beam particles  and their  environment such 
understanding  is  challenging  both  analytically  and 
numerically.

The ISIS Synchrotron Group is actively studying high 
intensity  effects  of  the  beam in  a  number  of  different 
ways, both to improve performance of the accelerator and 
also to enable the design of upgrades which can achieve 
significantly higher beam intensities. Aspects of this work 
are  reported  here,  including  closely  related  profile 
monitor simulations,  injection painting, beam dynamics, 
half integer studies and developments of codes.

PROFILE MONITOR
ISIS  profile  monitors  are  important  for  studies  of 

injection  painting,  space  charge,  beam  halo,  betatron 
motion and instabilities, as well as suffering space charge 
effects  of  their  own.  The profile  monitors  on  ISIS  use 
ions,  liberated  from the  residual  gas  by passage  of  the 
beam,  to  reconstruct  transverse  beam  distributions.  A 
(near)  uniform  electric  field,  perpendicular  to  the 
direction  of  the  beam,  accelerates  ions  to  a  suitable 
detector. The number of ions detected is assumed to be 
proportional  to  the  local  beam  intensity.  This  process 

suffers from two major sources of error: 1) irregularity in 
the electric  field used to drive the ions to the detector; 
2) broadening effects produced by the space charge field 
of the beam, which at high intensities can dominate the 
measured  profile  width.  Fortunately correction  schemes 
for  both of these phenomena have been found, and are 
discussed below.

Drift field effects
A model of an ISIS profile monitor (see Figure 1) was 

constructed in CST Studio Suite [1]. Figure 2 displays the 
potential  produced  by  the  electrodes  in  both  transverse 
and  longitudinal  cross-sections.  As  can  be  seen  the 
required  linear  field  is  not  achieved  perfectly  –  both 
transverse and longitudinal sections show deviation from 
the ideal behaviour.

Figure 1: Residual Gas Profile Monitor.

Figure  2:  Electrostatic  potentials:  transverse  -  left, 
longitudinal - right.

In order to study these effects in more detail, potentials 
were calculated then extracted from the CST model, and 
used  as  the  field  source  in  a  specially  developed  2D 
particle  tracker.  Realistic  beam distributions  (parabolic, 
elliptic) were used as the source of particles. The results 
showed that a simple scaling correction was effective for 
reasonably  well  centred  and  behaved  beam 
distributions [2]. 3D simulations [3] showed considerably 
more complex behaviour, as particles may oscillate along 
longitudinal  field  saddle  points  between  the  two 
electrodes in the monitor body. On investigation however 
this more complex behaviour could be accounted for by a 
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modification  of  the  scaling  rule  calculated  for  the  2D 
case.  Figure 3 shows the result of a correction using the 
scaling  rule  on  a  simulated  profile  including  what  the 
ideal  measurement  would  be,  and  the  corresponding 
corrected profile.

Figure 3:  “Measured” - red, ideal - blue and corrected - 
black beam profiles, all from simulation.

Space charge broadening
Space charge broadening effects have been studied both 

by simulation [2, 3] and experiment [3, 4]. Simple models 
suggest  that  the  measured  profile  width  ought  to  be 
inversely proportional to the magnitude of the drift field. 
This  was  confirmed  both  experimentally  and  in 
simulations,  and  holds  for  all  percentage  widths  of  the 
beam,  once  modified  for  relativistic  effects.  An 
experimental measurement of the profile width relative to 
applied drift field voltage is displayed in Figure 4.
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Figure 4: Measured profile width versus drift field voltage 
at 0 ms and a beam intensity of 2.12E13 ppp.

INJECTION
The ISIS multi-turn, charge exchange injection process 

accumulates ~3E13 ppp over 130 turns, or 200 μs,  at a 
constant energy of 71.5 ± 0.5 MeV. The injection region 
is located in the middle of a straight section, to minimise 
interaction  with  the  rest  of  the  machine.  The  beam  is 
effectively  unbunched,  as  RF  runs  at  low  levels 
throughout injection. Injection begins -0.4 ms before field 
minimum of the main dipole magnets in the ring, i.e. on a 
falling  magnet  field  (ISIS  runs  with  a  sinusoidal  main 
magnet field). This naturally provides horizontal painting 

of the beam through the horizontal dispersion at the foil. 
Vertical  painting  is  achieved  using  a  programmable 
sweeper magnet in the injection line (see Figure 5). For 
standard  operations  vertical  sweeping  is  anti-correlated 
relative to  the horizontal,  and is  intended  to  produce  a 
hollow  beam  distribution  which  will  then  be  filled  in 
under the action of the beam's space charge.

Figure 5: ISIS injection system.

The  ISIS  injection  painting  process  has  also  been 
studied [5, 6] with the ORBIT simulation code [7]. Figure 
6 shows betatron amplitudes during injection, measured 
using  chopped  beams,  which  show  the  anti-correlated 
painting  dynamics.  These  are  compared  with  simulated 
values.

Figure 6: Anti-correlated painting on ISIS.

Further simulations include the action of space charge 
on  the  beam profile  during  injection.  The  results  have 
been  compared  with  experimental  data  taken  with  the 
profile  monitors  mentioned  above,  at  both  low 
(2.5E12 ppp)  and  high  (2.5E13 ppp)  proton  intensities. 
The  experimental  data  were  corrected  for  drift  field 
effects  and  the widening effect  of  space  charge  on the 
measured profile, and the results compared with profiles 
extracted from the simulation data (Figure 7).  As can be 
seen there is a good agreement between the simulated and 
experimental  results,  which  show  the  hollow  painted 
beam being filled in under the influence of space charge.

These  simulations  were  used  to  generate  the  beam 
phase space distributions shown in Figure 8. Transverse 
calculations include space charge; longitudinal dynamics 
reproduce  expected  horizontal  movement,  but  without 
space charge.

Work is well advanced for longitudinal simulations of 
ISIS in ORBIT with space charge. Essential features of 
the beam loss versus time profile have been reproduced. 
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Models  of  the  collimator  system  and  the  MICE  [8] 
internal  target  have  also  reproduced  observed  loss 
patterns reasonably.

Figure 7: Anti-correlated painting – horizontal profiles.

Figure 8: Simulations of injection: Normal anti-correlated 
case at 2.5x1013 ppp.

HALF INTEGER
Transverse  space  charge  and  half  integer  resonance 

have been identified as the main loss mechanisms on the 

ISIS RCS. During injection and trapping, bunch intensity 
reaches a maximum and incoherent tune depression due to 
space charge can reach ~0.4 in both planes. The beam is 
pushed towards the 2Qh = 8 and 2Qv=7 resonance lines. 
Initial  work  has  focused  on  analytical  studies  and  2D 
simulations to confirm the predicted effects [9, 10].

2D ORBIT simulations were run with an RMS matched 
waterbag  beam  circulating  in  an  alternating  gradient 
model of the ISIS lattice. The driving terms (representing 
the main resonance lines) reproduced many expectations 
from  studies  of  the  envelope  equation.  In  particular, 
stability  was  observed  on  the  incoherent  resonance. 
Emittance  growth  started  to  rise  before  the  coherent 
resonance  condition  occurred  however  (Figure  9).  This 
suggests that significant emittance growth, and hence the 
practical  space  charge limit,  lie  between the  incoherent 
and coherent predictions.

Figure  9:  Intensity  limits  associated  with  half  integer 
resonance and RMS emittance growth.

More  detailed  studies  comparing  halo  structure  as 
predicted by ORBIT and available theory have confirmed 
expected behaviour [11]. Simulations including the effects 
of  momentum  spread  and  longitudinal  motion  are  in 
development.

Extensive  experimental  work  is  under  way,  running 
ISIS in storage ring mode (SRM) without RF or the AC 
component of the main magnets, enabling a beam to be 
stored for many turns as a coasting unbunched beam. This 
is ideal for studying 2D aspects of beam behaviour. SRM 
is becoming a rich experimental system for studying high 
intensity  effects  [12].   Figure  10  shows  that  beam 
intensity  reduction  and  corresponding  profile  growth 
coincide with the start of an instability.  Simulation and 
experimental  studies  are  presently  under  way  to 
understand in more detail the action of both instabilities 
and  envelope  resonance  under  high  space  charge.  This 
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work also clearly depends on a detailed knowledge of the 
profile monitors used to take measurements.

Figure  10:  Beam  intensity,  horizontal  and  vertical 
profiles, horizontal and vertical position signals vs time.

SET
A new code Set  is  under  development  at  ISIS.  This 

code is intended to supplement the use of ORBIT for 2D 
and 3D beam tracking simulations, as a tool that can be 
readily  modified  and  redeployed  as  required  to  meet  a 
given  purpose.  In  particular,  the  focus  is  on  the 
challenges of the ISIS RCS, including image forces from 
the unique profiled vacuum vessel, halo predictions, 2D 
and  3D  RCS  space  charge  effects  and  overall  to 
understand and predict beam loss. Set works using either 
MAD input data or its own matrix routines for generating 
lattices,  and  has  an  FFT  based  Poisson-solver  for 
calculating  the  beam's  space  charge.  Early  simulation 
work [10, 11] focused on replicating ORBIT results for 
the half integer resonance. Example results for the ISIS 
lattice  (2D,  coasting  beam)  driven  with  a  2Qv  =  7 
resonance are shown in Figures 11, 12 and 13. Figure 11 
shows  Set  and  ORBIT  envelope  frequencies  as  the 
intensity is swept from 1 – 14E13. Figure 12 shows the 
incoherent tune footprints after 100 turns, as the intensity 
is varied from 6E12 ppp to 13E13 ppp. Figure 13 shows 
beam  phase  and  real  space  on  the  100th  turn  for  an 
intensity of 6E13.

Figure 11: Envelope tunes intensity sweep.

Figure 12: Incoherent tune comparison ORBIT - left, Set - 
right.

Figure 13: Phase space on 100th turn ORBIT - left and 
Set - right.

Set  has  been  used  to  study  tune  shifts  from  image 
forces  and  closed  orbits  [13]  and  the  results  compared 
with  Laslett  theory  (Figure  14).  Direct  space  charge 
should have no influence on the coherent dipole tune, as 
the charge distribution of the beam moves with the centre 
of charge. However image forces will affect the coherent 
tune,  as the centre of  charge does move relative to the 
vacuum vessel. This is of particular interest on ISIS due 
to  the  vacuum  vessel  which  follows  the  design  beta 
function of the beam. At high intensities the machine is 
very sensitive to closed orbit changes, which may indicate 
beam loss driven by image forces. Present upgrade studies 
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are  investigating  the  benefits  of  increasing  injection 
energy from 70 to 180 MeV. Set has been used to study 
the  space  charge  limitations  at  this  higher  energy.  The 
half integer simulations carried out for the nominal ISIS 
ring  were  reproduced,  but  for  an  injection  energy  of 
180 MeV rather than 70 MeV. Simple scaling of the space 
charge force indicates peak intensities should increase by 
a factor of 3 over 70 - 180 MeV. As can be seen from 
Figure 15, the RMS emittance begins to rise at 3 times the 
intensity seen in the previous case.

Figure 14: Simulated versus analytical tune shift.

Figure  15:  RMS emittance  growth associated with half 
integer resonance for 180 MeV injection energy.

Image forces become more significant when the beam 
is executing a closed orbit, as image forces from the beam 
pipe only cancel when the beam is well centred. Figures 
16 and 17 show the results of simulation runs including 
half integer driving terms from the trim quadrupoles (ISIS 
has special programmable quadrupoles distinct from the 
main lattice), and also an angular kick once per turn. Each 
set of simulations was run twice, to allow the resulting 
perturbed beam distribution to be matched into the lattice. 
Figure  16  shows  the  variation  of  closed  orbit  (RMS 
position) around the ring as a function of intensity, from 1 
- 5E14 ppp. Figure 17 compares RMS emittance with and 
without a closed orbit at an intensity of 2E14 ppp. Image 
forces are clearly influencing the behaviour of the beam, 

much as we expect on ISIS. A more complete analysis, 
and  eventually  experimental  work  on  the  ISIS 
synchrotron, are to follow.

Figure 16: Matched closed orbit variation with intensity.

Figure  17:  RMS  emittance  with  and  without  matched 
closed orbit errors for 2E14 ppp intensity.

FUTURE WORK

ORBIT
Extensive work has been carried out developing a 3D 

model of ISIS in ORBIT that can run on a parallel system 
of computers, the SCARF cluster at Rutherford Appleton 
Laboratory  [14].  This  is  largely  complete,  including 
injection  and  longitudinal  motion  with  space  charge, 
though fundamental RF only (simulations with the second 
harmonic  RF  are  in  development).  A  recent  area  of 
progress involved modifying ORBIT run scripts to allow 
for the ramping ISIS Q values,  as shown in Figure 18. 
ISIS Q values are ramped to move the tunes away from 
dangerous  resonances  during  injection  and  trapping. 
Previous simulations had used the fixed Q values (close to 
the initial values from Figure 18). Beforehand the lattice 
creation  algorithms  had  to  be  run  for  each  turn  of  the 
simulation for the new Q values. Beam was run around 
the first turn, beam distributions saved and then input into 
the next turn with a modified lattice. Results for the 99% 
emittance  of  the  beam,  comparing  constant  Q  with 
ramping Q are shown in Figure 19. It appears that with 
the real (ramping) Q values, emittance in the horizontal 
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plane is increased relative to simulations with a constant 
Q, whereas it is decreased in the vertical plane. These are 
preliminary  results  and  it  has  not  yet  been  ascertained 
what  driving  terms  or  growth  mechanisms  might  be 
responsible for these phenomena.

Figure 18: ISIS Q values during the cycle.

Figure 19: 99% emittance evolution comparing ramped Q 
with constant Q values.

Set
Work  is  also  under  way  on  a  1D  longitudinal  code 

which includes space charge and impedances.  This will 
eventually be added to Set to make it fully 3D. Results are 
shown  in  Figure  20  for  bunch  length  and  phase 
convergence versus macroparticle number.

 
Figure 20: 1D convergence tests showing results for 

phase and bunch length.

A parallel version of 2D Set has been implemented, and 
successfully  run  on  SCARF.  Further  work  will  add  a 

realistic  injection  scheme,  including  the  effect  of  foil 
scattering.  The  long  term  goal  is  to  carry  out  a  full 
simulation of the ISIS cycle and recreate the beam loss 
patterns seen on the real machine.

SUMMARY
Understanding space charge,  and hence beam loss,  is 

essential for the operation of a high intensity RCS, and 
even more important for the design of an upgrade.

Space  charge  simulations  are  being  developed  in  a 
number of crucial areas on ISIS: to correct profile monitor 
measurements,  to  study  injection  processes,  for  the 
examination  of  half  integer  resonance  effects,  for 
longitudinal dynamics, and finally for 3D studies of loss 
patterns on ISIS.  A new code Set is being developed to 
enable further study of key beam dynamics issues that are 
important  for  ISIS,  such  as  image  effects  and  any 
dominant loss mechanisms.
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AN INTEGRATED BEAM OPTICS-NUCLEAR PROCESSES FRAMEWORK 

IN COSY INFINITY AND ITS APPLICATIONS TO FRIB* 

B. Erdelyi#, Northern Illinois University, DeKalb, IL 60115. and ANL, Argonne, IL 60439 

L. Bandura, NSCL, Michigan State University, East Lansing, MI 48824 

Abstract 
When faced with the challenge of the design 

optimization of a charged particle beam system involving 

beam-material interactions, a framework is needed that 

seamlessly integrates the following tasks: 1) high order 

accurate and efficient beam optics, 2) a suite of codes that 

model the atomic and nuclear interactions between the 

beam and matter, and 3) the option to run many different 

optimization strategies at the code language level with a 

variety of user-defined objectives. To this end, we 

developed a framework in COSY Infinity with these 

characteristics and which can be run in two modes: map 

mode and a hybrid map-Monte Carlo mode. The code, its 

applications to the FRIB, and plans involving large-scale 

computing will be presented. 

INTRODUCTION 

The next generation of nuclear physics research will 

require advanced exotic beam facilities based on heavy 

ion driver accelerators.  There are many next-generation 

facilities that are currently under commissioning, 

construction, or envisioned [1-5].  Included amongst these 

is the future Facility for Rare Isotope Beams (FRIB) at 

the National Superconducting Cyclotron Lab at Michigan 

State University.  These facilities are capable of 

producing exotic beams composed of rare nuclei in large 

quantities.  The exotic isotopes are produced via projectile 

fragmentation and fission in targets.  High-performance 

fragment separators, a key component of all rare isotope 

facilities, consist of superconducting magnets that are 

used for the capture, selection, and transport of rare 

isotopes.  Large aperture magnets are necessary in order 

to accept rare isotope beams with large emittances 

resulting from their production mechanism. 

The beam optics code COSY INFINITY uses powerful 

differential algebraic (DA) techniques for computing the 

dynamics of the beam in the fragment separator through 

high order transfer maps [6].  However, until now it has 

lacked the ability to calculate the beam-material 

interactions occurring in the target and energy absorbers.  

Here, a hybrid map-Monte Carlo code has been developed 

and integrated into COSY in order to calculate these 

interactions.  The code tracks the fragmentation and 

fission of the beam in target and absorber material while 

computing energy loss and energy and angular straggling 

as well as charge state evolution.  This is accomplished by 

implementing auxiliary codes such as ATIMA [7] and 

GLOBAL [8].  EPAX [9] is utilized to return cross 

sections of fragmentation products.  The special case of 

fission has been treated by using the code MCNPX [10] 

to accurately predict the cross sections and dynamics of 

exotic beams produced by a 
238

U beam incident on a Li or 

C target.  The extensions to the code have made it 

possible to simultaneously compute high order optics and 

beam-material interactions in one cohesive framework. 

The hybrid map-Monte Carlo code can calculate 

important quantities that describe the performance of the 

fragment separator.  These include the transmission and 

the separation purity.  In a map-only approach, 

calculations such as these are not possible.  Experimental 

planning and optimization is possible with the hybrid 

map-Monte Carlo code, as various fragment separator 

settings can be readily adjusted.  Here we present a 

description of the code, examples of calculations with it, 

and its application to the separation of rare isotopes. 

IMPLEMENTATION 

A solely map-based approach is not sufficient to model 

the evolution of an exotic beam in the fragment separator.  

It is impossible to take into account fragmentation and 

fission of the beam in matter in such an approach.  There 

are also many other effects that are nondeterministic.  

Stochastic effects such as energy and angular straggling 

in matter and charge exchange demand a Monte Carlo 

method.  To compute the extent of the stochastic effects, 

the most up-to-date programs such as ATIMA for 

calculating energy loss and energy and angular straggling 

have been integrated into COSY as simple procedures. 

To get an accurate view of the evolution of the beam, 

any material that the beam passes through must be 

divided up into “slices.”  There are a couple of reasons to 

do this.  One reason is that some of the rarer isotopes 

would not be produced at all if the whole target or wedge 

material thicknesses were used.  By the same argument, 

each slice cannot be too thick as it won’t account for 

multiple fragmentations or fissions.  Having slices that are 

too thin increases the run time of the program.  Also, the 

data acquired from MCNPX assumes a very thin 

thickness (0.1068 g/cm
2
), so any deviation from this 

thickness per slice will give increasingly inaccurate 

results.  The approximation for the cross sections and 

dynamics will be worse.  A target thickness on this order 

will not be used for a FRIB, so for the most accurate 

approximations, more than one slice per target is used.  

The target thicknesses would typically be about 30%-40% 

of the range of the primary beam in the target material.  

Convergence tests have been performed to determine how 

many slices are necessary for a normal target thickness.  

This value is approximately one slice per 10% of the 
*This work was supported by the U.S. Department of Energy, Office 

of Nuclear Physics, under Contract No. DE-AC02-06CH11357 
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projectile’s range in the target material.  The number of 

slices, however, is input by the user so more slices or 

fewer slices may be used.  Particles are transported 

through the target by computing the map of each target or 

wedge slice and, in addition, the beam is allowed to 

fragment or fission only once per slice.  The results of the 

creation of the particles in each slice, and the dynamics 

that occur must be composed slice by slice to get the full 

results of the beam’s isotopic composition and dynamics 

for a whole target or absorber. 

RESULTS 

The performance of the fragment separator can be 

described quantitatively by two values, namely the 

separation purity and transmission.  These quantities can 

only be determined with the map-Monte Carlo code.  The 

separation purity is key to showing how much 

background contamination exists at the end of a 

separation.  The transmission indicates the ratio of the 

number of particles of a particular rare isotope at the end 

of a separation stage to the number that is formed in the 

target.  In some cases the separation purity may be good 

but the transmission is poor or vice versa.  The two 

quantities must be evaluated together to effectively 

evaluate the performance of the separator. 

In addition to having a desirable separation purity and 

transmission, it is also necessary that in some cases that 

all of the particles of the separated rare isotope beam have 

the same energy.  In cases such as these, additional optics 

and a properly shaped energy absorber must be used to 

achieve a monochromatic beam. 

Transmission 

There are four general reaction mechanisms that take 

place when the primary beam interacts with a target.  

These include light and heavy nuclear fragmentation and 

light and heavy nuclear fission.  The transmissions of 

isotopes produced by these mechanisms are shown in 

Table 1.  The transmissions were calculated for a target 

thickness of 20% of the range of the primary beam in a Li 

target and wedge thicknesses of 30% of the range of the 

selected isotope beam energy in a two-stage separator.   

 

Table 1: Transmissions According to Production 

Mechanism 

Production 

Mechanism 

Isotope Transmission (%) 

Light 

Fragmentation 

14Be 90.6 

Heavy 

Fragmentation 

100Sn 91.0 

Light Fission 78Ni 21.5 

Heavy Fission 132Sn 42.9 

 

 

There is a great dependence of the transmission on the 

reaction mechanism which produces each isotope.  The 

best transmission results from fragmentation due to the 

low initial emittance of the rare isotope beam.  The 

transmission is lower for fission products as they are 

initially emitted from the target with large angular and 

energy spread.  This causes the loss of the isotope since it 

travels beyond the apertures of the fragment separator. 

Due to the challenges of fission products in particular, a 

comprehensive transmission study was conducted for the 

fission product 
132

Sn.  This isotope was chosen for its 

importance to the nuclear physics community and the fact 

that a beam of 
132

Sn has a large emittance and, hence, is 

one of the most difficult to capture.  For this study, a 200 

MeV/u 
238

U beam is incident on a Li target of variable 

thickness.  It fissions, producing 
132

Sn among thousands 

of other isotopes.  The thicknesses of the target and the 

first and second wedges of a two-stage separator are 

varied in increments of 10% of the range of 
238

U in a Li 

target and 
132

Sn in the two Al wedges for all thickness 

combinations between 10% and 60% of the range for the 

target thickness and 10% and 70% of the range for the 

wedges.  The transmission of 
132

Sn after two separation 

stages is shown in Figure 1 for constant target thickness 

and varied wedge thicknesses.  While it is obvious that 

with increasing material in the system the transmission 

decreases, the transmission depends slightly more on the 

first wedge thickness than the second.  This difference is 

more pronounced for thin targets. 

Separation Purity 

The separation purity, , describes the fragment 

separator’s ability to select one isotope from all 

others:

ZA

ZA

N

N

,

, 00 , where
00 ,ZAN is the total number of 

particles of the separated isotope at the end of a 

separation stage.  
00 ,ZAN  is the total number of particles 

of all isotopes at the end of a separation stage.   

This quantity depends on many things which are not 

explicit in this expression.  First, the optics of a fragment 

separator system must be optimal to focus the separated 

isotope in as small as a region in x as possible.  The 

ability to do this differs according to the isotope and the 

reaction mechanism by which it is produced.  The 

primary beam also plays a role in producing the type and 

quantity of background impurities that exist in the system.  

If the primary beam is of low Z, the background 

impurities must have equal or lower Z and the 

contamination will be low to insignificant.  If, however, a 

high Z beam such as 
238

U is used, the range of 

contaminating isotopes produced is vast.  Also, a 

radioactive beam such as this will produce background 

that would not otherwise be seen with a beam that is 

produced solely by fragmentation.  The addition of fission 

as a production mechanism leads to an even broader range 

of isotopes produced and, in addition, these production 

rates are dependent on the energy of the primary beam. 
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Figure 1: Transmission as a function of first and second 

wedge thicknesses in a two-stage separator.  Target 

thicknesses are 10, 30, and 50% of the primary beam’s 

range in target material (from top). 

 

There are four general production mechanisms that 

have different beam dynamics and background that either 

complicate or make the separation easier.  These 

mechanisms represent the extremes of the dynamics in the 

separator.  All other isotope production mechanisms fall 

between these extremes in beam dynamics.  For each of 

these four reaction mechanisms, one isotope was selected 

to be studied in detail.  In each of these cases, the energy 

of the beam is limited by the parameters of the FRIB 

linear accelerator.  The maximum energy that a primary 

beam attains is 
238

U accelerated to 200 MeV/u.  The 

optimal target and wedge thicknesses in each case are 

computed using the program LISE++ [11].   

The optimization is completed for a one stage 

separation; the second stage has the same wedge 

thickness in terms of fraction of the range of the rare 

isotope beam in Al. 

The separation purity of many rare isotopes has been 

calculated for four types of production mechanisms 

representing the extremes in beam dynamics (Table 2).  

The results yielded 100% purity for a one stage separation 

of 
14

Be, a light fragmentation product.  For 
100

Sn (Figure 

2), the separation purity is 7.5% after two separation 

stages, with only one contaminant.  The heavy fission 

product, 
132

Sn, has a separation purity of 4.04% after two 

stages.  The light fission product, 
78

Ni is challenging to 

separate with a separation purity of only 0.003% after two 

separation stages.  Separation purity with the gas cell 

branch has also been computed for each of these isotopes. 

 

Table 2: Separation Purity According to Production 

Mechanism 

Production 

Mechanism 
Isotope 

One 

Stage 

 

Two 

Stage 

 

Gas Cell 

Branch 

 

Light 

Fragmentation 
14Be 100 100 96.7 

Heavy 

Fragmentation 
100Sn 7.7310-5 5.8910-2 1.4810-3 

Light Fission 78Ni 2.7910-2 0.364 2.9410-2 

Heavy Fission 132Sn 1.15 4.04 1.52 
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Figure 2: Distribution of isotopes that remain after the one 

stage separation of 
100

Sn.  Remaining isotopes are plotted 

in the N-Z plane.  The quantities of the isotopes at the end 

of the system are indicated by the color of the box with all 

isotope quantities scaled such that one 
100

Sn particle is at 

the end of the separation stage. 

GAS CELL BRANCH 

ISOL (Isotope Separation On Line) is not sufficient to 

study some isotopes.  These isotopes need to be studied at 

a lower energy, and therefore are stopped in a neutral He 

gas cell.  This low-energy regime is key for many nuclear 

physics and astrophysics experiments.  For these cases, 

the second separation stage of a two-stage fragment 

separator is replaced with a monochromatic gas cell 

branch.  This is necessary in order to stop all of the 

particles selected in the separation in as small of a region 

as possible in the He gas cell.  In some cases, after 

stopping the isotopes in the gas cell, they may be 

reaccelerated to the desired energy.  After the achromatic 

image of the first stage, the optics of the first half of the 

first stage are repeated, followed by a monochromatic 

wedge.  A monochromatic absorber is obtained by 

shaping the wedge to cancel the wedge map element (|) 

at first order and potentially further shaping it to cancel 

the map aberrations (|
n
)i

n
, where n is the order of the 

aberration. 

CONCLUSION 

A hybrid map-Monte Carlo code has been developed to 

accurately model beam-material interactions for the 

purpose of fragment separator beam dynamics 

simulations.  This code has allowed for the calculation of 

important quantities that determine quality of the 

separation.  These include the transmission and separation 

purity.  Using the code, one may simulate a variety of 

exotic beam experiments.  Future work will focus on 

more detailed optimization to find the best fragment 

separator settings for rare isotopes to be captured for 

experiment. 
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THE STUDY ON THE SPACE CHARGE EFFECTS OF RCS/CSNS 

S. Xu, S. Fang, S. Wang,* Institute of High Energy Physics (IHEP), Beijing, 100049，China 

Abstract 
The China Spallation Neutron Source (CSNS) is an 

accelerator-based facility. It operates at a 25 Hz repetition 

rate with an initial design beam power of 100 kW and is 

upgradeable to 500 kW. The accelerator of CSNS consists 

of a low energy linac and a Rapid Cycling Synchrotron 

(RCS).  The RCS is a key component of CSNS. In this 

kind of high intensity RCS, the beam is space charge 

dominated, and the space charge effects are the main 

source of beam loss. Many simulation works were done 

for the study of space charge effects for CSNS/RCS by 

using the codes ORBIT and SIMPSONS. Various 

conditions are considered in the simulations, including the 

effects of different lattice structure, different tunes, the 

combine effect of sextupole field and space charge, 

different painting beam distribution, etc. The beam loss 

and emittance growth are compared for different 

conditions. 

 

INTRODUCTION 
The China Spallation Neutron Source (CSNS) is based 

on a high power accelerator, which consists of a 80 MeV 

linac, a 1.6 GeV rapid cycling synchrotron and beam 

transport lines [1]. The accelerator complex is designed to 

deliver a beam power of 100 kW at a 25 Hz repetition 

rate, with an upgrade capability of up to 500 kW by 

raising the linac output energy and increasing the 

intensity. The RCS is a key component of CSNS. It 

accumulates a beam injected at 80 MeV, accelerates the 

beam to a design energy of 1.6 GeV, and extracts the high 

energy beam to the target. Due to the high beam density 

and high repetition rate, the rate of beam loss must be 

controlled to a very low level. In this kind of high power 

RCS, especially at the low energy end, the beam is space 

charge dominated, and the space charge effects are the 

main source of beam loss. The space charge effects limit 

the maximum beam density, as well as beam power. 

Many simulations were done to study space charge effects 

in  CSNS/RCS by  using the codes ORBIT and 

SIMPSONS. Various conditions, which may influence the 

space charge effects and beam loss, are considered, 

including the effects of different lattice structure, different 

tune, the combine effect of sextupole field and space 

charge, different painting beam distribution, etc. The 

beam loss and emittance growth are compared for 

different conditions. The simulation results are the 

foundation of physics design and the choice of design 

parameters. To control the uncontrolled beam loss, the 

transverse and momentum beam collimation systems are 

designed. With the beam collimation, the uncontrolled 

beam loss can be compressed to less than 1W/m. 

The present lattice of the CSNS/RCS is a triplet based 

fourfold structure, as shown in Fig. 1. Table 1 shows the 

main parameters of the lattice.  

 

Table 1: Main Parameters of the Lattice 

Circumference (m) 228 

Superperiod 4 

Number of dipoles 24 

Number of long drift 12 

Total Length of long drift (m) 75 

Betatron tunes (h/v) 4.82/4.80 

Chromaticity (h/v) -4.3/-8.2 

Momentum compaction 0.041 

RF harmonics 2 

RF Freq. (MHz) 1.0241~2.3723 

Trans. acceptance (m.rad) 540 

RF Voltage (kV) 165 

 

 

SPACE CHARGE EFFECTS  

DURING INJECTION 

Painting Schemes 

Two painting schemes—correlated and anti-correlated 

painting—are both available in the injection of 

CSNS/RCS. For correlated painting, both the emittance x 

and y are painted from small to large during injection. It 

produces a rectangular transverse beam profile without 

space charge effects. For anti-correlated painting, the 

emittance is painted from small to large in one direction, 

and from large to small in the other direction (vertical 

direction here). It produces an elliptical transverse beam 

profile without space charge effects. In the case of 

disregarding space charge effects, the painting beam 

density is uniform. Figs. 2 and 3 show simulation results 

of painting with and without space charge effects. The 

upper left and right graphs show the particles distribution 

in (x, x’) and (y, y’) phase space respectively. The lower 

graphs show the distribution in (x, y) space and the 

emittance evolution during painting. 

 
 

* wangs@ihep.ac.cn 
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Fig. 1:  Twiss parameters of one superperiod. 

 

 

As shown in Fig. 2 (a) and Fig. 3 (a), the results of 

painting without space charge effects are just as predicted. 

Due to space charge effects, some halo particles are 

generated, and beam emittance is increased somehow.  

 

 

 

 
(a) Without space charge 

 

 
(b) With space charge 

 

Fig. 2: Particles distributions and emittance evolution 

from correlated painting without (a) and with (b) space 

charge effects. 

 

 

 
(a) without space charge 

(b)  

 

 
(b) including space charge 

 

Fig. 3: Particles distributions and emittance evolution 

from anti-correlated painting without (a) and with (b) 

space charge effects. 

 

Fig. 4 shows Poincaré maps of one test particle during 

different injection time-periods by correlated painting, in 

which the filamentation is observed. For anti-correlated 

painting, since both x and y emittance are painted from 

small to large during injection, the beam profile is 

susceptible to transverse coupling. However it has the 

capability of painting over the halo, while in the case of 

anti-correlated painting, it is immune to the transverse 

coupling, but it does not have the capability of painting 

over the halo in one direction (vertical shown here) [2]. 

 

    
turn 1~32          turn 150~181 

    
turn 1~32           turn 150~181 

 

Fig. 4: Poincaré maps of one test particle during different 

injection time-periods from correlated painting. 

 

Injection Painting Optimization 

In order to reduce the transverse space charge effects, it 

is essential to produce a uniform longitudinal distribution. 

As shown in Figure 5, obtained by using ORBIT, much 

uniform longitudinal distribution can be obtained by using 

momentum offset in the injection painting procedure. 

To investigate the diffusion motion of particles, all the 

particles are divided into three parts in (y, y’) phase 
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space, outer part, middle part and inner region, as shown 

in Fig. 6, indicated by different colours. Due to space 

charge effects, Diffusion occurs among different parts, as 

shown in Figure 6(a). The diffusion results in the change 

of beam distribution, and the generation of halo particles. 

In order to produce much uniform transverse distribution 

and reduce halo production, two ways were tried to 

optimize the painting orbit bumps: painting a smaller 

emittance than the target value (case 1), injecting less 

particles in the inner and outer region of the emittance 

space (case 2). However, for case 1, this way results in 

small RMS emittance and large tune shift, which may be 

troublesome in the presence of magnet errors [3]. Fig. 7 

and Fig. 8 show beam distributions and tune spreads of 

test particles with different injection painting respectively. 

The beam distribution in case 1 has a peak top, and large 

tune spread. The beam distribution of case 2 with a 

relatively flat beam density is more uniform. 

 

 

Fig. 5:  Particle distributions in (, E) phase space after 

painting with (top) and without (bottom) momentum 

offset. 

 

 
            (a)                                             (b) 

 

Fig. 6: Particles distribution in (y, y’) phase space after 

painting with (a) and without (b) SC from the anti-

correlated painting. 

SPACE CHARGE EFFECTS DURING 

RAMPING 

The initial beam distribution is produced by anti-

correlated painting with a momentum offset. Fig. 9 shows 

the time evolution of the 99% unnormalized emittance in 

early-stage ramping. The unnormalized emittance should 

be depressed with  1/ without space charge effects. 

Due to space charge effects, there is apparent emittance 

growth in horizontal direction at the beginning of 

ramping. The study is focused on this time-period. 

 

 
           (a)                     (b) 

 
           (c)                     (d) 

 

Fig. 7: Beam distributions in (y, y’) phase space after 

painting by different injection orbit bumps: (a) uniform 

painting; (b) injecting less particles in the inner and outer 

region of the emittance space; (c) painting a smaller 

emittance than the target value; (d) uniform painting 

without SC. 

 

 
Fig. 8: Tune spreads of test particles with different 

painting distributions: (a) injecting particles a smaller 

emittance than the target value; (b) injecting less particles 

in the inner and outer region of the emittance space; (c) 

uniform painting. 

 

Fig. 10 shows diffusion of particles among different 

parts during ramping. The red dots indicate the 

distribution just after the painting (200 turns). The blue 

dots indicate the distribution after 400 turns. Some 

particles move towards the inner region of the phase 
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space during ramping, while some towards the outer 

region. The diffusion among three parts is clearly 

observed.  

 

 
Fig. 9:  Time evolution of the 99% emittance. 

 

 

 
(a) particles in the outer region 

 
(b) particles in the middle region 

 
(c) particles in the inner region 

 

Fig. 10: Diffusion of particles among different parts 

during ramping. 

 

 

Since the simulation does not include magnet errors, the 

emittance growth and particle distribution change must be 

driven by the beam itself (space charge force). There are 

several possible driving mechanisms such as (1) pure 

evolution of any coherent mode not related to resonance 

of an individual particle; (2) pure nonlinear resonance 

originating from the space charge; (3) coupling resonance 

with the coherent modes [4].  More work will be done to 

study the mechanism here. 

 

 
Fig. 11: Time evolution of the 99% emittance with and 

without momentum offset during injection. 

 

  
Fig. 12: Time evolution of the vertical 99% emittance 

with different initial distributions. Lines (a) (b) (c) 

indicate using the particles distribution of (a) (b) (c) in 

Fig. 7 as the initial distributions, respectively. 

 

Simulations were also made to study emittance growth 

due to different painted distributions. The effects of 

different longitudinal distribution are first investigated. 

As described in Figs. 5 and 11, with a momentum offset 

during the injection painting, the longitudinal distribution 

after painting is much uniform and the emittance growth 

during ramping is less. Fig. 12 shows the time evolution 

of the vertical 99% emittance during ramping for different 

initial distributions. All the initial distributions are 

produced by anti-correlated painting (by 200 turns) with a 

momentum offset, but with different injection orbit 

bumps. All the initial transverse distributions show a 

similar trend of emittance growth without magnet errors. 

 

EMITTANCE GROWTH VS. TUNES 

The dependence of emittance growth on tunes was 

considered. Tunes around design values of 4.82/4.80 and 

with a split of 0.5 were compared. In simulations, anti-

correlated painting scheme without momentum offset was 

adopted. Further work will be done to study the tune 

effects in the case of using momentum offset in the 

injection painting procedure. Fig. 13 plots the maximum 

99% emittance during ramping vs. the bare horizontal 

tune, where the vertical tune was fixed to 4.78. Fig. 14 

presents the time evolution of the 99% emittance with 

different bare tunes. There is less emittance growth at the 

tune of just below the integer tune. For the tune 4.82/4.36, 

there is large emittance growth. Fig. 15 shows the 

Poincaré maps of two test particles during ramping with 
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the bare tune 4.82/4.36, in which  particles are trapped by 

the structure resonance Qy=4. Because the magnet errors 

are not included in the simulations, the structure 

resonance is excited by space charge force [5]. It is 

apparent that the choice of tune is very important. 

 

 
Fig. 13: Maximum 99% emittance during ramping vs. the 

bare horizontal tune. 

 
Fig. 14: Time evolution of 99% emittance with different 

bare tunes. 

 

 

 

 
 

Fig. 15: Poincaré maps of two test particles during 

ramping with the bare tune 4.82/4.36. 

 

DEPENDENCE ON LATTICE TYPE 

To investigate the dependence of emittance growth on 

the lattice type, another two lattices, named as Lattice-B 

and Lattice-C, were introduced in simulation for compare. 

As shown in table 2, the lattice B consists of FODO cells 

in the arcs and doublet in the dispersion free straight 

sections, while Lattice-C consists of full FODO structure. 

In this section anti-correlated painting scheme without 

momentum offset were still adopted. Fig.16 shows the 

time evolution of the 99% emittance for different lattice 

types. Lattice-C looks better in the point of view of 

emittance growth. 

SUMMARY 

Space charge effects have been studied by simulations, 

including the space charge effects in painting, ramping, 

and the dependence of space charge effects on the bare 

tune and lattice type. Some injection painting 

optimizations were made for decreasing halo formation 

and tune spread. The choice of bare tune is very 

important. The choice of lattice structure also influences 

the emittance growth. All the simulations in this paper do 

not include the magnet field errors. Further work will 

involve the combine effects of space charge effects 

magnet field errors. 
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Table 2: Parameters of lattices 

 Lattice-B Lattice-C 

Structure FODO+ 

Doublet 

FODO 

Circumference (m) 248 239.6 

Super-periods 4 4 

Qx/Qy 5.86/5.78 5.86/5.78 

Max. straight (m) 9.3 4.5 

 

 

 
(a) horizontal 

 
(b) vertical 

 

Fig. 16: Time evolution of the (a) horizontal and (b) 

vertical 99% emittance. 
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OPTIMIZATION ALGORITHMS FOR ACCELERATOR PHYSICS 
PROBLEMS* 

B. Mustapha# and P. N. Ostroumov 
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Abstract 
Optimization tools are needed in every step of an 

accelerator project, from the design to commissioning to 
operations. However, different phases have different 
optimization needs that may require different 
optimization algorithms. For example, a global optimizer 
is more appropriate in the design phase to map the whole 
parameter space whereas a local optimizer with a shorter 
path to solution is more adequate during operations to 
find the next best operating point. Different optimization 
algorithms are being used in accelerator physics, we 
mention in particular standard algorithms such as least 
square minimization and evolutionary algorithms such as 
genetic optimization. Over the years, we have developed 
several optimization tools for beam tracking codes to 
include 3D fields and SC effects. Including particle 
tracking in the optimization process calls for parallel 
computing. We will review the different algorithms and 
their implementation and present few highlight 
applications. 

OPTIMIZATIONS IN ACCELERATOR 
PHYSICS 

Optimizations are heavily used in the design phase of 
an accelerator project, but they are much less used to 
support the commissioning and operations once the 
machine is built. During the design phase, optimizations 
are used in the design of the different beam line elements: 
magnets, rf cavities, etc. They are also used for the lattice 
optimization to find the appropriate sequence of elements 
and drift spaces. Once the lattice is defined more 
optimizations are used to determine the appropriate 
element settings for optimal beam dynamics and beam 
quality. This is often iterated with the lattice design. Once 
the accelerator is built, more effort is dedicated to 
hardware problems than to developing a realistic model of 
the machine. We believe that using the appropriate 
optimization tools during the commissioning should help 
better understand the machine’s behaviour and expedite 
the delivery of the first beam. Fits to reproduce the 
experimental data using a model should significantly 
improve the predictability of the model to use for real-
time machine operations. Often, simplified models (1D, 
single particle) are used to support daily machine 
operations [1]. Simple models have the advantage of 
being fast and able to describe the overall behaviour of 
the machine while detailed 3D models are slow and still 
cannot reproduce the details seen in the data [2]. We 
believe that a significant effort should be dedicated to 

developing more realistic 3D models before being able to 
use them to support real-time machine operations. Once 
such models are fully developed large scale parallel 
computing could be used for fast turn-around simulations 
and optimizations. 

ELEMENTS OF AN OPTIMIZATION 
PROBLEM 

The first important step is the proper definition of the 
optimization problem. An optimization problem has one 
or more objectives which are the important quantities or 
qualities characteristics of the problem that you would 
like to optimize.  These objectives depend on the 
parameters of the problem which are the variables 
affecting the outcome or the solution to the problem. It is 
usually a good practice to choose the parameters to which 
the solution is more sensitive. These parameters could be 
subject to constraints and or correlations which define the 
limits of the parameter space. The simplest case is where 
the parameters are independent with lower and upper 
bounds. If the parameters are correlated, it is usually 
recommended to reduce them into a set of independent 
parameters. The last and most important element of an 
optimization problem is the choice of the appropriate 
optimization algorithm. Depending on the nature of the 
problem, the most appropriate algorithm could be a local 
optimizer, a global one, a standard or an evolutionary. 

LOCAL VERSUS GLOBAL 
OPTIMIZATION ALGORITHMS 

It is usually not hard to find a local minimum of an 
objective function. What is hard is to prove that the 
minimum found is a good one and it is even harder to 
prove that a minimum is an absolute or a global one. A 
local optimizer usually starts with a first guess then finds 
a direction that minimizes the objective function and 
moves one step in that direction. The procedure is 
repeated iteratively until no more progress could be made. 
A local algorithm is usually fast because it explores the 
parameter space along a single path defined by the 
minimization direction adjusted at every step. In contrast, 
a global optimizer should explore the entire parameter 
space and eventually find all local minima before finding 
a global one. It should also prove that the minimum found 
is a global one which makes it much slower than a local 
optimizer. Luckily, not all problems or applications 
require global optimizations. A global optimizer is more 
appropriate to use in the design phase of an accelerator 
project to map the whole parameter space and make sure 
not to miss the best set of design parameters. Such a 
global optimizer should also find all feasible solutions to 
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help make compromises if needed. On the other hand, a 
local optimizer with a shorter path to solution is more 
adequate to support accelerator operations. In this case, 
we usually start from a good starting point to find the next 
best operating point by returning few elements on the 
accelerator. The time to solution is a very important 
parameter in the choice of the appropriate optimization 
algorithm. A good optimizer should also optimize the 
path to the best solution. 

STANDARD VERSUS EVOLUTIONARY 
OPTIMIZATION ALGORITHMS 

Standard optimization algorithms [3] are the most 
common and widely used. They usually have a single 
objective function to optimize which could be a weighted 
sum of multiple objectives. Derivatives of the objective 
function with respect to the optimization parameters are 
usually required. A single trial solution is evaluated at 
every iteration. Evolutionary algorithms are more recent 
[4] and are based on the “Theory of Evolution and 
Natural Selection”, where only the best survive. Multiple 
objective functions could be included in the optimization 
without the requirement of knowing their derivatives. 
Multiple trial solutions are evaluated at every iteration 
which gives the global nature of evolutionary algorithms. 

Examples of Standard Optimization Algorithms 
The first example of standard optimization algorithms 

is the simplex method [5], which does not require the 
function derivatives. It starts by building a simplex 
consisting of the first guess and a base of feasible 
solutions in the parameter space. Iteratively, the worst 
solution is replaced by a better one built from the base. 
The iterations stop when no more progress could be made 
or at a predefined cut-off error on the solution. The 
second example is the gradient descent method [6] which 
require the first derivatives of the objective function on 
the optimization parameters. The derivatives are used to 
determine the minimization direction pi at every iteration 
i:                      where f is the objective function and B is a 
symmetric non singular matrix. In the case where B is the 
matrix identity I the method is called the steepest descent 
method. The third example is the Newton method [7] 
which requires both the first and second derivatives of the 
objective function. In this case B is the matrix of second 
derivatives also known as the Hessian matrix H. The 
fourth example is the Quasi-Newton method [8] which 
uses the first derivatives but keeps updating the matrix of 
second derivatives at every iteration. In this case B is an 
approximation to the Hessian matrix and does not require 
extra computing effort for the second derivatives as for 
the Newton method. Each of these methods is actually a 
class of methods with a variety of implementations.  

Example of Evolutionary Algorithm:A Genetic 
Optimizer 

A genetic optimizer [9] starts with a set of solutions 
randomly generated inside the parameter space. The 

solutions are evaluated and ranked based on the 
objectives and constraints of the problem to select a 
subset of best solutions. The selected solutions are then 
used to generate the next population of solutions by 
crossover, mutation or other using predefined rates. The 
evaluation and ranking procedure is repeated for the new 
set of solutions until no progress could be made or a 
stable set of best solutions is obtained. For a given 
solution, the array of parameter values plays the role of a 
gene. Figure 1 shows the different ways of generating the 
next generation of solutions from the selected set of best 
solutions, namely crossover, mutation and random. The 
random generation of new solution could be turned on at 
the beginning for better sampling of the parameter space 
then turned off.   
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Figure 1: Three mechanisms to generate off-springs from 
selected best solutions. Crossover of two solutions on the 
left, mutation of a single solution in the middle and new 

random solution on the right. 

PARALLEL OPTIMIZATION 
ALGORITHMS 

 
Standard algorithms are serial in nature because the 

direction of the next iteration is decided based on the 
outcome of the current one. The fact that a single solution 
is evaluated per iteration makes these algorithms 
parallelizable only at the level of the objective function 
and derivatives evaluation. For example, a least square 
minimization where the objective function is of the form: 

 
 

 
could be parallelized by parallelizing the sum for large N. 
Optimizations using multi-particle tracking could be 
parallelized by parallelizing the tracking, the Poisson 
solver and the statistics calculations for large number of 
particles. A global optimizer may be parallelized by 
subdividing the parameter space and assigning the 
different sub-spaces to different processors. 

In contrast Evolutionary algorithms are parallel in 
nature because at every iteration multiple solutions are 
evaluated independently which makes them well suited 
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for parallel processing with minimal communication. It is 
however not easy to parallelize the ranking, selection and 
offspring generation which are usually assigned to the 
master process. This makes evolutionary algorithms more 
suitable for optimization using multi-particle codes with 
realistic 3D external and space charge fields. Usually no 
parallel particle tracking is required unless a very large 
number of particles is needed for the optimization 
problem. In practice, any tracking code with space charge 
calculations could be used. A higher level parallel layer is 
often used to manage the generation, ranking and 
selection of trial solutions and every process calls the 
code when needed. In our beam dynamics code TRACK 
[10] this layer was built-in within the code. 

APPLICATIONS IN BEAM DYNAMICS 
OPTIMIZATION 

Automatic longitudinal tuning of a multiple 
charge state ion beam before a stripper 
In this application, a longitudinal fine-tuning procedure 
was developed specifically for a multiple charge state 
beam to minimize its longitudinal emittance right before a 
stripper [11]. The beam should reach the stripper in the 
form of an up-right ellipse in the (Δφ, ΔW) plane to 
minimize the emittance growth from the energy straggling 
effect in the stripper. This could be realized by matching 
the beam centroids and Twiss parameters of the different 
charge state beams. The objective function in this case is: 
 
 
 
 
where W0 is the desired beam energy and εW is the 
associated error.  εΔW, εΔφ and εα are the allowed errors on 
the relative energy, phase and α shifts of the individual 
charge state beams from the central beam.  The fit 
parameters in this case are the RF cavities phases and 
amplitudes in the section up-stream of the stripper. Figure 
2 shows the results of the fit for a five charge state 
uranium beam in the medium energy section of the RIA 
driver linac. This optimization reduced beam losses in the 
high-energy section of the linac by a significant factor as 
seen on figure 3. 
    

 

Figure 2: The left 4 plots show the phase and energy 
oscillations of the five charge states around the central 

charge state before and after applying the tuning 
procedure. The right 2 plots show the corresponding beam 

ellipses on the stripper before and after tuning. 

 

 

Figure 3: Beam loss in the RIA driver linac before and 
after applying the longitudinal tuning procedure. The two 
peaks correspond to the location of the strippers and the 

scatter loss is in the high energy section which has 
reduced significantly after fine tuning is applied. 

A realistic corrective steering algorithm 
We have recently developed a realistic corrective 

steering procedure [12]. A simplified algorithm is 
presented in figure 4. 

 

To have the beam centered on all monitors M=0
Solve the equation A*C + B = 0 for C

Consider an accelerator section with Nm monitors and Nc correctors

Apply the values of C to correct the beam

Determine the response function of monitors to correctors

M: array of monitors readings
C: array of correctors strengths
A: response function matrix
B: monitors readings for C=0

In the matrix form:            M = F(C) = A*C+B

 

Figure 4: Algorithm for the corrective steering procedure. 

 
In TRACK implementation, instead of solving the 

matrix equation A*C+B=0 for the array of corrector field 
strengths C, with A being the response function of 
monitors to correctors and B the monitors readings for 
C=0, we perform a least square minimization of the 
equivalent function given below: 

 
 
 

 
In this way, we can include the monitor precision σim and 
the maximum corrector field strength Cmax in the solution. 
Monitors with different precisions will have different 
weights in the minimization procedure. The minimization 
should lead to an approximate solution in the case of an 
over-determined problem (more equations than variables) 
and to the best solution in the case of multiple solutions 
(under-determined problem). This realistic corrective 
steering procedure could very well be applied in the 
design phase of an accelerator project to determine the 
monitors and correctors requirements for an effective 
beam center correction as well as in the control room of 
an operating accelerator. The results of its application 
during the design of the HINS project front-end linac [13] 
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being built at Fermilab are shown on figure 5. After 
multiple iterations, the optimum numbers and locations of 
correctors and monitors for an effective correction were 
determined. 
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Figure 5: Beam position and angle centers (left) and 
beam emittances and envelopes (right) before (red 

curves) and after (blue curves) applying the correction 
procedure for 100 randomly misaligned linacs. In green 
is the ideal case without misalignment and in black is 

the aperture. 

 

Design optimization of a chicane in an ultra-
low emittance electron injector 

We have recently implemented a parallel genetic 
optimizer into the beam dynamics code TRACK. As a 
first application we used it for the design optimization of 
the first chicane of an electron injector for an X-FEL-O 
linac [14]. The objective was to minimize the transverse 
emittance at the end of the chicane. The parameters were 
the quadrupoles and solenoids strengths as shown in 
figure 6. We were able to reduce the transverse emittance 
by about 10% from a manually optimized case which is 
very critical for an ultra-low emittance injector. 

 

 

Figure 6: Optimized beam in the first chicane of an 
electron injector for an X-FEL-O linac. 

 
To study the convergence of the genetic optimizer we 

compared the corresponding results to the results from a 
2D map in the case of two parameter optimization. Figure 
7 shows the results for both cases proving the 

convergence of the genetic optimizer in 5 iterations 
corresponding to a total of 500 trial solutions. Large scale 
optimizations are underway for a larger section of the 
linac. 

  

Figure 7: Comparing the result of a 2D map (left) with 
the result of the genetic optimizer (right) for a two 

parameter optimization problem. 

POTENTIAL APPLICATION: THE 
MODEL DRIVEN ACCELERATOR 

Concept and Motivations 
The concept of the model driven accelerator is to develop 
and use a computer model to support real-time accelerator 
operations. Presently, no accelerator in the world could 
fully rely on a computer model for its operations. The 
main reason is a discontinuity between the design and 
operation phases of an accelerator project. Among the  
factors contributing to this discontinuity are: 1- 
Simulations in the design phase assume almost perfect 
conditions and cannot reproduce the real machine, 2- 
Actual elements specification and performance are 
usually different from their original design and in most 
cases 3- Not enough diagnostic devices to characterize the 
machine. The lack of a realistic model to support the 
commissioning and operations results in significant delay 
in the deployment of a new machine and a lot of time 
spent on machine tuning during operations. This usually 
leads to low availability and high operating cost of the 
machine. For example, a complex system such as the 
proposed FRIB facility [15], where primary beams from 
proton to uranium up to 600 MeV/u are used to produce 
beams of rare isotopes all over the map, cannot afford not 
to have a computer model to support its operations. 

To bridge the gap between the design and operation 
phases we propose to develop a realistic model of the 
machine. Among the benefits of such a model is fast 
tuning for the desired beam conditions and fast retuning 
to restore the beam after a failure. This should 
significantly improve the availability of the machine and 
reduce its operating cost. 

Requirements for the realization of the Model 
Driven Accelerator 
The main requirements for the realization of the model 
driven accelerator could be summarized in the 
development of a 3D beam dynamics code with the 
appropriate set of optimization tools and large scale 
computing capabilities. A multi-particle beam dynamics 
code is more realistic than matrix-based and single-
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particle codes because it supports 3D fields, includes 
fringe fields and appropriate space charge calculations. It 
also allows more detailed simulations necessary to study 
eventual beam loss and produce data similar to the 
measured data. Such a code should also include a large set 
of optimization tools. Optimization tools are needed not 
only for design optimization but also to tailor the 
computer model to the actual machine to be useful for 
real-time operations. Multi-particle optimizations usually 
involve tracking a large number of particles for large 
number of iterations which is very time consuming and 
requires large scale parallel computing. Therefore the 
beam dynamics code should have parallel computing 
capabilities. 

A small scale realization of the Model Driven 
Accelerator 
We have recently succeeded to extract, accelerate, 
analyze and recombine a two-charge state DC bismuth 
beam from an ECR ion source [16]. The beam is perfectly 
combined at the point of injection into a subsequent RF 
accelerator. We consider this as a small scale realization 
of the concept of the model driven accelerator. The beam 
dynamics code TRACK was used first to design the beam 
line and then to support the operation by predicting the 
elements settings required to recombine the two charge 
state beam at the end of the LEBT. Figure 8 is a general 
3D view of the prototype 2Q-LEBT beam line.  

 

 

Figure 8: General 3D view of the 2Q-LEBT 

 
For a realistic beam dynamics simulation, 17 beams (O 

and Bi) are tracked simultaneously from the ion source 
through the LEBT with a total current at the source of 
about 2 mA. We assumed a 4D water-bag initial 
distribution for all beams and a 50 % charge 
compensation factor in non-electric devices and 0% in 
electric devices. Realistic 3D models were developed and 
used for all beam line elements. In order to tailor the 
TRACK model to the actual beam line we had first to 
determine the initial beam parameters at the source. To do 
so we had to develop a new procedure to fit the beam 
profiles measured at the middle plane by varying the 

beam parameters at the source. Figure 9 shows the result 
of the fit for a two-charge state 75-kV bismuth beam 
(20+, 21+). The transverse emittances and Twiss 
parameters obtained by fit show that despite the axial 
symmetry of the extraction region, the beam is not axial 
symmetric which could be explained by a non symmetric 
plasma boundary inside the ion source. 
 

 

Figure 9: Horizontal (left) and vertical (right) beam 
profiles. The curves are the measured profiles and the 

histograms are the result of the TRACK fit. 

 
Once the initial beam conditions are known, we used the 
computer model to find the element settings for the 
desired operation mode. A new fit procedure was 
developed to produce symmetric beam dynamics between 
the two bending magnets as this is a necessary condition 
to recombine the multiple charge state beams. Another fit 
was also used to find the setting of the last triplet for a 
perfect combination at the end of the LEBT where a beam 
profile monitor and a Pepper-Pot emittance meter are 
installed. Figure 10 shows the measured beam profiles 
and figure 11 shows the Pepper-Pot images at the end of 
the LEBT. A comparison of the element settings predicted 
by TRACK and the actual setting to combine the two 
beam shows maximum deviation of ~ 10 % which could 
be improved by checking the assumptions made in the 
simulations. We notice that the two charge state beams 
are almost perfectly combined. 

 

Figure 10: Measured beam profiles at the end of the 
LEBT for the individual Bi 20+ and 21+ beams and the 

combined beam. 

 

20+

21+

20+&21+

20+

21+

20+&21+

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-6 -4 -2 0 2 4 6
X (cm)

a.
u.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-3 -2 -1 0 1 2 3
Y (cm)

a.
u.

0

200

400

600

800

1000

1200

1400

1600

1800

-4 -3 -2 -1 0 1 2 3
X (cm)

a.
u

0

200

400

600

800

1000

1200

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Y (cm)

a.
u.

Proceedings of ICAP09, San Francisco, CA FR1IOPK01

Beam Dynamics, Other

249



 

Figure 11: Pepper-Pot images of the combined beam 
(left) and the individual beams (right). Bi 20+ is in blue 

and 21+ is in red. 

 

Further developments towards the Model 
Driven Accelerator 

To be able to use a realistic 3D model online for real-
time machine operations, we should be able to perform 
large scale optimizations on large number of processors 
(32768 processors or more). More optimization tools need 
to be developed for the commissioning phase to tailor the 
computer model to the actual machine by fitting the 
measured data. For this purpose, interfaces between the 
beam diagnostic devices and the computer model are 
needed to calibrate and analyze the data to input to the 
code. Numerical experiments could be used to test and 
fine tune the tools before implementation to the real 
machine by producing detector-like data. Only after all 
these developments, that a realization of the model driven 
accelerator will be possible. As a full scale application, 
we are proposing to apply this concept to the 
superconducting linac ATLAS at Argonne and to other 
existing machines. 

SUMMARY 
Optimization tools and methods are needed in every 

phase of an accelerator project, namely the design, 
commissioning and operations. No single algorithm could 
satisfy all these optimization needs. Different algorithms 
are being used in accelerator physics: local, global, 
standard and evolutionary. We have briefly reviewed and 
compared different classes of optimization algorithms and 
presented few applications in beam dynamics 
optimization. The ultimate goal of realizing the concept of 
the “Model Driven Accelerator” will require the 
development of a realistic 3D beam dynamics code with 
the appropriate set of optimization tools and large scale 
parallel computing capabilities. For new machines, we 
should take advantage of the commissioning phase to 
bridge the gap between the original design and the actual 
machine by tailoring the computer model to the machine. 
Obviously, a significant development effort is still needed 
for a full scale realization of the concept of the “Model 
Driven Accelerator”.   
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Application of Multiobjective Genetic Algorithm in Accelerator Physics∗

L. Yang† , NSLS-II, Upton, NY 11973, USA
D. Robin, F. Sannibale, C. Steier, W. Wan, ALS, Berkeley, CA 94720, USA

Abstract

The optimization of an accelerator system is important
in both design and upgrade stage, and many of them are
Multiobjective problems, i.e. searching for a balance be-
tween several quantities. A full understanding of this bal-
ance could provide the decision maker more information
on the final choice. In this paper we present the application
of an optimization algorithm called Multiobjective Genetic
Algorithm (MOGA) in two problems. One is the lattice of
a synchrotron light source (take ALS as an example) and
the other is a VHF gun.

INTRODUCTION

The optimization of an accelerator system is obviously
an important problem in both design and upgrade stage.
Depending on different system, storage ring or LINAC,
collider or light source, this could be minimizing the emit-
tance, optimizing beta functions and bunch length. For a
optimization algorithm, the challenges come from the con-
vergence of solutions, constraints on variables and objec-
tive functions, conflicting objective functions. In this pa-
per we will introduce an algorithm called multiobjective
genetic algorithm (MOGA), show the applications on two
problems, one is the lattice optimization for the Advanced
Light Source (ALS), a problem with strong constraints in
both variable space and objective space. The other is VHF
Gun, in which a single simulation cost a couple of hours,
therefore in order to get result in a reasonable amount of
time, the convergence speed becomes very important.

GENETIC ALGORITHM AND
MULTIOBJECTIVE OPTIMIZATION

Genetic algorithm (GA) is a search technique in opti-
mization, it was developed in 1970s [8, 7, 4] and now as a
class of evolutionary algorithms (EA). The outline of Ge-
netic Algorithm (GA) usually has four steps, first a set
of numbers in parameter space are chosen, i.e. the ini-
tial population, then they are paired to produce new can-
didate, we call them parents and children. This is called
crossover. The third step is mutation, where children are
given a random change according to certain strategy. The
last step mimics the nature select process, where the ob-
jective functions are evaluated for each child, and the chil-
dren are sorted according to their corresponding objective

∗Work supported by the Director, Office of Science, U. S. Department
of Energy under Contract No. DE-AC02-05CH11231.

† lyyang@bnl.gov

functions. This is a complete generation, and some good
children candidate are allowed to continue the evolution.

In the early development, the multiobjective optimiza-
tion problems (MOP) was converted to a single objective
optimization problem by weighted sum method. Later,
the truly multiobjective optimization with nondominated
sorting was developed based on GA [5]. The detailed
mathematical definition of dominance can be found in
ref. [4, 2, 10]. It extends the comparison between two
scalars to two vectors.

MOGA has been introduced into photoinjector de-
sign [2] and accelerator lattice optimization [6, 10]. The
comparison of MOGA and GLASS is also shown in [9].

Algorithm 1 Multi-Objective Genetic Algorithms
1: Initialize population (first generation, random)
2: repeat
3: select parents to generate children (crossover)
4: mutation(children)
5: evaluate(children)
6: merge(parents, children).
7: non-dominated sort(rank)
8: select half of (parents, children)
9: until reach a generation with the desired convergence

to the PO set

The structure of our MOGA implementation is shown in
algorithm. 1. The first population is initialized with uni-
formly distributed random numbers, as we will see in stor-
age ring lattice optimizations, most of these random popu-
lations at first did not give physical solutions due to trans-
verse stable condition.

Two parents are chosen from the population, and used
to generate two children. The newly generated values fol-
lows certain probability density function (PDF) as shown
in Fig. 1. Following Ref. [4] we are using polynomial PDF
with one parameter η to control the shape. This form is
convenient to include the boundaries without artificial cuts
when the new values are outside of it.

The “new born” children are applied with an operation of
mutation, this mimics the effect from nature environment.
We also choose a polynomial PDF to describe it. Fig. 2
shows the probability of the old value x = −1 will be mu-
tated to. It has equal probability to go less or greater than
-1.

After the new generation is produced, we then evalu-
ate the objective functions, which are the lattice functions
in our case. The results are ranked based on their objec-
tive functions and the violation to the constraints. Here
we also follow Dr. Deb’s approach [5], where Nondomi-
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Figure 1: PDF for crossover. This shows the variable
within range [-3,5] and two parents are at -1.5 and 2. η
controls different shape of PDF.
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Figure 2: PDF for mutation. Here shows PDF of an ex-
ample variable defined in range [-3,5] with a value -1. η
controls the shape of PDF.

nated sorting is used to find the Pareto optimal. This pro-
cess is repeated for the non-Pareto set. Those violating the
constraints have the lowest rank. A simple way to do this
would be building up a table (or matrix):

The table represents “dominance” relations between
each pair. Those candidates with empty column are not
dominated by any one and are called “nondominated set”.
Obviously the nondominated set has a rank 1. The can-
didates who are violating the constraints are not shown in
Table. 1. They can have a similar table, but anyone of them
are dominated by anyone in Table. 1.

LATTICE OPTIMIZATION FOR ALS

We use Advanced Light Source (ALS) as an example
to apply MOGA in lattice optimization problems. The
ALS is a 3rd generation synchrotron light source located

Figure 3: Nondominated Sorting. The candidates are in
two group separated by the constraints. The arrows rep-
resent the relation of dominance, and the dashed arrow is
valid if there are no constraints.

Table 1: Dominance table.
a1 a2 a3 a4 b1 b2 c1 c2

a1 1 1 1 1
a2 1 1
a3 1 1 1
a4 1
b1 1 1
b2 1
c1

c2

at Lawrence Berkeley National Laboratory optimized for
the generation of soft x-ray. The ALS is 200 m in circum-
ference and consists of 12 sectors. The lattice structure of
each of the sectors is a triple bend achromat. All sectors are
the same with the exception of three sections symmetrically
distributed along the ring where the central dipole is super-
conductive. In this paper we only optimize the sectors with
normal conducting dipoles, and the three superconductive
bends then can be matched.

The first problem we applied to optimize is the emittance
and beta function. In this problem, the emittance as one of
the most important quantities of all light sources need to be
minimized, while the beta function in this case want to be
around 1 meter. The constraints are transverse stability, i.e.
the one turn transfer matrix should have a trace in range
[-2,2], the maximum beta function less than 30 meters, and
the maximum dispersion less than a few centimeters. The
optimal results are shown in Fig. 4 and the corresponding
brightness change are shown in Fig. 5.

The optimal results are in two isolated regions, and the
history of evolution is presented in Fig. 6.

A second optimization on high-low beta is also carried

FR1IOPK02 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

252



Figure 4: Emittance and beta function of the optimal solu-
tions.

Figure 5: Brightness and emittance. The brightness is nor-
malized by the maximum one in this plot.

out on ALS lattice. Two sectors are treated as one with high
and low beta functions in each straight section. The low
beta is about 1 meter and the high beta is about 10 meter.
The third objective function is still emittance. Fig. 7 shows
Pareto optimal set (now is a surface in 3D) projected into
βhigh-βlow plane.

The lattice optimization problems usually have many
constraints, eight in the dynamics or the practical way. As
a dynamics system, many of the randomly generated value
can not give a physical solution. This could be a serious
problem for deterministic algorithms where extra efforts
are needed when the predicted solution fails. This effort is
first considering the constraints instead of objective func-
tions, therefore is quite different direction from the orig-
inal setup for objective functions. For MOGA, this kind
of problem does not exist, since it is population based and
uses the sorting to select/deselect candidates for the next
iteration. In this way, it can easily survive the objective-
functions-constraints conflict situations mentioned before.

Figure 6: Evolution history in parameter space. The color
represents how many generation the candidate in this re-
gion can survived without being replaced by better candi-
dates

Figure 7: Low beta

In next section we also show a VHF gun optimization prob-
lem, which does not have this dynamics stability problem,
but the computing time is long and fast convergence is quite
important.

VHF PHOTOINJECTOR OPTIMIZATION

MOGA was also applied on VHF photoinjector opti-
mization at LBNL [12]. The single calculation of beam
quantity needs a few hours. This makes the algorithm
requiring derivatives (approximation by finite difference
method) not practical.

Since MOGA is population based, no interaction be-
tween evaluation of each candidate, it is very suitable for
parallelization. We used the master-slave model to run
MOGA on a cluster with 128 CPUs. All nodes carry out the
beam simulation, while the master node do extra MOGA
optimizations which is significantly small effort compared
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with dynamics simulations.

Figure 8: Caption
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Figure 9: Caption

Fig. 8 shows the layout of a very simple case, to help
our understanding of dynamics and various limitations [].
Beam is launched from the left cavity, and pass through 6
cavities. The emittance and bunch length at s = 15 meter
is obtained from Astra as objective functions. The final
optimal solutions is shown in Fig. 9.
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APPLICATION OF DIRECT METHODS OF OPTIMIZING STORAGE
 RING DYNAMIC AND MOMENTUM APERTURES

M. Borland † , L. Emery, V. Sajaev, A. Xiao, ANL, Argonne, IL 60439, USA
W. Guo, BNL, Upton, NY, 11973, USA

Abstract

Optimization of dynamic and momentum apertures is
one of the most challenging problems in storage ring de-
sign. For storage-ring-based x-ray sources, large dynamic
aperture is important in obtaining high injection efficiency,
which leads to efficient operation and protects components
from radiation damage. X-ray sources require large mo-
mentum aperture to obtain sufficiently long Touschek life-
times with low-emittance beams. We have developed effec-
tive methods of optimizing dynamic and momentum aper-
tures that rely directly on tracking using a moderately sized
Linux cluster. After reviewing the method, we describe ex-
amples of its application to APS operations, upgrades, and
next-generation storage rings.

INTRODUCTION

One of the most desirable characteristics of storage-ring-
based x-ray light sources is low emittance. To achieve
this, lattice designers use strong focusing to obtain large
horizontal phase advance per cell, leading to large chro-
matic aberrations and thus strong chromaticity correcting
sextupoles in order to obtain adequate momentum aperture
(MA). In addition, low emittance means small dispersion,
requiring yet stronger chromatic sextupoles. This leads to
small dynamic aperture (DA), making it more difficult to
accumulate beam. In extreme cases, the dynamic aperture
may be so small that sufficient lifetime is not achieved.

Ring designers commonly add extra families of sex-
tupoles to correct the effect of the chromatic sextupoles [1].
The challenge is to adjust the sextupoles to simultaneously
maximize both DA and MA. Perhaps the most common
approach is to minimize many resonance and tune varia-
tion driving terms [2]. However, one must carefully choose
the weights for these terms, based on experience and, ul-
timately, tracking. Further, we commonly want non-zero
linear chromaticity to suppress instabilities, which chal-
lenges the assumptions of the perturbative approach, since
then one does not want the higher-order chromaticities to
be minimized, but rather one needs to use them to reduce
the chromatic tune spread.

In this paper, we discuss further a tracking-based opti-
mization method [3] that has proven very successful and
is a considerable improvement over previous attempts dis-

∗Work supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.

† borland@aps.anl.gov

cussed in [4] and, in part, in [3]. Following an explana-
tion of the method, we discuss application to the Advanced
Photon Source (APS) storage ring and the NSLS-II ring.

Although our method could use any tracking code, the
ability to create fully scripted simulations is essential, since
matching and tracking must run without human interven-
tion. Thus, we use the tracking program elegant [5, 6], as
well as the SDDS Toolkit [7] and geneticOptimizer [8].

OPTIMIZATION METHOD

In this method we use many computers simultaneously
to evaluate the DA and MA for various lattice tunings (e.g.,
tunes and sextupole settings). DA and MA computation
includes radiation damping, synchrotron oscillations, and
physical apertures. After completion of a sufficient number
of evaluations, a genetic algorithm is used to “breed” more
candidate configurations based on the best configurations
seen so far. The process continues until a sufficiently good
solution is obtained or until the results stop improving.

Dynamic Aperture

For the DA, we’ve found that the area of the stable region
is a good parameter to use, with some limitations and con-
ditions. We first determine the DA by performing line scans
outward from the origin. (Scanning outward is used instead
of scanning inward in order to avoid being fooled by stable
islands.) Once the stable boundary is found, we analyze
the boundary points to clip off any regions that “stick out”
in a manner that indicates a poorly behaved boundary. An
example is shown in Figure 1: The region that sticks out on
the right side is probably related to a stable island and is not
considered a useful contribution to the DA. Finally, having
found the clipped DA boundary, we compute its area and its
contribution to the penalty function. Because the area com-
putation ignores contributions from useless regions, the op-
timized results are unlikely to display such regions.

The contribution to the penalty function is computed by
comparing the area A to the desired area Ad using a weight-
ing factor ΔA

P (A) =
{

(A − Ad)2/ΔA2 A < Ad

0 A ≥ Ad
. (1)

For APS we typically want an aperture −13mm≤ x ≤
7mm and |y| ≤ 1.5mm , giving Ad = 30μm2.

In some cases, the DA area may be misleading, for ex-
ample, a solution with large vertical aperture but small hori-
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Figure 1: Illustration of algorithm for removing pathologi-
cal features from DA results. The red boundary is used for
DA area computations.

zontal aperture. To prevent this, we limit the vertical search
region to the maximum desired vertical DA.

Momentum Aperture

To assess the Touschek lifetime, we need to know the
MA for particles scattered at many positions around the
ring, i.e., the s-dependent MA [9]. We don’t need the MA
for every lattice element, but simply for a representative
set. A good choice for a double-bend cell is to compute the
MA at several locations on either side of the dipoles. For
the APS, we compute the MA at the exit of the S1, S3, and
S4 sextupoles in the first six (out of 40) sectors.

We compute the MA’s contribution to the penalty func-
tion in a fashion similar to what was done for the DA:

P (δmin) =
{

(δmin − δdes)2/Δδ2 δmin < δdes

0 δmin ≥ δdes
.

(2)
where δmin is the minimum absolute value of the MA at
any location, δdes is the desired value, and Δδ is a weight-
ing factor. For APS, we typically choose δdes = 2.35%,
equal to the bucket half-height.

An alternative is to compute the Touschek lifetime from
the s-dependent MA using the touschekLifetime pro-
gram [10], which operates on output from elegant. As of
now, this additional step has not seemed necessary.

Importance of Errors

It is well known that the DA and MA are affected by
magnet strength and alignment errors. For example, with-
out errors the effect even of the half-integer resonance may
not be seen in a tracking simulation. Hence, we must in-
clude lattice errors in the simulations. It would seem that
in order to be realistic, we must not only include errors, but
also correct those errors using real-world techniques.

Effective methods exist for correcting linear optics [11]
and coupling (e.g., [12, 13, 14]), which is important in light

sources because of the small insertion device vertical aper-
tures. In the APS, for example, we correct lattice function
errors to the 1% rms level [15] and coupling to the 1% level.

However, correction is not essential in the simulations.
Instead, we simply use random errors that give lattice func-
tion and coupling errors at post-correction levels. This
neatly side-steps a considerable complication.

To prevent the optimizer from being misled by variations
resulting from different ensembles, we use a fixed error en-
semble for all simulations. We impart strength and roll er-
rors to quadrupoles and sextupoles only, which gives all the
essential features of a post-correction lattice. Strength er-
rors are typically 0.02% rms, which typically gives lattice
function errors of 1% rms or more. Roll errors are typically
0.5 mrad rms, which gives coupling of roughly a few per-
cent. We prefer to make the errors somewhat on the high
side, since this helps ensure a robust solution. Following
optimization, we evaluate the lattice with typically 20 to 50
ensembles to verify that the solution is robust. This is a
simple precaution that can be easily carried out with, e.g.,
elegantRingAnalysis [16]. To date, we have seen only
one case where this step yielded a surprise. This was traced
to a poor choice of integer tunes.

Software Details

The optimization uses the general-purpose script
geneticOptimizer. The user provides an input file list-
ing the independent variables along with their initial val-
ues, allowed ranges, and randomization levels. Typically
the indepenent variables are the tunes and the sextupole
strengths. (Although not required by our method, allowing
the tune to vary has been very effective and is advisable.)
The user also provides two scripts, one to run a configu-
ration and another to postprocess it. The first script (the
“run script”) performs any required matching and assem-
bles the full lattice, then performs tracking to determine
the DA and MA. The second script postprocesses the re-
sults and returns the value of the penalty function.

As an example, for some future long-straight-section lat-
tices for the APS, the run script invokes elegant four
times to perform matching of different types of sectors. Re-
matching permits wide variation of the tune without chang-
ing other essential lattice features, such as maximum lattice
functions or lattice functions at the insertion devices. It also
ensures that there are no spurious lattice function errors.
Following matching, the sector solutions are combined into
a ring solution that is evaluated for DA/MA in a single run.
Often this run also performs the final chromaticity correc-
tion using whichever sextupoles are left free.

Executing and combining the results of multiple pro-
gram runs is greatly facilitated by elegant’s thorough use
of SDDS files and the SDDS toolkit. It permits complete
automation of the process, regardless of the complexity, us-
ing only commands in a script.
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APS OPTIMIZATION

The APS storage ring has 280 sextupole magnets with
individual power supplies. Because of the symmetry of the
lattice, in the past these sextupoles have been powered in
four families. Because we run in modes with fairly high
single-bunch current while lacking a bunch-by-bunch feed-
back system, we operate with significant non-zero chro-
maticities ξx = dνx/dδ and ξy = dνy/dδ. In 24-bunch,
100-mA mode, we have ξx ≈ 7 and ξy ≈ 6, while for hy-
brid mode we require ξx ≈ ξy ≈ 11 to achieve the required
16-mA single-bunch current.

Operational Lattices

We previously reported [3] on successful application of
this technique to improvement of the APS operational lat-
tice, where we realized a 25% improvement in lifetime
for the 24-bunch mode. One of the most surprising as-
pects of this work was that in several cases the optimiza-
tion clearly favored a sextupole configuration that did not
have the same symmetry as the lattice itself. One advantage
of the new configuration is that the lifetime is now long
enough to be used in 324-bunch, non-top-up mode, which
reduces the number of lattices we must maintain. Since
then, we’ve also optimized the hybrid mode lattice and ob-
tained a 10% improvement in lifetime, which is less than
the predicted improvement of 20%, but still significant.

APS Renewal Lattices

The APS Renewal is a project to update the APS accel-
erators and beamlines. One of the most interesting aspects
of the accelerator improvements is the provision of a num-
ber of long straight sections (LSS). These will allow 7.7
m for insertion devices compared to 4.8 m at present. We
previously reported [3] on development of several such lat-
tices and successful testing of a mockup lattice with eight
symmetrically placed, emulated long straight sections.

Since then, we’ve explored several additional lattices.
Among these are four groups of two long straights sepa-
rated by a short straight (4x2LSS) and 10 symmetrically
placed long straights (10LSS). Both of these yielded solu-
tions that can be expected to work in practise. One advan-
tage of our optimization method is that it works with little
human involvement beyond initial setup, which is similar
for most configurations. Hence, we can quickly look at
many different possibilities. Further, if the optimization
converges, the solution is almost certain to be valid as it is
based to begin with on tracking.

The 4x2LSS configuration is a complex case that il-
lustrates how the commandline nature of elegant and
SDDS contribute to the implementation. APS has two types
of sectors: those with Decker distortion [17] (sectors 1
through 35) and those without (sectors 36-40). Hence, we
must match two kinds of Decker-distorted sectors, one with
a short straight on both ends and a second with a short
straight on one end and long straight on the other. A third

solution is required for the non-distorted sector. We con-
strained all sectors to have very similar tunes, finding a
solution for the normal sector first and then matching the
other sectors to that solution. Using SDDS tools allowed us
to overlay the reflected short-to-long solution on the sectors
requiring long-to-short optics, which is necessary because
we wish to independently vary all the sextupoles with-
out symmetry constraints and hence have different element
names in these sectors. Following this, we match the non-
distorted sector to the same initial and final lattice func-
tions and the same phase advance as the Decker-distorted
sectors. The linear optics solutions are then loaded over
the full lattice and the sextupoles are set according to the
values provided by the optimizer. The free sextupoles are
adjusted to give the desired chromaticity, subject to sex-
tupole strength limits. Finally, we track to obtain the DA
and MA. The DA, MA, and chromaticity are then used in
the penalty function computation, as described above.

NSLS-II OPTIMIZATION

The NSLS-II ring is currently in the construction stage.
The lattice of this 3-GeV machine features 30 sectors with
alternating long and short straight sections. Strong damp-
ing wigglers are employed to bring the emittance below
the 1-nm level. Considerable work has been done on de-
sign and optimization of this lattice for near-zero chro-
maticity [18, 19] using minimization of resonant driving
terms. Here, we report results of optimization using our
direct technique. Unlike the previous work, we allowed
all sextupoles to vary independently. (Hence, our results
do not necessarily indicate an advantage of our method.)
This choice was based on experience with APS optimiza-
tion, which taught us that symmetry constraints on the sex-
tupoles are not necessarily desirable [3].

We began with a somewhat mistuned lattice having ξx ≈
1 and ξy ≈ 3, but exhibiting poor DA and MA. The first
stage of optimization targeted ξx = ξy = 2, a DA area of
100 μm2, and an energy aperture of 3% using 40 proces-
sors, with tunes free to vary. The optimization converged
after about 500 runs (see Figure 2), moving the tunes from
νx = 33.1 and νy = 16.20 to νx = 33.25 and νy = 16.09.
This optimization gave an unnecessarily large vertical aper-
ture, so we modified the parameters to only scan to 1.5 mm
in the vertical instead of 3.0 mm, and re-optimized start-
ing from the previous best value, thus increasing the hor-
izontal aperture. We evaluated the result with 20 random
ensembles (using the typical error levels given above), giv-
ing excellent results as seen in Figures 3 and 4. Note that
multipole errors have yet to be included.

Starting from the ξx = ξy = 2, we continued the opti-
mization with a target of ξx = ξy = 4. The resulting dy-
namic aperture was nearly identical to that shown in Figure
3, while the momentum aperture was slightly reduced. Ob-
taining this new solution was relatively effortless, requiring
changing only a few values in the penalty function.
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Figure 2: Progress of initial optimization of NSLS-II for
ξx = ξy = 2. To aid convergence, the error level was
adjusted by hand at around run 150 and again at around run
350.

Figure 3: Dynamic aperture for 20 ensembles for final op-
timization of NSLS-II for ξx = ξy = 2.

FUTURE DEVELOPMENT

Although this technique is highly successful, there are
still opportunities for improvement. Using parallel DA and
MA computation[20], we could use many cores for each
job submitted by the genetic optimizer, which promises
convergence in hours instead of weeks. We could also per-
form optimization with several error ensembles rather than
a single ensemble, in order to further ensure robustness of
the final result. We are interested in trying other optimiza-
tion algorithms besides the genetic technique, e.g. paral-
lel simplex [4]. A related option is to use elegant’s in-
ternal optimizer, which will be possible in the near future
once DA and MA optimization is supported in the parallel
version. As mentioned above, a refinement of the penalty
function would be to compute the momentum aperture di-
rectly using the touschekLifetime program. One could
also envision simulating injection efficiency instead of only
the dynamic aperture, which might yield interesting new
solutions with highly asymmetric dynamic apertures (i.e.,
large on the side where beam is injected, but smaller on the

Figure 4: Momentum aperture for 20 ensembles for final
optimization of NSLS-II for ξx = ξy = 2.

other side). Incorporating lattice and coupling correction
is also desirable because it will ensure that choices of tune
are not overly constrained by correctable effects of errors.

CONCLUSION

We have developed a practical and robust tracking-based
method of optimizing storage ring nonlinear dynamics. De-
tails of the algorithm and implementation were presented.
An update on APS-related applications was given, followed
by examples of successful application to the NSLS-II ring
design.
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RadTrack: A USER-FRIENDLY, MODULAR CODE TO CALCULATE THE
EMISSION PROCESSES FROM HIGH-BRIGHTNESS ELECTRON

BEAMS∗

M. Ruelas, G. Andonian, RadiaBeam Technologies, LLC, Marina Del Rey, CA, USA
S. Reiche, Paul Scherrer Institute, Switzerland

Abstract

One of the most important goals of simulations is to ac-
curately model beam parameters and compare results to
those obtained from real laboratory diagnostics. Many
codes are specialized to either model beam dynamics or
emitted radiation. For meaningful physical results, the out-
put of these codes are stitched together in start-to-end fash-
ion. This procedure, which is often employed by simula-
tion experts, is cumbersome, and has wide room for error
in data entry or file parsing. This paper describes the de-
velopment and deployment of RadTrack: a user-friendly
code, with start-to-end support of typical accelerator and
radiation codes to accurately model laboratory diagnostics.

INTRODUCTION
The code RadTrack was developed to accurately model

observable beam parameters in a real laboratory environ-
ment. The code emphasizes modularity to address a com-
prehensive set of problems and an easily navigable user-
interface to attract a wide user base. The graphical user-
interface is built on a visualization canvas that easily gen-
erates and displays important information. The interface
is intuitive for seamless management of start-to-end sim-
ulations, which incorporate several codes of varying I/O
context. The interface allows for simple parallelization for
complex, memory demanding calculations. RadTrack was
developed as a code that can calculate beam dynamics and
emitted radiation processes in a transparent, intuitive man-
ner accessible to most accelerator scientists and students.

RADTRACK CORE
The code RadTrack was first developed as an extension

to the radiation code QUINDI [1] to calculate the radiative
effects of bending beam trajectories. The code QUINDI
was developed for a specific problem and its results have
been benchmarked to experiments at the Brookhaven Na-
tional Laboratory Accelerator Test Facility [2]. RadTrack
builds upon the code in a number of ways, while also in-
corporating other desirable features.

The RadTrack core code is broken down into a num-
ber of modular steps. The particle trajectories are calcu-
lated using Q-Tracker, an extension to the code QUINDI.
Q-Tracker is a simple particle tracker, with trajectories de-
termined by the Lorentz force law, which outputs the 6-
dimensional phase space used by RadTrack. The radia-

∗Work supported by DOE Grant No. DE-FG02-08ER85018

tion field solver is a modified version of the existing code
QUINDI. The radiation emission is calculated using the
Lienerd-Wiechert potentials [3]:

~E (r, t) =
e√
4πε0

 ~n− ~β

γ2
(
1− ~β · ~n

)3
R2


ret

+

~n×
[(
~n− ~β

)
× ~̇β

]
c
(
1− ~β · ~n

)3
R


ret

where ~n is the unit vector pointing from the radiation point
to an observation point and R is the distance to the obser-
vation point. The magnetic field is derived from

~B (r, t) =
[
~n× ~E (r, t)

]
ret

The fields in the above relations are calculated at the re-
tarded time t′ = t+R(t)/c.

The RadTrack modular approach separates the functions
of particle trajectory calculation and radiation field solv-
ing. Figure 1 displays the modular philosophy employed
by the code where individual functions are separated to al-
low for in-depth, comprehensive problem analysis. This is
advantageous for implementation of the start-to-end func-
tion, where multiple outputs of codes are parsed as inputs
into subsequent codes. For example, the user may use par-
ticle trajectories from other codes, like TREDI [4], in con-
junction with the radiation solver QUINDI or the trajec-
tories from Q-Tracker with another radiation code. Efforts
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Figure 1: Flow diagram of the RadTrack code design. The
ultimate goal is to simulate real laboratory diagnostic ob-
servables using the computation tools available to the user
(acceleration, radiation, transport, etc.).
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have been directed at including parsers for trajectories from
well-established, popular codes like PARMELA [5], ELE-
GANT [6], and TREDI.

User Interface

The RadTrack user interface is also modular, separated
into panels with distinct features. The panels are intuitively
designed to contribute to a smooth workflow.

Particle Distribution RadTrack incorporates a useful
beam distribution panel. Initial beam parameters (used
for the source particles) are defined and a 6-dimensional
phase space distribution is generated. The user specified
inputs include beam moments, correlations, various de-
grees of noise, and complex modulations or the Courant-
Snyder parameters. This panel also supports the importing
of 6-dimensional particle distributions from some external
codes. The built-in parser also offers rudimentary distri-
bution analysis and graphical representations of the beam.
Alteration of the beam parameters is handled by textual in-
put or by sliders and buttons on the graphical display of the
beam, allowing a very intuitive method of creating unique
and specific particle distributions (such as rescaling Twiss
parameters).

Figure 2: Screenshot of the beam distribution panel in Rad-
Track displaying transverse profiles, and transverse and
longitudinal correlations of a user generated source beam.

RadTrack supports a number of particle distribution sets.
Gaussian beam distributions are generated by a normalized
Box-Muller transformation [7] of a uniform distribution.
The final distribution is formed by dialation, rotation and
shearing of the distribution. Other distributions (such as
waterbag, K-V, boxcar, etc.) are also supported, however
in a basic, limited fashion. The quiet start [8] has been
investigated and has recently been shown to be of great im-
portance because it reduces artificial beam microbunching

that leads to overestimates of the beam emittance and qual-
ity.

Beamline Visualization Aide The definition of the
beamline lattice is addressed graphically in RadTrack.
Beamline elements, such as drifts, bending magnets, and
focusing magnets, are selectable and editable via a palette.
The reference particle trajectory is calculated and plot-
ted through the displayed beamline for straight-line visu-
alization. The graphical output of this aide is a beamline
of block shapes representing different magnetic elements
while the textual output is tab-delimited text file (input
deck) of the beamline lattice for use in Q-Tracker. Parsers
for other codes are also available.

RadTrack allows for the placement of the detector for
radiative processes at arbitrary locations, defined by beam
offsets and rotations in the from of Euler angles. This al-
lows for the straightforward modeling of bending radia-
tion, such as synchrotron or edge radiation, as the user may
lock the detector plane tangential to the reference trajec-
tory. Modeling specific diagnostics, such as those for other
types of radiation sources (inlcuding Compton, THz, etc.)
requires using this visually descriptive method for detector
placement (Figure 3).

Figure 3: Screenshot of the user interface displaying the
beamline constructor with a radiation detection screen.
This example of the BNL ATF chicane compressor was
created to benchmark the code to laboratory data.

Parallel version Simulation project management is
built directly into the RadTrack framework to aid in extend-
ing the computational capabilities from a single processor
to a multi-node computing cluster. The management of
files allows for multiple runs based on previous input data
sets and outputs in a variety of formats.

The ability to run single particle calculations and highly
detailed design studies, requiring the use of a cluster, is ac-
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complished using a single interface. Also, start-to-end sim-
ulations are executed, and I/O file parsing is accomplished,
through the project manager. This feature is useful because
the user will experience a consistent, undisturbed workflow
while the code handles the necessary parsing and I/O inter-
play between the codes. Additionally, the file management
of the various output files of each code are easily accessi-
ble, stored and organized by the software. The parallel ver-
sion addresses the need to simulate large number of parti-
cle sets for complex problems (such as microbunching, and
coherent transition radiation at optical wavelengths).

Post-processor The RadTrack post-processor was in-
spired by the demand to retrieve useful information for the
simulation in a timely fashion. It displays spectral infor-
mation using simple, built-in mathematical function tools.
This gives the user valuable information on the validity of
the performed run before further, extensive analysis is com-
pleted. It is envisioned that this unit will be incorporated
into a real laboratory control room to provide near real-time
beam information to be used by the experimenter for data
taking or for use in a feedback loop to ensure high quality
beam control.

Figure 4: Screenshot of the post-processor unit displaying
a calculation performed for the BNL ATF experiment..

CONCLUSIONS

RadTrack is a user-friendly tool used for the calculation
of beam trajectories and emitted radiation of high bright-
ness beams. The novel user-interface is accessible to a
wide range of users and incorporates intuitive features such
as the visualization of beam phase space densities and the
graphical display of beamline lattice files in real time. It
also incorporates a seamless method for start-to-end simu-
lations and parallel extensions via the project management
aide.

Due to its modular nature, new module development to
solve specific radiation problems is straightforward to in-
corporate. Efforts in radiation transport and Inverse Comp-
ton Scattering solvers are underway. Improvements in
space charge and coherent synchrotron radiation effects are
also being investigated to enhance the capabilities of Rad-
Track.
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TOMOGRAPHIC RECONSTRUCTION OF A BEAM PHASE SPACE
FROM LIMITED PROJECTION DATA∗

G. Asova† , S. Khodyachykh‡ , M. Krasilnikov, F. Stephan, DESY, 15738 Zeuthen, Germany
I. Tsakov, INRNE BAS, Sofia, Bulgaria

Abstract

The production of electron beams suitable for the suc-
cessful operation of the European XFEL is studied at
the Photo-Injector Test Facility at DESY, Zeuthen site
(PITZ). The PITZ beamline is equipped with three dedi-
cated stations for transverse emittance measurements and
in the forthcoming shutdown period a section for transverse
phase-space tomography diagnostics will be installed. The
module contains four observation screens and therefore
only four projections can be used in order to reconstruct
an underlying phase-space density distribution.

This work presents the performance of a number of re-
construction algorithms on limited projection sets using nu-
merical data applied to the PITZ operating conditions. Dif-
ferent concepts for comparison between an original phan-
tom and the reconstructed distribution are presented.

INTRODUCTION

The PITZ facility is dedicated to the development and
optimization of electron sources subsequently to be used
in FELs like the FLASH and the future European XFEL.
Such goals require detailed knowledge of the electron
beam properties according to which the PITZ beamline is
equipped with extensive diagnostics components. A key el-
ement for the performance of a FEL is the small transverse
emittance, wherefrom the transverse phase space is a cen-
tral point in the electron source characterization at PITZ.
Currently, the transverse phase space is being reconstructed
using single slit scan technique [1] and a new module for
transverse phase space tomography diagnostics will be in-
stalled in the forthcoming 2009-upgrade.

The module consists of four screen stations as each two
surround a FODO cell. Correspondingly, four projections
are to be used for tomographic reconstruction. The design
has been discussed in [2] and expectations towards its per-
formance with nominal beam parameters of 1 nC bunch
charge, 32 MeV/c momentum and normalized transverse
emittance of 1 mm mrad can be found in [3]. The setup
will also be used in a combination with a transverse deflect-
ing cavity structure to study the longitudinal phase space
of individual pulses within the bunch train. In any case the
choice of proper reconstruction algorithm is of great im-
portance.

∗This work has partially been supported by the European Community,
contract No. RII3-CT-2004-506008 and 011935.

† galina.asova@desy.de
‡ Presently at Siemens AG, Rudolstadt, Germany.

This work focuses on the performance of a few recon-
struction algorithms with respect to their applicability to
limited input projection data. The methods discussed are
Filtered Backprojection (FBP), Constrainted Additive Al-
gebraic Reconstruction Technique (caART) and Maximum
Entropy (MENT). Several approaches to quantify the qual-
ity of the reconstruction conclude the contribution.

TRANSVERSE PHASE-SPACE
TOMOGRAPHY OF AN ELECTRON

BEAM

Tomography deals with the reconstruction of an n-
dimensional object knowing an infinite number of its
(n − 1)-dimensional projections calculated at different
view angles in [0, π]. A great number of scientific and
practical areas are using the tomography ideas - medical
imaging is interested in innocuous cross sectioning of the
human body, archaeology needs non-destructive material
inspection.

The object of interest in the transverse beam dynam-
ics is an underlying density distribution ρ (x, x′, y, y′) at
a given position along the beamline. The density distri-
bution cannot be obtained instantly but its spatial compo-
nents are directly measurable by means of screens, wire
scanners, etc. Meeting an observation screen, for instance,
the four-dimensional phase space is projected onto a spatial
distribution (x, y). A number of projections of the spatial
distribution, taken at different angles, are needed for the re-
construction and, therefore, one needs to vary the orienta-
tion of the phase space on the screen. The last is equivalent
to rotation of the beam in the phase space and is achievable
by altering the focusing conditions using magnets. Let the
system be linear such that M denotes a valid 2 × 2 trans-
formation matrix from the position of reconstruction zi to
the position of observation zf and p (xf ) is a projection
onto the horizontal axis at zf . The condition on the linear-
ity should be interpreted so that the matrices M describe
well the transport between the two longitudinal positions.
The projection can be written as a function of the initial
phase-space coordinates as the Radon transform

p(xf ) =
∫∫

ρ (xi, x
′
i) δ (xf − M11xi − M12x

′
i) dxidx′

i.

(1)
The problem to be solved is, having a number of p (xf )
with different matrices M , to find a unique inversion of
the Radon transform. Disregarding any intrinsic measure-
ment errors, the singularity of the solution depends on the
number of projections, the equidistant steps between each
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two of them and the linearity of the system. While the lat-
ter might be hard to cope with and the first two strongly
depend on the hardware setup, the overall result can be op-
timized applying a suitable reconstruction algorithm.

RECONSTRUCTION ALGORITHMS

Backprojection (BP) and its derivative Filtered Backpro-
jection (FBP) [4] attain fast computations and are simple to
implement making them two of the most commonly used
reconstruction methods. BP employs direct inversion of
the Radon transform (1) as it iteratively smears each pro-
jection onto the position of reconstruction according to the
fact that the density at a point can be defined as integration
over the line integrals from different projections passing
through this point or

ρ (x, x′) =
∫ π

0

pθ (xθ) dθ (2)

for θ determining the transformation. Defined in this way,
the inversion of the Radon transform is influenced by blur-
ring effects due to the fact that each point might be added
more than once since it might contribute not to a single line
integral in the space (x, y). The FBP uses an additional low
pass filter which introduces negative values in each projec-
tion. The latter ones are needed in order to correct for pro-
jections from other angles. The filter is applied in advance
to the iterative smearing.

When applied to limited data sets the performance of BP
and FBP is unsatisfactory. This is shown in Fig. 1, where
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Figure 1: Comparison between original distribution and its
reconstructed ones using FBP with different number of in-
put projections. The ridges on the reconstructed distribu-
tion decrease with the number of angular steps.

an original phantom distribution is given beside the recon-
struction result of FBP having four projections, obtained
with equidistant rotations over π - Fig. 1(b). Fig. 1(c)
shows that the quality of the reconstruction in terms of
streaking artifacts improves with the increase of the num-
ber of projections. For that particular example each projec-
tion is convoluted with a Butterworth low-pass filter [4] pri-
ori the integration. Filtering out low intensity values would
not be sufficient since the uniform spot on the right hand
side of Fig. 1(a) is still not well defined even in the case of
32 projections.

FBP is not a recursive algorithm - the process of recon-
struction depends on one projection at an iteration step and
can consequently be completed disregarding any supple-
mentary input. The availability in advance of all projec-
tions to be used is required for recursive algorithms like
ART [5], as MENT [6] is regarded here as a derivative of
the algebraic techniques solving a minimization task in a
different manner.

The ART, as the name implies, uses a matrix-like indi-
rect approach to the inversion problem - the different pro-
jections are considered as a set of linear equations with the
values of the function to be reconstructed as unknown vari-
ables. If the wanted density distribution is described as con-
stituted of K pixels and wnk represents the contribution of
the k-th pixel to the n-th projection, with n denoting some
of the available N projections, a projection can be written
in the form

pn =
K∑

k=1

wnkρk. (3)

Solution of a system of linear equations like Eq. (3) is to be
found.

ART is an iterative algorithm - the wanted density of a
bin is calculated over a number of steps as on each step
projections of the current guess are snapped. The repetitive
procedure continues until the computed projections resem-
ble the given ones according to some set of criteria. Addi-
tive ART (aART) applies a correction to the k-th pixel on
the (i + 1) iteration step of the kind

Δρ
(i+1)
k =

⎛
⎜⎜⎜⎜⎜⎝

p(i+1) − q(i+1)

K∑
j=1

w2
(i+1)j

⎞
⎟⎟⎟⎟⎟⎠

w(i+1)k, (4)

where q(i+1) is the projection calculated from an iterative
guess (i + 1) and p(i+1) is the one, given in advance from
the measured data.

If the system described by the equations like (3) is under-
determined, i.e. the number of pixels is more than the num-
ber of projections, a unique solution does not exist. Such is
the case for the PITZ setup of four screens and also for re-
construction applied on double-quadrupole scan data. On
the other hand, there might be none or multiple solutions
for an overdetermined system. The MENT algorithm gives
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a possibility to select an outcome most consistent with the
measured data. As it is used here MENT has already been
described in [6, 3].

Fig. 2 shows the results of aART and MENT applied
to the same four projection as in Fig. 1(b). An additional
constraint for non-negative pixel content has been applied
to the ART, usually known as Constrainted Additive ART
(caART), and MENT requires such by definition. The qual-
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Figure 2: caART and MENT applied to four equidistant ro-
tations. The object of reconstruction is the one in Fig. 1(a).

ity of the resulting distributions is visibly improved as ex-
pected according to the fact that a minimization task would
be needed for an underdetermined system. Smearing ar-
tifacts like those that can be seen in the outcome of FBP
are not present, the projected area of the central gaussian
distribution is refined as well as is the uniform spot on the
right hand side.

RECONSTRUCTION FROM NUMERICAL
DATA

The decision for choosing a suitable reconstruction algo-
rithm depends on its performance on numerical data. Here
the caART and MENT are applied on a simulated electron
beam distribution, matched to the optics of the lattice and
tracked with ASTRA [8]. The influence of space-charge
forces is included in the tracking as they tend to be signif-
icant for the PITZ operating conditions. The periodicity
of the particle trajectories is expressed with the mismatch
of the measured Twiss β-functions from the design values
at the positions of observation. The numerical tracking re-
veals maximum β-mismatches of 3 and 6% for the hori-
zontal and the vertical planes respectively. Fig. 3 shows the
original phase-space and the resulting reconstructions for
the horizontal plane. Both methods manage to reproduce
the double-like structure in the core of the beam as visually
MENT surpasses in better restoration of the density in the
tails. Table 1 contains the relative deviations of the recon-
structed distributions with respect to the original.

As an alternative measure of the quality of the recon-
struction, constructive for distributions non-symmetric in
neither of the x or x′ planes, the skewness could be used.

Except with the second central moments and the covari-
ance, needed in order to determine the transverse emit-
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Figure 3: Realistic distribution and its reconstructed using
caART and MENT.

Table 1: Relative errors between the original distribution
and its reconstructed from Fig. 3.

Algorithm σx [%] σx′ [%] σxx′ [%]
caART 1.59 3.57 5.94
MENT 0.75 0.64 2.33

tance, the quality of the reconstruction should be judged
from point of view of what charge density it represents.
A convenient interpretation is offered by the mean square
norm

‖Δ‖ =

√∑
x

∑
x′ (ρorig − ρrecon)2∑

x

∑
x′ ρ2

orig

, (5)

where ρrecon and ρorig denote the resulting reconstruction
and the original distribution correspondingly. For such an
estimation to be valid, effects from low-density bins should
be discarded and the bin size of the two objects has to be
equal. ASTRA calculates the moments of the distribution
in a statistical manner, whereas here two discrete binned
distributions are compared. If the binning does not repre-
sent the underlying data according to its specific features,
lateral bins with low content would introduce gaussian tails
and consequently differently calculated beam sigma matrix
elements. This has been taken into account in advance as
the bin width δ has been optimized using a minimization of
a cost function F (δ) according to

F (δ) =
2μ − var

δ2
(6)

for μ and var being the mean and the variance of the un-
derlying spatial distribution [7] . Using the norm and the
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reconstructions above, MENT and caART yield equal val-
ues until the second digit after the decimal point. In the first
case the norm is ‖Δ‖ = 0.247 and at the second ‖Δ‖ =
0.258.

An alternative for the comparison is based on the equiv-
alent ellipse emittance representation of the phase space,
i.e. compare the resulting and original distributions from
which only parts within ξ times the projected emittance are
taken into account. Low intensity bins outside the contour
defined by ξ.ε are discarded. The projected emittance is
calculated separately for each of the two distributions - the
original ASTRA one, describing the real phase space in
some of the transverse planes, and the reconstruction. By
this, the total area in the phase space is defined and a two-
dimensional ’peel-off’ cut on the tails is applied afterwards.
The resulting fractional areas inside the contour are consid-
ered in order to calculate the norm. The outcome in such
a case slightly favors the MENT - ‖Δ‖ = 0.249, while for
the ART this value is 0.260. This can also be seen in Fig. 4
where different fractions of the distributions are taken into
account. The horizontal lines represent the case when the
two distributions are compared within their total area. For
fractional area of above six the norm converges to the value
for which no cut has been done as MENT solutions are
closer. i.e. the core part is always reconstructed smoother
with better accuracy than using ART.

Figure 4: Mean square norm for different cuts of the phase-
space distributions. A cut is done simultaneously on the
original and the reconstructed phase spaces. The transverse
emittances defining the area of the cut are calculated sepa-
rately from the data describing the original and the recon-
structed distributions. The horizontal lines indicate that the
full phase spaces have been taken into account.

CONCLUSIONS

The work presents some investigations done in order to
find a tomographic reconstruction algorithm suitable to be
used with limited projection data. Several algorithms have
been tested, namely Filtered Backprojection, Constrainted
Additive Algebraic Reconstruction Technique and Maxi-
mum Entropy. The last two inherit the ideas behind the
FBP and as such they outperform it - a major reason for
that is the fact that both are trying constructively to discard
pixel content which are not consistent for any of the projec-
tion data. A number of concepts on how the reconstruction

results have been evaluated are presented as well. A con-
clusion that MENT represents the underlying phase space
with better accuracy can be drawn.
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PARTICLE-IN-CELL SIMULATION OF ELECTRON-HELIUM PLASMA IN 

CYCLOTRON GAS STOPPER
*
 

Y.K. Batygin
#
, G. Bollen, C. Campbell, F. Marti, D.J. Morrissey, G. Pang, S. Schwarz, NSCL, 

Michigan State University, East Lansing, MI 48824, USA

Abstract 
The cyclotron gas stopper is a newly proposed device 

to stop energetic rare isotope ions from projectile 

fragmentation reactions in a helium-filled chamber [1, 2].  

The radioactive ions are slowed down by collisions with a 

buffer gas inside a cyclotron-type magnet and are 

extracted via interactions with a Radio Frequency (RF) 

field applied to a sequence of concentric electrodes (RF 

carpet). The present study focuses on a detailed 

understanding of space charge effects in the ion 

extraction region. The space charge is generated by the 

ionized helium gas created by the stopping of the ions and 

eventually limits the beam rate. Particle-in-cell 

simulations of a two-component (electron-helium) plasma 

interacting via Coulomb forces were performed in the 

space charge field created by the stopping beam. 

 

INTRODUCTION 
 

The cyclotron gas stopper is a device for the 

deceleration of radioactive ions created by the projectile 

fragmentation (see Fig. 1). Fast ions (~100 MeV/u) are 

injected into a helium-filled chamber inside a vertical 

magnetic field where they immediately enter a solid 

degrader so that they can be captured by the magnetic 

field. The fast ions lose the remainder of their kinetic 

energy in collisions with the helium buffer gas. This 

process ionizes the helium atoms. An electric field 

parallel to the magnetic field is used to remove electrons 

and move positively charged ions to the RF-carpet. At 

high incoming particle rates, the amount of ionization 

becomes so large that the stopped ions cannot be 

completely removed. As a result, a neutralized plasma 

accumulates in the center of the stopping chamber and 

additional fast ions are not or are only slowly extracted 

because they come to rest in the plasma-shielded region. 

This present work analyzed the overall process of charge 

migration to provide estimates of ion stopping efficiency 

as a function of incoming particle rate. 

 

NUMERICAL METHOD 
 

Present simulations are based on a preceding detailed 

numerical study of rare isotope production, transport, and 

stopping in a gas-filled magnetic field [1]. The program 

LISE++ [3] was used to calculate the transmission, 

yields, and ion-optical properties of the projectile 

fragment beam. A C++ version of the ATIMA code [4] 

was used to calculate the energy lost by the incoming 

beam in the solid degrader. The Stopping and Range 

Tables from the SRIM package [5] were used to calculate 

the energy loss in the helium gas. The CycStop code [6] 

combined this input to calculate the fast ion stopping  

 
Figure 1: Schematic layout of cyclotron gas stopper [1].  

The fast projectile fragments are incident horizontally at 

the left and after stopping are moved to the center for 

axial extraction.  

 

   
Figure 2: (Left) Top view of the energy loss density in 

color and the positions of the stopped ions in white, and 

(right) the distribution of e
-
/He

+
 ion-pairs created by the 

stopping of a 
79

Br beam from the CycStop code [6]. 

 

distribution, the losses, and the spatial deposition of 

energy in the helium. The energy distributions were the 

input for the space charge phenomena in the present work 

(see Fig. 2). 

The calculation of space charge effects in e
-
/He

+ 
plasma 

were performed with a modified version of the 

BEAMPATH code [7]. The simulations were performed 

by simultaneous tracking of He
+
 and electrons in the field 

created by their own space charge forces, Esc, and applied 

external electric field, Eo, with a velocity v  given by  

 

v = k (Eo + Esc),   (1) 
 

*Work supported by the US Department of Energy under Contract 

No DE-FG02-06ER41413 
#batygin@nscl.msu.edu 
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where k is the mobility of ion or electron. The mobility of 

He
+
 ions at room temperature and pressure of P = 200 

mbar was taken as kHe+ = 10
5
 cm

2
/(kVs) and is inversely 

proportional to gas pressure. The mobility of electrons is 

typically three orders of magnitude higher than that of 

He
+ 

under the same conditions. However, direct 

simulation of e
-
/ He

+
 plasma with such large differences 

in ion mobilities is problematic due to the dramatic 

difference in the time scales of the dynamics of electrons 

and He
+
. Therefore, in the present work the mobility of 

the electrons was artificially reduced by a factor or ten to 

10
7
 cm

2
/(kVs) to simultaneously follow the motion of the 

ions and electrons in the same calculation. 

Radioactive ions were injected into the gas at a rate of 

dN/dtin. Each incoming radioactive ion created a cloud of 

He
+
 and electron charge at the rate dQ/dN, each. The 

product of these two rates gives the rate of creation of 

He
+
 and electrons in the gas-filled chamber dQ/dt = 

(dN/dtin)(dQ/dN). The simulation time step, t = T/Nstep , 

was defined as a ratio of the simulation period, T, and 

the number of integration steps, Nstep. At each integration 

step the entire spatial distribution of e
-
/ He

+
 particles was 

injected into the system such that the incoming charge of 

each component was q = (dQ/dt) t. This distribution is 

added to that remaining from the previously injected 

particles (see Fig. 3). The electrons and positive ions 

move in opposite directions in the net field created by 

applied collection field and by their space charge.  

Space charge field is calculated via solution of 

Poisson's equation in two-dimensional cylindrical 

coordinates: 

1
r
 

r
 (r U

r
) + 

2U

z 2
  = Q(r, z),   (2) 

 

where Q(r, z) = -  (r, z)/ o with Dirichlet boundary 

conditions at the surface of a tube of radius a, and 

Neumann condition at the axis: 

U (a, z) = 0,     U (r, 0) = U (r, L) = 0,     
U 

r
 (0, z) = 0.  (3) 

In Eq. (2), Q is the total instantaneous value of charge of 

electrons and ions presented in the system. While at 

every time step, the new fraction of e
-
/ He

+
 is injected 

into the system, some fraction of particles is removed 

through the extraction region and through the walls of the 

gas cell. The Poisson's equation (2) is substituted by 

finite-difference analog: 

 

Uk , j+1(1 + 1
2(j-1)

) - 2Uk , j(1 + hr
2

hz
2
 ) + Uk , j-1 (1 -  1

2(j-1)
)
 

 

+ Uk+1, j (hr

hz
)2  +  Uk -1,  j (hr

hz
)2 = - Qk ,j hr

2.                     (4) 

 

Poison’s equation is solved via Fourier transformation in 

z-direction and solution of three-diagonal matrix 

equation in radial direction. Accuracy of calculations is 

controlled by calculation of error of the Gauss theorem 

 

 = 1 -  E dS
S

 / Q d  ,                     (5) 

 

which is usually of the order of 10
- 3

 (see Fig.4). 

SIMULATION RESULTS 
 

Fig. 3 illustrates the dynamics of e
-
/He

+
 cloud 

formation for the injection of 
79

Br ions into the system 

with an axial electric field of Eo=10 V/cm for an 

incoming particle rate of dN/dtin = 10
5
 part/sec and energy 

of E = 1.69·10
9
 eV. The number of e

-
/He

+
 pairs per 

stopped ion is N = E / Ei  = 4.23·10
7
 where Ei = 40 eV is 

the effective ionization potential in helium gas. Each 

incoming beam particle creates e
-
/He

+
 pairs equal to 

dQ/dN = 6.76·10
-12

 C/part so that the increase in charge 

due to e
-
/He

+
 pairs in the system is dQ/dt = 6.76·10

-7
 C/s. 

As illustrated in Fig. 3, shortly after starting the injection 

of beam, the electrons quickly travel to the anode wall of 

gas cell at z = 10 cm (the right edge in this view). After t 

= 5·10
-3

 sec, the system has relaxed to steady-state 

condition for this beam rate. Under these conditions the 

outgoing particle rate is equal to incoming rate dN/dtout = 

dN/dtin. The charged particles are considered to be 

extracted from the gas if they reach the walls (anode or 

cathode used to apply the drift field). 

 

t = 0     t = 3x 10-4 sec 

 
t = 10

-3
 sec                   t = 5x10

-3
 sec 

 
Figure 3: Time sequence of the motion of He

+
 ions (blue) 

and e
-
(red) created by a 

79
Br beam at dN/dtin=10

5
 part/sec. 

The applied (horizontal) electric field was 10 V/cm. 
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Figure 4: Error in Gauss theorem as a function of time. 

 

Table 1:  Simulation Parameters  
 

Energy per stopped ion           1.69·10
9
 eV 

He
+
 mobility coefficient  kHe+ = 10

5
 cm

2
/kVs 

e
-
 "mobility coefficient"  ke = 10

7
 cm

2
/kVs 

Number of macroparticles per filling 2·10
3
 

Number of integration steps 5·10
3
 

Total number of macroparticles  10
7
 

Box for Poisson's equation R x Z  150 cm x 10 cm 

Mesh  NR x NZ   1024 x 1024 
 

(a)    (b) 

   
(c)     (d) 

   
Figure 5: Conditions for space-charge neutralized plasma 

with e
-
(red) and He

+
(blue) at incoming beam rate of 

dN/dtin=10
7
part/s: (a) accumulated charge, (b) total 

electric field, (c) flux of electrons through z=0 and that of 

He+ through z=10cm, (d) particle distribution at t=5·10
-3

s. 
 

At significantly higher incoming beam rates, the 

fraction of outgoing ions becomes lower than the creation 

rate of ionized gas. This results from the formation of 

charged neutralized area in the regions of the chamber 

with the highest ionization densities (see Fig. 5). This 

limits the extraction of radioactive ions as well because  

some of the beam stops in the neutralized area and cannot 

leave the region. Fig. 5d illustrates the calculated motion 

of e
-
/He

+
 ions at an incoming particle rate of dN/dtin =10

7
 

part/s. This problem becomes more pronounced with 

increasing incoming particle rate. Fig. 6 illustrate the 

dependence of extraction efficiency of e
-
/He

+
 ions as a 

function of the incoming charge rate for different values 

of buffer gas pressure and applied electric field. The 

space charge forces were found to significantly limit the 

extraction efficiency when the incoming rate exceeded 

dN/dtin = 5·10
6
 part/s.

 

The present calculations were used to estimate the total 

collection and extraction efficiency of radioactive beam 

from the cyclotron gas stopper. As a test, the actual spiral 

distribution of ionized buffer gas was replaced by a 

uniform disk of 75 cm radius, with an axial ionization 

distribution centered at z = 5 cm and z = 1.5 cm. Both 

the actual and simple distributions give a similar 

dependence of the extraction efficiency on the incoming 

particle rate. The results for the extraction of e
-
/He

+
 ions 

were combined with the predicted stopping distribution of 

high energy 
16

O ions in the cyclotron stopper to obtain a 

total efficiency for stopping and collection (see Fig. 7). 

The figure show the advantage of using a cyclotron gas 

stopper over a traditional linear gas stopper for high-

intensity, light ion beams. 

The present results should be considered with some 

caution due to the reduced electron mobility and the 

omission of any diffusion processes. Continued 

development of the cyclotron gas stopper design is 

underway including detailed studies of the effects of 

space charge on the ion motion at the RF-carpet and 

investigations into techniques to perform calculations 

with the true electron mobility.   

 
Figure 6: The fraction of extracted charge, i.e., efficiency 

of e-/He+ extraction, as a function of incident beam rate 

for different values of buffer gas pressure (in mbar). 

 

Figure 7: The total efficiency for 16O heavy ions as a 
function of gas pressure and incident beam rate (in 
part/s). 
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INCORPORATING PARTIAL SIBERIAN SNAKES INTO THE AGS
ONLINE MODEL∗

V. Schoefer† , L.Ahrens, K.Brown, A. Luccio, W. MacKay, T. Roser
BNL, Upton, NY 11973, USA

Abstract
In order to preserve polarization during polarized proton

operation for RHIC, two partial Siberian Snakes are em-
ployed in the AGS, where a large number of strong spin
depolarizing resonances must be crossed. These snakes
cause a significant distortion to the injection lattice of the
AGS and must be included in the online model. In this re-
port, we discuss the problem of modeling snakes as optical
elements, particularly as MAD-X elements, and present re-
sults comparing measurement to the AGS online model.

OVERVIEW
Polarized proton beam in the RHIC complex is created

in the OPPIS source and accelerated though a 200 MeV
Linac. The beam is then accelerated in the Booster and
subsequently injected into the Alternating Gradient Syn-
chrotron (AGS) at a a Gγ = 4.5, and accelerated to a Gγ of
45.5 Here G is the anomalous g-factor magnetic moment
of the proton (G = 1.7928) and γ is the relativistic Lorentz
factor.

In order to preserve polarization of the beam during ac-
celeration through intrinsic and imperfection depolarizing
resonances, the AGS lattice has been outfitted with two par-
tial Siberian snakes. The snakes magnets are helical dipoles
which, to provide sufficient spin rotation in the limited
physical space available in the AGS lattice, have a “double
pitch” structure [1]. That is, the far upstream and down-
stream regions of each snake are helices of one pitch and
the central regions are of different, slower, pitches. One
snake is superconducting and the other is normal conduct-
ing and they are called the ’cold’ and ’warm’ snakes re-
spectively.

The central helical field of the cold snake can be run as
high as 2.5 T, but it typically operated at 2.1 T. These field
strengths correspond to rotations of the proton spin vector
of 10 % (or 18 degree) and 15% (or 27 degree), respec-
tively, around the longitudinal axis. The warm snake is
operated with a central helical field of 1.53T, which cor-
responds to a spin rotation of 5% (9 degrees) about the lon-
gitudinal axis. Both snakes are run with constant current
throughout the AGS acceleration cycle.

Each of the two snakes is strongly focusing in both
planes and they represent a significant perturbation to the
AGS optics. Both snakes require external magnetic ele-

∗Work performed under Contract Number DE-AC02-98CH10886 with
the auspices of the US Department of Energy

† schoefer@bnl.gov

ments to provide matching to the typical AGS lattice and
each therefore has four quadrupoles near it used to com-
pensate for perturbations to the linear optics [2].
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Figure 1: Modeled AGS β functions at injection energy
with both snakes included and using operational currents
in the compensation quadrupoles. Black lines show the
maximum and minimum beta functions in a lattice with-
out snakes. The compensation quadrupole currents that are
ultimately determined to be optimal are often far from the
modeled fit.

The beam orbit inside the helical dipoles is itself a helix.
At injection energy, this helix has a radius of approximately
2 cm and ideally beam is delivered into the snake displaced
horizontally by that amount, with no vertical displacement.
As the beam rigidity increases, the radius of the helix de-
creases like γ−1.

The cold snake also has a significant off-axis longitudi-
nal magnetic field component. A 1 meter long supercon-
ducting solenoid has been included in the design of the
snake to compensate for that effect. However, since the
beam’s offset from the central axis is a function of energy
and the solenoid can only be operated DC, the coupling
contribution from the cold snake’s longitudinal field can
only be completely cancelled at a single beam rigidity.

Accurate modeling of the snakes is critical to polarized
proton operation because avoidance of intrinsic and imper-
fection depolarizing resonances simultaneous requires tight
control of the vertical closed orbit and a vertical betatron
tune near an integer value ( 9 in the case of the AGS). This
is a region of configuration space that tends to be both phys-
ically and numerically sensitive.
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HELICAL DIPOLE FIELDS
Following Ptitsyn [3], in right-handed polar coordinates

(r, φ, z) with the z coordinate pointing along the direction of
beam motion we may write the solution to Laplace’s equa-
tion for the scalar potential in the current free region in the
aperture of the helical dipole as

ψ =

∞∑
m=1

Im(mkr)(amcos(mθ) + bmsin(mθ)) (1)

Here one takes advantage of the helical symmetry to use
θ = φ - kz as the polar coordinate and k is the pitch of the
helix which is here taken to be constant over the length of
the magnet. Im is the modified Bessel function.

The magnetic field derived from this potential is:

Br = −k ∗

∞∑
m=1

I ′m(mkr)(amcos(mθ) + bmsin(mθ))

Bz = k ∗

∞∑
m=1

mIm(mkr)(bmcos(mθ) − amsin(mθ))

Bφ = −

1

kr
Bz (2)

The simplified relationship between Bφ and Bz is a re-
sult of the helical symmetry of the field.

It is apparent from this form that there are intrinsic non-
linearities to the field since Im is proportional to rm as r
approaches zero.

The non-zero off axis longitudinal field contribution is
also visible.

CURRENT STATUS
The current AGS online model is implemented using a

CDEV server that takes real-time snapshots of magnet cur-
rent settings and uses MAD-X to calculate model parame-
ters.

The snakes are currently implemented in the AGS online
model in MAD-X using only the linear matrices produced
by integration of the field maps [4]. The transfer maps so
calculated are numerical Taylor expansions about an as-
sumed off-axis ideal orbit (x, y) = (20 mm, 0 mm). Fig-
ure 2 shows the level of disagreement in the measured and
modeled betatron tunes in a typical operational polarized
proton lattice. Since the fields of both snakes are constant
in time, their effect on the lattice decreases as the beam be-
comes more rigid and the snakes become more transparent
to betatron motion. The disagreement between measure-
ment and model is thus most significant early in the accel-
eration cycle, where it is near 0.05 units. Gaps in the model
data, where there are measurements but no model predic-
tion, are points in the cycle for which MAD-X could not
find a closed orbit given the supplied magnet currents. The
large horizontal disagreements near γ = 8 are the result of

the transition γtr jump, which is not yet included in the
online model.

It was shown by Luccio et al in 2006 that the second-
order expansion of the snake field about the ideal trajec-
tory results in a significant dependence of the vertical fo-
cal length on the horizontal orbit position [5]. Correct
implementation of the calculated second-order matrices in
MAD-X is made difficult by the fact that one cannot offset
arbitrary matrices, and so the model interprets the expan-
sion as being around the origin rather than around a point
2 cm to the outside of the ring. Additionally, the measured
closed orbit in the AGS is not included in the model, so
strong sensitivity to closed orbit offsets caused by the snake
are not properly accounted for. This is particularly relevant
for calculating closed orbit bumps that traverse the snakes.

Figure 2: AGS online model tune predictions and mea-
surements for operational currents, calculated using linear
snake transfer matrices.

EQUIVALENT ELEMENT APPROACH
One approach used primarily to gain the ability to offset

the snake from the central axis was to develop a sequence of
normal and skew quadrupoles of a combined length equal
to that of the snake and to fit their focusing strengths to
reproduce the linear snake transfer matrix.

This approach is adequate for offline studies where the
closed orbit at the snake is predictable and static and when
the nonlinear effects of the snake are not important. For on-
line modeling, this approach fails to take into account the
possibility that the actual closed orbit through the snake
may not be ideal and is not constant throughout the cycle.
Even in the case where the orbit can be assumed to be near
the ideal trajectory, the offset changes as the beam is ac-
celerated and becomes more rigid and the ideal trajectory
moves closer to the central axis. There is also no natural
scaling for the parameters of these elements as a function
of the beam rigidity, and so the individual element strengths
must be re-fit for each beam energy one wishes to model.
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SUMMARY AND PLANS
The above outlined challenges indicate that accurate

modeling of the AGS snake elements requires a full non-
linear description of the fields to be implemented in the
model. The closed orbit can then be calculated using the
entire field, at which point a Taylor expansion can be per-
formed around online calculated orbit, rather than around
a predetermined ideal orbit. The Polymorphic Tracking
Code [6] seems ideally suited to such a task, given its sep-
aration of tracking coordinate system from the magnetic
field and its ability to perform high order expansions.

This is a primary motivation for the upgrade of the AGS
online model to include multiple modeling platforms [7].
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A FAST POINT TO POINT INTERACTION MODEL FOR CHARGED
PARTICLE BUNCHES BY MEANS OF NONEQUISPACED FAST

FOURIER TRANSFORM (NFFT)

T. Flisgen∗, G. Pöplau, U. van Rienen, Rostock University, 18059 Rostock, Germany

Abstract

Demanding applications such as heavy ion fusion, high
energy colliders and free electron lasers require the study
of beam phenomena like space-charge induced instabili-
ties, emittance growth and halo formation. Numerical sim-
ulations for instance with GPT (General Particle Tracer,
Pulsar Physics) calculate the mutual Coulomb interactions
of the tracked particles [5]. The direct summation of the
forces is rather costly and scales with O(N2). In this pa-
per we investigate a new approach for the efficient calcu-
lation of particle-particle interactions: the fast summation
by Nonequispaced Fast Fourier Transform (NFFT) [3, 4],
whereas the NFFT is a generalization of the well known
Fast Fourier Transformation (FFT). We describe the algo-
rithm and discuss the performance and accuracy of this
method for several particle distributions.

INTRODUCTION

The design of particle accelerators requires a sophisti-
cated understanding of the dynamic behaviour of the par-
ticle bunch. Therefore several algorithms have been de-
veloped to determine the trajectories of the particles in the
six-dimensional phase space.

Assuming the energy spread of the charged particles to
be small, the space-charge forces may be computed in the
bunch’s rest frame by superposing the electrostatic field of
each particle. The electric field at the position of the j-th
particle rj ∈ R

3 in the rest frame is given by

E(rj) =
1

4πε0

N∑
�=1
j �=�

q�
rj − r�

‖rj − r�‖3
, j = 1, . . . , N , (1)

where N denotes the number of particles, q� the charge of
the �-th particle, ε0 the permittivity of vacuum and ‖ · ‖
the Euclidean norm. Since (N − 1) interactions have to be
taken into account for each of the N particles, the direct
evaluation of the sum in Eq. (1) reaches a disadvantageous
numerical complexity of O(N2). Note that the evaluation
of the electric field strength has to be performed in each
discrete time step of the tracking to determine the forces
acting on the particles.

FAST SUMMATION USING THE NFFT

The presented method calculates the electric fields of
the bunch approximately using the Nonequispaced Fast

∗ thomas.flisgen@uni-rostock.de

Fourier Transform [3, 4]. The algorithm overcomes the
quadratic runtime behaviour of the direct field evaluation
and scales with O(N log N).

Splitting of Potential Function

To describe the NFFT-based fast field calculation, the
potential of a charged particle is separated into a short-
range and a long-range effect:

φ(r) =
1

4πε0

q

r
= φsr(r) + φlr(r). (2)

Note that r ∈ R
3 denotes the point in the space, where

the potential is evaluated and r = ‖r‖ ∈ R≥0 the distance
between the charged particle (here located at the origin)
and the point of field estimation.

We demand the short-range effect φsr(r) to have com-
pact support, such that φsr(r) = 0 ∀ r ≥ εI and the long-
range effect φlr(r) to be bounded and (p− 1) times differ-
entiable. The variable εI denotes the near field radius.

To cope with the singularity at r = 0 and to ensure the
smoothness of the long-range effect, we regularize the po-
tential at r = εI using an ansatz function (see the dashed,
the crossed and the dotted curves in Fig. 1).
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Figure 1: Potential φ(r) (solid) and long-range effect
φlr(r) with p = 1 (dashed), p = 2 (crossed), p = 3 (dot-
ted), where εI = 1/20 and r = (x 0 0)T .

Notice that the potential function is regularized at the
boundary r = lB = 9/20 as well to obtain a periodic
smooth long-range contribution φlr(r). The deviation be-
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tween φ(r) and φlr(r) for r < εI (see Fig. 1) is corrected
by the near field potential φsr(r).

In summary the far field is given by the case differentia-
tion

φlr(r) =

⎧⎪⎨
⎪⎩

TI(r) if r < εI ,

φ(r) if εI ≤ r ≤ lB,

TB(r) else

(3)

and the near field is defined by

φsr(r) =

{
φ(r) − TI(r) if r < εI ,

0 else,
(4)

where TI(r) and TB(r) denote the ansatz functions for the
inner and outer regularization. It has to be mentioned that
the sum of both effects (see Eq. (2)) yields the potential
φ(r) only for r ≤ lB . Thus we have to guarantee by a
scaling strategy, which is specified in [1], that the potentials
will not be evaluated for particle distances r > lB .

Fourier Construction

Since the long-range potential is (p − 1) times contin-
uous differentiable, it can be expressed approximately by
the multivariate Fourier sum

φlr(r) ≈ q
∑
k∈In

b̂k e2πikr , (5)

where b̂k ∈ C
n×n×n are the Fourier coefficients of the

long-range effect. These coefficients are obtained by equi-
spaced sampling of φlr(r) and Fast Fourier Transform of
the resulting sample values [1, 3, 4]. It is worth to mention
that the multi-index k = (kx ky kz) runs over the finite set

In := {−n/2, . . . , n/2 − 1}3 , (6)

where n3 is the total number of Fourier coefficients.

Superposition of Field Contributions

Due to the fact that we have to compute potentials of
charges located at different positions r� in the bunch, we
generalize Eq. (2) by replacing r with r − r�. This yields

φ(r − r�) =
1

4πε0

q�

‖r − r�‖ (7)

= φsr(r − r�) + φlr(r − r�). (8)

The equation determines the potential of the �-th particle at
the position r. To compute the potential at the position of
the j-th particle in the bunch, we need to sum up the field
contributions of the remaining (N − 1) particles:

φbu(rj) =
1

4πε0

N∑
�=1
j �=�

qj

‖rj − r�‖ (9)

=
N∑

�=1
j �=�

φsr(rj − r�) +
N∑

�=1
j �=�

φlr(rj − r�). (10)

As a result of the compact support of φsr(r) it has a contri-
bution to the left sum of Eq. (10) only for small distances
‖rj − r�‖ < εI . Thus we do not need to sum over all �
(except � = j), which would lead to an O(N2) runtime be-
haviour of the algorithm. Instead we need to sum up over
the index set

INE
εI

(j) = {� ∈ {1, . . . , N} : 0 < ‖rj − r�‖ < εI} , (11)

where only the cases φsr(rj − r�) �= 0 are considered.
It is worth to mention that a sorting algorithm has to be
implemented, which determines the near field particles for
all of the N particles.

According to the previous considerations the long-range
effect in the right sum of Eq. (10) can be replaced by the
Fourier sum Eq. (5):

φbu(rj) =
∑

�∈INE
εI

(j)

φsr(rj − r�)

+
N∑

�=1
j �=�

q�

∑
k∈In

b̂k e2πik(rj−r�).
(12)

The difference in the exponent of the e-function will be
separated and written as a product of two exponential func-
tions. This yields

φbu(rj) =
∑

�∈INE
εI

(j)

φsr(rj − r�) − qj

∑
k∈In

b̂k

+
N∑

�=1

q�

∑
k∈In

b̂k e2πikrj e−2πikr� .

(13)

It is highlighted that the summation
∑N

�=1 . . . in (13) does
not exclude the case j = � anymore. For the sake of equal-
ity we have to preclude this case manually by subtracting
the contribution qj

∑
k∈In

b̂k.
Now we rewrite our formula such that it can be ex-

pressed by two multivariate Nonequispaced Fast Fourier
Transforms:

φbu(rj) =
∑

�∈INE
εI

(j)

φsr(rj − r�) − qj

∑
k∈In

b̂k

+
∑
k∈In

b̂k

(
N∑

�=1

q� e−2πikr�

)

︸ ︷︷ ︸
NFFTT

e2πikrj

︸ ︷︷ ︸
NFFT

. (14)

The summation in the inner brackets denotes a transposed
version of the NFFT. The outer summation denotes a
NFFT. These transforms can be calculated very efficiently
by using the software library of Kunis and Potts [2].

Determination of Electric Field Strength

Since the electric field strength of the bunch at the po-
sition rj is needed for the tracking procedure, we have to
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evaluate the gradient of our potential:

E(rj) = −∇φbu(rj). (15)

Exemplarily only the x-component Ex(rj) of the electric
field is discussed. Therefore we have to estimate the partial
derivation ∂

∂xj
of the derived potential given in Eq. (14):

Ex(rj) = −
∑

�∈INE
εI

(j)

∂

∂xj
φsr(rj − r�)

−
∑
k∈In

2πi kx b̂k

(
N∑

�=1

q� e−2πikr�

)

︸ ︷︷ ︸
NFFTT

e2πikrj

︸ ︷︷ ︸
NFFT

. (16)

Again the summation in the inner brackets denotes a trans-
posed NFFT. This is followed by n3 multiplications with
2πi kx b̂k. Finally the outer summation is computed by a
NFFT. The transforms are performed by the library [2].

To ensure an advantageous runtime behaviour of the al-
gorithm, we define the near field radius depending on the
number of particles:

εI =
p

2 3
√

N
. (17)

The order of smoothness is set to p = 3 and the total num-
ber of Fourier coefficients to n ≈ 3

√
N .

BENCHMARKING THE ALGORITHM

The presented algorithm has been implemented in C
and tested on an Intel(R)-Xeon(TM)-3 GHz machine with
4 GB RAM using Windows Server 2003.

Error Definitions

Beside the runtime behaviour of the algorithm which we
compare with the runtime of the direct summation Eq. (1),
we discuss the accuracy of the method. Therefore we de-
fine the relative error in the electric field strength by

fj =
‖Enfft(rj)‖ − ‖E(rj)‖

‖E(rj)‖ , j = 1, . . . , N , (18)

where ‖Enfft(rj)‖ is the absolute value of the strength
computed by Eq. (16). The field strength ‖E(rj)‖ is de-
termined by the direct summation Eq. (1). Additionally we
consider the maximum of the relative error given by

fmax =
N

max
j=1

|fj|. (19)

Spherical Distribution

Initially a spherical particle distribution is considered.
The radius of the sphere amounts to R = 2.2 mm. Fig. 2
shows the runtime for the direct summation (see Eq. (1))
and the NFFT-based summation (see Eq. (16).
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Figure 2: Runtime comparison for a spherical particle dis-
tribution using a logarithmic scaling of axes.

Note that logarithmic scales are used for both axes.
The �-curve documents the O(N2) runtime behaviour
of the direct field evaluation, whereas the �-curve shows
the beneficial O(N log N) performance of the NFFT-
approach. Moreover Fig. 2 demonstrates that the approach
becomes faster than the direct summation for N > 4500
particles. For less particles the proposed algorithm is
slower due to its overhead e.g. the computation of the
Fourier coefficients in Eq. (5).

Fig. 3 plots the error in the field strength in dependence
on the particle location rj . The error is encoded by the
colour and the size of the particle. It is obvious that the
field values in the center of the distribution are afflicted
with larger relative errors. The maximal relative error in
the electric field strength is fmax ≈ 0.0188.
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Figure 3: Locations of the relative errors |fj| for the spheri-
cal distribution with N = 64000 particles encoded by the
colour and the size of the particles.

It is mentionable that larger relative errors in the center
of the distribution result in small absolute errors, since the
field strengths are small in the center of the charged bunch.
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Cylindrical Distribution

Secondly a cylindrical distribution is taken into account.
It has a length of L = 3.5 mm and a radius of R = 2 mm.
For this case the runtime behaviour of the algorithm is very
similar to Fig. 2 [1].
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Figure 4: Locations of the relative errors |fj | for the cylin-
drical bunch with N = 64000 particles encoded by the
colour and the size of the particles.

Fig. 4 reflects the error |fj| for the cylindrical particle
distribution. The maximal error is fmax ≈ 0.027. Note
that the ”hard edges” of the cylinder are difficult to treat
numerically (especially with mesh-based strategies for field
evaluation) and analytically. Despite this fact the largest
relative error is again in the center of the distribution.

Sandwich Distribution

Finally a sandwich distribution is examined. It is con-
structed of ten flat ellipsoidal bunches arranged in series.
The semi-axes of the bunches are Rx = Ry = 1 mm in
the transversal direction and Rz = 0.025 mm in the lon-
gitudinal direction. The distance between the bunches is
Δd = 0.111 mm. The runtime behaviour of the algo-
rithm for the sandwich distribution is analog to Fig. 2, but
in contrast to that plot the point of intersection is now at
N ≈ 6000 [1].

Fig. 5 shows the geometry and illustrates the error |fj|
in the absolute electric field strength for each particle. The
maximal relative error is fmax ≈ 0.032. It is remarkable
that larger errors are not located on the boundary of the flat
ellipsoidal bunches, but again in the center of the whole
distribution.

CONCLUSIONS

In this paper a method for the efficient calculation of
electric fields inside a bunch of charged particles is con-
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Figure 5: Locations of the relative errors |fj | for the sand-
wich bunch with N = 64000 particles encoded by the
colour and the size of the particles.

structed. The presented algorithm overcomes the quadratic
runtime of the direct summation and scales for the pro-
posed examples with O(N log N). Although it is still
slower compared to mesh-based methods, it has the advan-
tage that it copes very well with ”hard edges” and disconti-
nuities in the charge density ρ.

It is spotlighted that the time evolution of the bunch’s
shape is mainly determined by the forces on the particles
located at the boundary of the distribution. Therefore es-
pecially the field values at the edges have to be computed
with small errors. Hence larger relative errors in the center
of the distribution pose no crucial problem for the tracking.
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Abstract
.
 

The TRIUMF-VECC Electron Linac is a device for 
gamma-ray induced fission of actinide targets, with 
applications in nuclear physics and material science. A 
phased construction and commissioning scheme will 
eventually lead to a 50 MeV, 10 mA CW linac based on 
superconducting RF technology. Using this linac to 
deliver high intensity electron beams for applications such 
as an energy-recovered light source is a possibility 
integrated in the design study. The multitude of design 
and tuning parameters, diverse objectives and constraints 
require a comprehensive and efficient optimization 
scheme. For this purpose we adopted the genetic 
optimization program developed at Cornell University as 
a prototype. Feature extensions were developed to 
accommodate specifics of the Electron Linac design, 
provide framework for more generic and integrated design 
process, and perform robustness/acceptance analyses. In 
this report we will discuss the method and its application 
to the design optimization of the Electron Linac. [4]. 

OVERVIEW 

TRIUMF and VECC of Kolkata, India are signing an 
MOU to jointly develop Injector Cryo-Modules for an 
electron linac (E Linac) for radioactive ion beam (RIB) 
production via photo-fission of 238U.  This provides a 
source of neutron-rich isotopes complementary in 
character to those produced by proton beams.   

The E Linac accelerates 10 mA CW e- beam (16 
pC/bunch) to 50 MeV with 1.3 GHz superconducting RF 
cavities housed in three cryo-modules.  The beam is 
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generated at a 100 keV grid-modulated thermionic gun 
with a 650 MHz pulse structure.  A normal conducting 
buncher and two 1.3 GHz SRF single cell cavities provide 
graduated bunching and longitudinal matching into the 
main accelerating structure.  Transverse focusing is 
provided by solenoids or quadrupoles.  

Coupled to a high brightness photo injector, the E Linac 
can potentially be used in applications beyond RIB 
production, such as an X-ray source through Compton 
scattering.  It is therefore interesting and relevant to 
investigate if, and how, the same configuration can 
deliver both the 16-pC/bunch RIB beam and a 100-

Figure 1: Schematic of the TRIUMF E Linac. 

Table 1: Beam parameters for the E Linac 

RIB 

16 pC per bunch  

100 keV  10 MeV  

RMS N transverse (μm)  7.5  12.5  

Bunch length (cm)  2.8 (±20°*)  0.6  

Energy spread  ±1 keV  ±40 keV  
 

High brightness  

100 pC per bunch  

200 -300 

keV  

50 MeV  

RMS N transverse (μm)  1.0  10.0  

Bunch length (mm)  4.0  1.0  

Energy spread  ±0.5 keV  ±50 keV  
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pc/bunch high brightness (HB) beam, achieving final 
beam specs suitable for their respective applications.   The 
commissioning plan may dictate different setup 
parameters at the front end for optimized performance at 
different stages of the project.  Such questions can best be 
answered by a systematic optimization program 
accounting for a broad variety of objectives and 
constraints. 

Beam dynamics modeling is done with Astra [1], 

Parmela [2] and Track [3].  To explore the multi-

dimensional parameter space in a systematic and 

comprehensive manner, a genetic optimization program, 

originally developed at Cornell University [4], was 

adopted and modified to run on the Western Canada 

Research Grid [5].  A typical optimization involves the 

selected evolution of design parameters (tuning 

parameters and element locations), toward progressively 

improved design objectives (beam parameters and 

performance measures such as beam loss), subject to 

constraints mostly reflecting limitations in geometry and 

hardware.  

OPTIMIZATION - GENETIC 

ALGORITHM WITH PARETO 

DOMINATION CRITERION 

A genetic algorithm is superior in its robustness against 

near singularities in the modeling process.  The particular 

algorithm adopted performs selection based on the Pareto 

domination criterion, with the additional advantage of 

allowing overview of multiple competing objectives, and 

avoidance of artificial cut-off in constrained parameters.   

This algorithm has proved quite competent in achieving 

design goals set for the current study. Figure 2 shows a 

well defined Pareto front plot representing trade-off 

between 3 competing objectives from a typical 

sufficiently evolved run.  

OPTIMIZED SOLUTIONS  

The genetic algorithm was used to find the following E 

Linac configurations.  Figure 3 shows a 50 MeV RIB 

solution where the nonlinearity in the RF waveform (a 

T655 term) was used to cancel the nonlinear momentum 

compaction due to non-relativistic dynamics at low 

energy (a T566 term) while performing efficient bunching 

and acceleration at the same time.  The normalized 

longitudinal emittance decreased by ~50% from the 

otherwise inevitable peak growth.  Figure 4 shows a 

10 MeV high bunch charge solution where the reduction 

in transverse emittance was accomplished through 

realignment of longitudinal slices in the transverse phases 

space by optimized RF focusing. 

The genetic algorithm was used to find the following E 

Linac configurations.  Figure 3 shows a 50 MeV RIB 

solution where the nonlinearity in the RF waveform (a 

T655 term) was used to cancel the nonlinear momentum 

compaction due to non-relativistic dynamics at low 

 
 

Figure 3: Longitudinal space 100 keV -50 MeV RIB; 
Left: Phase space distribution E (MeV) vs Z (m); Center: 

N
Z in keV-mm vs distance in m; Right: Progress of beam 

along Z and RF waveform. 
 Figure 2:  Optimized Pareto front plot. 

THPSC012 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

278



 
Figure 5: Left: Pareto fronts for =0.7+ =1.0 capture 
cavities (red), =0.7+ =0.85 (green) and =0.7+ =0.7 
(blue).  Right: Pareto fronts for 1.55 m inter-buncher-
capture distance (red) and 1.05 m inter-buncher-capture 
distance (green). 

 
Figure 6: Left: Trade-off among solutions attempting to 
satisfy 3 parameters at the same time: N

X = 15 mm-mrad, 

Z =4 mm & E =40 keV.  Right: Solutions attempting to 
satisfy 2 parameters: N

X = 15 mm-mrad & E =40 keV, as 
well as additional constraints. 
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Figure 7: Left: Distribution of capture cavity fields 
(MaxE(2/3): MV/m) & last solenoid field (MaxB(4): T) 
optimized for 3 different capture configurations.  Right: 
Various correlations between buncher field (MaxE(1): 
MV/m), first solenoid field (MaxB(1): T) and longitudinal 
& transverse emittances. 

energy (a T566 term) while performing efficient bunching 

and acceleration at the same time.  The normalized 

longitudinal emittance decreased by ~50% from the 

otherwise inevitable peak growth.  Figure 4 shows a 

10 MeV high bunch charge solution where the reduction 

in transverse emittance was accomplished through 

realignment of longitudinal slices in the transverse phase  

space by optimized RF focusing. 

APPLICATION OF THE METHOD 

Besides providing globally optimized solutions for a 
given configuration, this method proved valuable in 
resolving other design issues and providing insights into 
the underlying physical mechanism of solutions.  A few 
examples are shown in the following.  

 Performance comparison between different designs:  
As the level and detail of optimization can be 
controlled better than many other methods, one can 
compare the relative merits of different designs 
optimized to the same level.  Figure 5 shows such 
comparisons between different choices of the capture 
cavity configurations, and between different 

geometries of the design. 
 Solving for externally imposed design goals:   The 

method can be trivially extended to solve for design 
parameters satisfying externally imposed design goals, 
or provide insight on trade-off between parameters in 
meeting such goals through Pareto-front plots.  Figure 
 6 shows a case where exact solutions can be obtained 
for given design goals in terms of beam parameters, 
and in the case of over-constrained goals, the Pareto 
front mapping out best-achievable options in the 
parameter space. 

 
 

Figure 4: Transverse space 200 keV -10 MeV HB; Left: 
Phase space distribution X’ (rad) vs X (m); Center: N

X in 
mm-mrad vs distance in m; Right: Progress of beam along 
Z and RF waveform 
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Figure 8: Left: Performance comparison between normal 
and exception cases: red: =0.7+ =1.0 capture cavities, 
green: =0.7+ =0.7, blue: 1st capture only ( =0.7), pink: 
2nd capture only ( =1.0), olive: 2nd capture only ( =0.7). 
Right: Corresponding RF phases for the 2nd capture & the 
main (9-cell) cavities. 

 Correlation between parameters:  Due to its ability to 
efficiently carry along high dimension of parameters, 
and the large statistics readily available from the 
globally optimized gene pool, this method provides 
insight into correlation and interplay between 
variables, objectives and constraints.  Figure 7 shows 
an example of the different optimization strategies, in 
terms of the capture cavity fields and solenoids, for the 
3 capture configurations described in Figure 5, and 
another example of how final beam parameters are 
correlated to various tuning parameters. 

 Exception handling of design.  Figure 8 shows the 
compromise in performance of various designs when 
one of the capture cavities is not used.  Again the 
comparison is more rigorous because all cases are 
optimized to the same level.  It also shows, through 
inspection of the optimized gene pool, that in such 
exception cases the second capture cavity has to do 
more acceleration at the expense of bunching, and the 
opposite for the 9-cell cavity, in order to achieve 
improved beam parameters.  It is also clear that the 
first capture cavity ( =0.7 in all cases) is more 
important than the second capture cavity.  This is 
mostly due to its more favorable distance to the 
buncher in satisfying the longitudinal matching 
condition. 

EXTENSION OF THE METHOD 

Extension to the optimization program for the current 
design effort, either developed or under development, 
include the following:   

 A generic framework based on python scripts allowing 
the definition of optimization objectives and 
constraints through user defined operation on arbitrary 
code-generated files. 

 Method to incorporate different design prototypes into 
a single selection process subject to common selection 
criteria.  This can be useful when other criteria such as 
cost become relevant. 

 A flexible structure based on XML and python scripts 
allowing evaluation of a design by arbitrary 
processing modules.  This extends the concept of 
model into an integrated design process where for 
example, Astra, is only one of many modules called 
on to return a complete set of performance metrics as 
input to the selection mechanism. This feature has 
been used for efficient benchmarking between Astra 
and Track.  

 These modules can be invoked in parallel or in series 
in a single optimization run.  In the former case 
complementary performance metrics can be obtained 
from different modules, while in the latter the user can 
perform high level analysis on raw simulated 
parameters, or end-to-end optimization over an 
integration of successive components. 

 The optimization program is being integrated as a 
tuning component in the study of machine acceptance 
and robustness, where one defines the part of 
parameter space spanned by input beam and machine 
error that can be handled by tuning within operating 
range.  In this context local-minimum algorithms such 
as the Levenberg-Marquardt method may be 
considered as an efficient alternative.  
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Abstract

We present particle-in-cell simulations, using the VOR-
PAL framework, of 10 GeV laser plasma wakefield ac-
celerator stages. Scaling of the physical parameters with
the plasma density allows us to perform these simulations
at reasonable cost and to design high performance stages.
In particular we show that, by choosing to operate in the
quasi-linear regime, we can use higher order laser modes
to tailor the focusing forces. This makes it possible to in-
crease the matched electron beam radius and hence the total
charge in the bunch while preserving the low bunch emit-
tance required for applications.

INTRODUCTION

Laser driven wakefield accelerators (LWFAs) are able to
produce accelerating gradients thousands of times higher
than conventional accelerators, making them suitable to
build compact devices. In a LWFA the radiation pressure
of the laser pulse induces charge separation, producing a
plasma wave (wake) traveling at the group velocity of the
laser pulse, close to the speed of light, and hence able to
accelerate particles to relativistic velocities (see [1] for a
complete review). Energies up to a GeV have been ob-
tained in only a few centimeters [2]. Recently, experi-
ments have shown that it is possible to control the injec-
tion and the acceleration of electrons [3, 4], providing a
path towards high quality electron beams that can be used
for applications, including free electron lasers [5], gamma
ray sources [6] and colliders for high energy physics [7].
Light sources need stable electron bunches of the order of
a GeV. A multi-TeV collider was designed using staging
of several 10 GeV LWFA accelerator modules at a density
of n0 ∼ 1017 cm−3, each about a meter long [7]. Effi-
cient transfer of the laser energy to the accelerated beam,
acceleration of positrons and conservation of a low emit-
tance must be considered for applications. In this paper
we present the design of these stages using Particle-In-Cell
(PIC) simulations with the VORPAL framework [8]. We
show that by using higher order laser modes, in the quasi-
linear regime, the focusing forces in the wake can be con-
trolled in order to improve the stage efficiency.

∗The author acknowledge the assistance of the VORPAL development
team. Work supported by the U.S. Department of Energy, HEP Contract
No. DE-AC02-05CH11231, and the COMPASS SciDAC project, and by
NA-22, and used computational facilities at NERSC.

RESULTS

The PIC method is a fully self-consistent algorithm
which allows non-linear evolution of the plasma wake and
of the laser pulse simultaneously. In PIC simulations the
smallest dimension, i.e., the laser wavelength (λ ∼ 1
µm), needs to be resolved, whereas the box size increases
with the plasma wave wavelengthλp = (πc2m/e2n0)

1/2,
wheren0 is the plasma density. The acceleration length
also increases with higher energy stages, i.e., lower plasma
densities, making the simulations more computationally in-
tensive. Simulations of a 1 GeV stage, to model the re-
cent experiments or gamma ray sources, with a density of
n0 ∼ 1018 cm−3, require of the order of106 processor-
hours and∼ TB of storage. This allows only a few runs in
three dimensions (3D), and parameter scans for stage op-
timization can be done in two dimensions (2D) only. Be-
cause the size of the box in 3D and the simulation length
each scale asn−3/2

0
, a 10 GeV stage atn0 = 1017 cm−3

would require109 processor-hours which is not yet achiev-
able with today’s computational facilities. Approximations
are then necessary to simulate such stages at the nominal
density and reduced models, such as envelope and qua-
sistatic models [9, 10] or calculation in a Lorentz boosted
frame [11, 12, 13], can be used.

The approach used here to design high energy modules
is to simulate shorter, higher density stages with scaling of
the physical parameters with the plasma density [14]. In
the scaled simulations the dimensionless parameterskpL,
kpr0 anda0, wherekp = 2π/λp is the plasma wave num-
ber,L andr0 are the laser length and spot size respectively,
and a0 = 7.2 × 10−19λ2[µm]I[W/cm2] is the normal-
ized laser intensity, are kept constants. PIC simulations in
the quasi-linear regime (a0 ≃ 1) at different densities and
comparison with a quasi-static code in 2D cylindrical ge-
ometry atn0 = 1017 cm−3 show that the wake structure
stays constant under these conditions [15]. Simulations
also show that laser evolution, self-focusing and depletion,
and electron beam dephasing scale as predicted by the lin-
ear theory, even though this theory is strictly valid in the
low intensity limit (a0 ≪ 1), thus allowing scaled design
of multi-GeV stages. Reduction of wake amplitude due to
the presence of a charged beam (beam loading) also scales
predictably for a wide range of parameters, allowing pre-
diction of beam charge in unscaled stages [14]. Fig. 1(a)
shows the accelerating wake structure atn0 = 1018 cm−3
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Figure 1: (a) Accelerating field of a scaled stage in 2D
at n0 = 1018 cm−3 and in 3D atn0 = 1019 cm−3 with
an electron beam located in the first wave bucket after the
driver. (b) Momentum spectrum of an electron (solid line)
and positron (dashed line) beam fora0 = 1, kpL = 2,
kpr0 = 5.3, n0 = 1019 cm−3 initially on axis followed
by a longitudinal linear increase (plasma taper), and beam
parameterskpσLRMS = 0.5, kpσrRMS = 1 andQ = 22.8
pC (corresponding toQ = 228 pC atn0 = 1017 cm−3).

in 2D andn0 = 1019 cm−3 in 3D with an electron beam
of transverse sizekpσrRMS = 1.78 and of charge 130 pC
and 50 pC respectively, corresponding to the same amount
of beam loading, located in the first wave bucket after the
driver. Fig 1(a) shows that the accelerating structure is pre-
served for different densities and also between 2D and 3D.
2D simulations atn0 = 1019 cm−3 can then be used at low
cost for optimization of the electron beam shape and longi-
tudinal plasma profile to reduce the energy spread and in-
crease the acceleration length [14], showing that it is possi-
ble to accelerate a beam to 10 GeV, with 4% energy spread
in 0.7 m, as seen in Fig. 1(b). Because the wake is quasi-
symmetric in this regime, positrons can be accelerated in a
similar way with the same energy gain and energy spread,
also shown in Fig. 1(b). Simulations with various pulse
lengths, keeping the laser energy constant, show that effi-
cient stages are obtained atkpL = 1, where the laser de-
pletes most of its energy at the dephasing length [15], al-
lowing for 30% more beam charge at the same energy gain.
Hence, we were able to increase the efficiency of the stage
compared to the initial point design by using scaled PIC
simulations, which allows propagation of the laser pulse
until depletion.

In the quasi-linear regime, the transverse size of the
bunch must be matched to the focusing fields to prevent
oscillation of the beam spot size, which can degrade emit-
tance and energy spread [16]. Past simulations used gaus-
sian laser modes, which produce high transverse fields and
hence small matched beam sizes. The matched beam spot
size, i.e. with no transverse oscillation of the beam, de-
pends on the focusing force strength and is typically of
the order of a fraction of a micron forn0 = 1017 cm−3,
γ = 2×104 andǫn = 1 mm mrad, whereγ is the relativis-
tic factor andǫn the normalized emittance of the electron
beam. This small spot size, in turn, limits beam charge, and
hence stage efficiency, because high charge density creates
a blow out disrupting the wake strongly. In the linear or
quasi-linear regime (a2 . 1) the transverse field is directly

Figure 2: Transverse intensity profile, integrated longitudi-
nally, as a function of propagation distance for the funda-
mental and first order Hermite-Gaussian mode with paral-
lel (a) and cross (b) polarization, propagating in a matched
plasma channel with a density on axisn0 = 1019 cm−3,
with a0 = 0.1, a1 = a0/

√
2 andkpL = 2 andkpr0 = 5.3

for both modes.

proportional to the transverse gradient of the laser inten-
sity profile,E⊥ ∼ ∇⊥a2. It is then possible to reduce the
focusing forces, and hence increase the matched beam spot
size and the beam charge, by tailoring the transverse profile
of the laser pulse.

The transverse laser intensity profile can be shaped by
using combinations of higher order laser modes. Solutions
of the paraxial wave equation, describing the evolution of
the slow varying transverse envelopeâ⊥ of a low inten-
sity (|â⊥|

2 ≪ 1) laser pulse propagating in a matched
plasma channel, expressed in the cartesian coordinate sys-
tem(x, y, z) are of the form:

âx,(m,p)(x, y, z) =
am,p

(2m+pm!p!)1/2

×Hm

(
√

2
x

r0

)
Hp

(
√

2
y

r0

)

×e−(x2
+y2

)/r2

0
+iθm,p (1)

whereHm are the Hermite polynomials,r0 is the laser
spot size andθm,p = (−1/2k)[k2

p + 4(m + p + 1)/r2

0
]z,

k = 2π/λ, is the phase shift. In solving the parax-
ial wave equation one can find that the condition for the
laser pulse to be matched, i.e., to have no spot size vari-
ation, is to propagate in a plasma channel of the form
n(r) = n0 + ∆ncr

2/r2

0
, with ∆nc = 1/πrer

2

0
where

re is the classical electron radius [17]. This condition is
independent of the mode number: hence, several modes
can be propagated in the same plasma channel. On the
other hand the phase velocityβph ≃ 1 − (1/k)∂θm,p/∂z

depends on the mode number, inducing a modulation of
the intensity profile with propagation distance when adding
two modes with the same polarization. This is shown in
Fig. 2(a) where addition of the fundamental and first order
Hermite-Gaussian modes with parallel polarization causes
the transverse intensity profile to oscillate at the frequency
kbeat = 1/ZR, whereZR = kr2

0
/2 is the Rayleigh length.

This can be avoided by using orthogonal polarization be-
tween the two modes, as shown in Fig. 2(b). For sim-
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plicity we used 2D simulations, for whicĥax(m)(x, z) =

(am/
√

2mm!)Hm(
√

2x/r0) exp(−x2/r2

0 + iθm), and
θm = (−1/2k)[k2

p+2(2m+1)/r2

0
]z. Generalization to 3D

is straightforward and presented in detail elsewhere [18].
In 2D, when adding the fundamental (m = 0) and first

order (m = 1) Hermite-Gaussian mode with crossed polar-
ization, the intensity profile is of the form:

â(x)2 = a2

0
e−2x2/r2

0

(
1 +

4a2
1

a2

0

x2

r2

0

)
(2)

Considering a gaussian profile longitudinally,â(ζ, x)2 =
â(x)2 exp(−2ζ2/L2), whereζ = z − ct andL is the laser
pulse length, the linear plasma response behind the driver
is given by [1]:

φ = −â(x)2
√

π/2(kpL/4)e−k2

p
L2/8 sin(kpζ) (3)

whereφ = eΦ/mc2 is the normalized electric potential and
|â|2 ≪ 1 is assumed. The transverse electric field is then
given byEx/E0 = −(1/kp)∇xφ, whereE0 = mc2kp/e

is the cold non-relativistic wavebreaking limit, i.e.,

Ex

E0

= a2

0

√
π/2(kpL/4)e−k2

p
L2/8e−2x2/r2

0

4x

kpr
2

0

×

(
1 −

2a2

1

a2

0

+
4a2

1

a2

0

x2

r2

0

)
sin(kpζ) (4)

We see that the transverse field is 0 near axis (x2/r2

0
≪ 1),

for all phaseskpζ, for a1/a0 = 1/
√

2, corresponding to a
flat top profile near axis of the intensity profile [Fig. 3(a)].

When the laser pulse is propagating in a plasma chan-
nel one has to take into account the curvature of the fields
transversely. This can be evaluated to first approxima-
tion, assuming a broad channelk2

pr2
0 ≫ 1, by using

kp(x) = kp0

√
1 + ∆nx2/n0r

2

0
in eq. (3) [19]. Assum-

ing ∆ncx
2/n2

0
r2

0
= 4x2/k2

pr4

0
≪ 1 the transverse electric

field can be expressed, to the first order inx/r0,

Ex

E0

=
−a2

0
L

4r0

√
π

2
e−2x2/r2

0e−k2

p
L2/8

×

[(
4 −

∆n

n0

+
k2

pL2

4

∆n

n0

− 8
a2

1

a2

0

)
sin(kpζ)

−
∆n

n0

kpζ cos(kpζ)

]
x

r0

+ O(x3/r3

0) (5)

Contrary to the solution with a flat plasma profile there is
no value ofa1/a0 that gives a null transverse field for all
phases, as shown in Fig. 3(a) fora0 = 0.1. However we
can reduce the transverse field to 0 over a small length of
phase if we consider the response of the fundamental and
the first order Hermite-Gaussian mode separately and by
noticing that the transverse fields driven by each of these
modes do not cross the axis at the same phase. By intro-
ducing a delay (kpζs) between the two modes and by ad-
justing their relative intensity (a1/a0), with values derived
by setting to 0 the first order term inx/r0 in eq. (5), the
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Figure 3: Transverse electric field using higher order
modes, as a function of the longitudinal coordinatekpζ at
kpx = 0.1 and fora0 = 0.1, kpL = 2 andkpr0 = 5.3. (a)
Without (thick dashed line) and with (solid line) including
corrections of the plasma channel. Contribution of the fun-
damental (dotted line) and Hermite-Gaussian mode (thin
dashed line), witha1 = a0/

√
2, in the plasma channel are

also shown. (b) The first order Hermite-Gaussian mode is
delayed bykpζs = 0.22 and the intensity (a1 = 0.72a0)
adjusted such that the sum (solid line) of the field from the
fundamental (dotted line) and the first order mode (dashed
line), in the plasma channel, is≃ 0 aroundkpζ = −6.5.

two responses cancel each other and the focusing field can
be reduced to 0 over an interval of phasekpζ, as seen in
Fig. 3(b). This produces constant focusing forces over the
length of the electron beam and minimizes the field varia-
tions as the beam dephases.

PIC simulations show that the two modes can be prop-
agated simultaneously in the same plasma channel with
cross-polarization in the quasi-linear regime (a0 ≃ 1), and
that the mode does not evolve, i.e., without oscillations.
This allows conservation of a reduced transverse field until
the laser depletes, as shown in Fig. 4. Injection of a test
electron beam shows that the matched beam radius is in-
creased by almost a factor of 3 when using adjusted higher
order modes compared to using a gaussian pulse only.
Fig. 5 shows the evolution of the beam radius, with normal-
ized emittanceǫn = 0.014 mm mrad (kpǫn = 6 × 10−3),
accelerated by a plasma wave driven by the fundamental
mode only, witha0 = 1, kpL = 1, kpr0 = 5.3 and
n0 = 5 × 1018 cm−3. The electron beam radius oscil-
lates aroundσx ≃ 0.1 µm (kpσx ≃ 0.042) ±30%, while
the emittance stays constant, with only0.01% variation.
When adding the first order Hermite-Gaussian mode with
a1 = 0.7a0 and a delay ofkpζs = 0.2, the matched beam
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Figure 4: (a) Transverse laser intensity profile, integrated
along the longitudinal direction, as a function of the propa-
gation distance, of a fundamental, witha0 = 1, plus a first
order Hermite-Gaussian mode, witha1 = 0.7, delayed by
kpζs = 0.2. Both modes verifykpL = 1 andkpr0 = 5.3,
and propagate in a plasma channel with a density on axis
n0 = 5 × 1018 cm−3. (b) Transverse electric field driven
by the fundamental plus first order Hermite-Gaussian mode
whose transverse profile is shown in (a). (c) Lineout of the
transverse field shown in (b) atx = 1 µm (dashed line)
and corresponding accelerating field (solid line). The trans-
verse field driven by the fundamental mode only (dotted
line) is also shown.
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Figure 5: Evolution of a test electron beam spot size in
a wakefield driven by the gaussian only, the beam being
matched (solid line) and unmatched (dotted line), and in
a wakefield driven by the fundamental plus delayed first
order Hermite-Gaussian mode (dashed line).

radius is increased toσx ≃ 0.285 µm ±1.5% for ct < 2
mm, where the beam slips in a different focusing phase, and
has gained 96% of its maximum energy. This represents
almost a factor of 3 increase compared to the fundamen-
tal mode only, for which a beam with this radius would be
highly mismatched (130% variation). This means that we
can potentially increase the charge of the bunch (in 3D) by
a factor of 9, without increasing the electron beam peak
density. The laser power is twice the gaussian case, hence
increasing the efficiency by a factor 4.5.

CONCLUSION

We use PIC simulations for the design of GeV LWFA
stages and future 10 GeV modules which will be driven by
a 40J-1PW laser system. Stages have been designed in the
quasi-linear regime, i.e., moderate laser intensities (a0 ≃
1), which enables symmetric acceleration of electron and
positron beams, advantageous for the high energy particle
colliders. We use shorter simulations of stages at higher
density and scaling of the physical parameters to predict the
behavior of the particle beam in the accelerating structure
at reasonable computational cost. This allows us to follow
the laser evolution up to depletion for optimization of the
stage design.

In the quasi-linear regime, we show that we can tailor
the focusing forces acting on the particle beam, by shaping
the transverse profile of the laser driver with higher order
modes. We show that higher order modes can be prop-
agated simultaneously over many Rayleigh lengths in the
same plasma channel, independently of the mode number.
However, to avoid intensity modulation due to the differ-
ence in phase velocity, cross polarization of the different
modes must be used. Linear theory calculations and sim-
ulations in the quasi-linear regime show that it is possible
to reduce the transverse fields to∼0 in the plasma channel
by adjusting delay and amplitude of the modes. This al-
lows increase of the matched beam spot size, limited to the
region where the fields are linear, of the accelerated elec-
tron beam, while keeping the same normalized emittance,
enabling increase of the beam charge and stage efficiency
important for high energy colliders and gamma ray sources.
Future work will include beam loading effects with the use
of higher order modes to flatten and reduce the focusing
field inside the beam.

REFERENCES

[1] E. Esareyet al., Rev. Mod. Phys. , 81, (2009), 1229.

[2] W.P. Leemanset al. Nature Phys., 2, (2006), 696.

[3] J. Faureet al., Nature, 444, (2006), 737.

[4] A.J. Gonsalveset al., Proc. PAC’09, (2009).

[5] C.B. Schroederet al., Proc. AAC Wkshp, 1086, (2009), 637.

[6] C.G.R. Geddeset al., Proc. CAARI’08 (2008).

[7] C.B. Schroederet al., Proc. AAC Wkshp, 1086, (2009), 208.

[8] C. Nieter and J. Cary, J. Comp. Phys., 196, (2004), 448.

[9] B. Cowanet al., Proc. AAC Wkshp, 1086, (2009), 309.

[10] C. Huanget al., J. of Compt. Phys., 217, (2006), 658.

[11] J.-L. Vay, Phys. Rev. Lett., 98, (2007), 130405.

[12] J.-L. Vayet al., Proc. PAC’09, (2009).

[13] S. Martinset al., Proc. PAC’09, (2009).

[14] E. Cormier-Michelet al., Proc. AAC, 1086, (2009), 297.

[15] C.G.R. Geddeset al., Proc. PAC’09, (2009).

[16] P. Michelet al., Phys. Rev. E, 74, (2006), 026501.

[17] E. Esarey and W.P. Leemans, Phys. Rev. E, 59, (1999), 1082.

[18] E. Cormier-Michelet al., in preparation.

[19] N.E. Andreevet al., Phys. Plasmas, 4, (1997), 1145.

THPSC013 Proceedings of ICAP09, San Francisco, CA

Advanced Concepts

284



MULTIPOLE EFFECTS IN THE RF GUN FOR THE PSI INJECTOR

M. Dehler, Paul Scherrer Institut, Switzerland

Abstract

For the 250 MeV test injector at PSI, it is planned to use
a 2.6 cell RF gun originally developed for high charge op-
eration in the CLIC test facility CTF-2. First start-to-end
simulations assuming perfect field symmetries show, that
this gun should be able to generate bunches at 200 pC with
an emittance of below 400 nm rad, which would be compat-
ible with the requirements for the SwissFEL. This gun uses
double side coupled RF feeds in the last cell as well a asym-
metrical tuners in the last two cells, which lead to trans-
verse multipole effects in the field and phase space distri-
bution and may lead to a deteriorated emittance. Since the
beam in the last cells is already relativistic at energies be-
tween 4 and 6.4 MeV, this effect can be computed in a clean
way by looking at the distributions of the integrated beam
voltage at the cavity iris and deriving any transverse kicks
via the Panovsky-Wenzel theorem. Doing this approach
for the various operation modes planned for the SwissFEL
shows an emittance dilution well below critical thresholds.

INTRODUCTION

Within the framework of the SwissFEL project at PSI, a
250 MeV test injector facility (see fig. 1 on the next page)
is under construction, which will be used to develop test
techniques to create and transport high brilliance electron
beams suitable for short wave length free electron lasers.

Figure 2: Geometry of the RF gun

Initially it will operate as a stand-alone machine. It must
produce the ultra-high brightness electron beam and permit
an objective assesment of the technological risks, which
are associated with the construction of a low-energy XFEL
user facilty. Later it is intended to use it as the injector for

Table 1: Baseline operation modes of the SwissFEL
High Small

Bunch charge Q (pC) 200 10
Laserspot σr (μm) 270 100
Pulse length FWHM (ps) 9.9 3.7
Acc. gradient (MV/m) 100 100
εN,slice @ 150 MeV (nm rad) 320 80
εN,proj @ 150 MeV (nm rad) 330 96

the main linac of the future SwissFEL free electron laser
facility.

For the electron source itself, two options are forseen.
The first uses a pulsed DC gun in combination with a two-
frequency cavity; the high initial gradient in the gun is sup-
posed to give a high brilliance beam at a reduced current
of 5.5 Amperes, which is compressed ballistically by the
subsequent two-frequency RF cavity in combination with
a drift to approximately 20 A[1]. The alternative consists
in using a more convential S-band RF gun running at 100
MV/m and to generate this 20 A beam current directly at
the exit of the gun[2]. Recent results from LCLS[3] make
this option look rather promising.

For first tests, it is planned to use a 2.6 cell gun originally
developed for high current operation in the CLIC test facil-
ity CTF-2. The general geometry of this gun[4] is shown
in fig. 2. The specialty compared to other design is the
large diameter first half cell, where the TM02 resonance is
used for the main accelerating mode. The original reason
for this choice is, that this resonance is particularly well
suited for the operation with extremely high beam charges
and currents. For the operation at the modest currents of
the SwissFEL (Tab. 1), this feature has no influence.

The structure is rotationally symmetric, with perturba-
tions introduced by tuners, field sensors and the holes of
the power couplers. These introduce field asymmetries in
the monopole type accelerating mode, the main effect of
these being transverse kicks on the beam. Small dipole and
quadrupole corrector magnets after the gun can easily com-
pensate the integral average kick over the bunch length.
What remains, is the transient, time varying part, which
leads to emittance growth. More recent designs[5] avoid
these problems by obviating the need for tuners all together
through more precise manufacturing and by compensating
the field perturbation coming from the power coupler with
a more complicated race track geometry of the cells.
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Figure 1: Layout of 250 MeV test injector

METHODOLOGY

Apart from minor perturbations from tuners and field
sensors, the first cell is rotationally symmetric in a very
good approximation and standard 2 1/2 D beam dynamics
simulations will predict the beam dynamics in a relatively
precise manner. In cells two and three, we have piston
tuners and in cell three, the power coupler with its double
holes, which are placed at a 90o angle to the tuners. Cell
one also has two, symmetrically placed tuners, but their in-
fluence is negligible and was omitted in the analysis.

The input coupler feeds RF power into the gun via a
U-turn shaped waveguide, which is side coupled via two
symmetric coupling slots (Fig. 3) to the last cell. Due to
symmetry, all odd number multipole fields as dipoles, sex-
tupoles etc. cancel out. What is left, are even number mul-
tipoles as quadrupoles, which affect the beam transversally.
An interesting fact is, that the main contribution to the field
distortion is not due to the real power flux through the
slots filling the gun and compensating for internal losses,
but caused by the perturbation of the cell geometry which
would correspond to a reactive power flux.

We have only one tuner of 6.5 mm diameter per cell,
so all multipoles are present, the strongest one being the
dipole. In this case, the beam will see a transverse kick due
to the tuners.

The average kicks and focusing experienced by the beam
can be easily compensated by small corrector magnets fol-
lowing the gun. The problem is the amplitude variation
over the bunch length giving an uncorrigible increase in
the transverse momentum spread and emittance.

Computing the effect directly using a 3D particle-in-cell
code becomes challenging – the effect of the coupler needs
to be cleanly separated from the emittance dilution due to
RF fields, wakes and numerical noise. So an indirect ap-
proach was employed here, which, while being approxima-
tive, gives a clean picture of the multipolar contribution.

As can be seen in figure 4, the beam in the second and
third cells has already a relativistic energy of roughly γ = 9
and 11 respectively. If, in addition, we approximate the par-
ticle trajectories to be parallel to the cavity axis, we can use
two techniques to accurately compute the kick distribution
coming from the coupler.

The first is a algorithm[7] used for the computation of

Figure 3: Symmetric quarter of the third cell with coupling
slot showing the fundamental mode.

wake potentials. Essentially, it states, that the transverse
distribution of the accelerating voltage seen by a relativistic
beam at an offset (r, φ)

V‖(r, φ, t) =
∫

Ez(r, φ, z − ct, t)dz

follows a potential distribution in two dimensions:

Δr,φV‖(r, φ) = 0 (1)

This means in practice, that we just need to integrate the
voltages in a numerically advantageous way at the beam
pipe radius itself. The values inside the beam pipe are ob-
tained from solving eq. 1 with the given boundary values at
the beam pipe. With a cylindrical beam pipe, this is done by
computing the Fourier series of the boundary values over
the angle φ. Given the Fourier coefficients An and Bn, the
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Figure 4: Evolution of beam energy γ during acceleration
in the gun. The third cell extends from z = 78 mm to
z = 125 mm.
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Figure 5: Rms beam radius σr during acceleration in the
gun. The third cell extends from z = 78 mm to z =
125 mm.

voltage inside the beam pipe is given as:

V‖(r, φ) =
∞∑

n=0

rn

rn
0

(
An sinnφ + Bn cosnφ

)

As the second tool, the Panovsky Wenzel theorem [6]
relates the transverse kick voltage to the longitudinal one
as:

�V⊥ =
∫

∇r,φV‖(r, φ)dt (2)

For the case of a quadrupole kick, the resultant emittance
dilution is obtained by calculating the standard deviation
of the transverse kick over the whole bunch (transversally
and longitudinally) and weighting it with the rms transverse
size. Dipoles kicks don’t vary with the radial offset, so one
only has to compute the transverse kick using the longitu-
dinal distribution.

SIMULATION RESULTS

Power couplers

Figure 6: Cut through third cell with coupling hole showing
accelerating mode

For the numerical simulations, a quarter of the last cell
was modeled, which included the coupling slot and a seg-
ment of the U-type waveguide. The modeling was done
using a three dimensional cylindrical grid (mesh lines in r,
φ and z direction). The big advantage of this type of grid is,
that the field solution for a completely rotational symmet-
ric cell without coupling slots shows a perfect symmetry.
We do not have to worry about numerical artifacts creeping
into the field resulting in artificial multipolar kicks. Fig-
ure 6 shows the electric field in the equatorial plane of the
cell.
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Figure 7: Amplitude and complex phase of integrated beam
voltage at the beam pipe wall versus phase (0 < φ < 90).

Figure 7 shows the variation of the integrated beam volt-
age at the beam pipe wall. Decomposing it into multipole
components give the following dependency at r = 20 mm:

V‖(φ) = 2.466MeV + 21.48keV · cos(2φ) . . . .

The solution is dominated by monopole and quadrupole
fields, higher multipoles can be safely ignored. The pha-
sors of the monopole and quadrupole voltages are aligned
better than 0.2 degrees, which via the Panovsky Wenzel
theorem means, that the bunch traverses the cavity in the
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Table 2: Emittance dilution εN due to coupling slots for the
two operation modes. For comparison, the initial thermal
emittance εth is also included.

High Small
Bunch charge Q (pC) 200 10
Beam radius in cell 3 (μm) 1530 240
Beam energy in cell 3 (γ) 11 11
Bunch length (ps) 10 4
σV⊥ (eV/c) 50.5 3.2
εN (nm rad) 13 0.3
εth (nm rad) 195 72

zero crossing of the transverse kick. The kick distribution
within the beam pipe comes out to be

V⊥(r, φ, t) = 1.7keV/c/mm · r · cos(2φ) · sin(ωt)

with ω = 2π 3 GHz as the resonance frequency.
For simplicity, we assume a bunch with homogeneous

charge distribution of radius r0 and length Δt. For the vari-
ance of the transverse kick we solve

σ2
V⊥ =

1
πr2

0Δt

∫ Δt/2

−Δt/2

∫ 2π

0

∫ r0

0

V 2
⊥(r, φ, t)r dr dφ dt

to obtain:

σV⊥ = 3.3
eV

c pC mm
r0Δt

The resulting emittance dilution comes out as:

εN =
1

mc
σreσV⊥

Table 2 summarizes the results for the different operation
modes.

Tuners

All cells contain stub like piston tuner to adjust the res-
onant frequency and the field balance within the structure.
In the TM02 half cell, two pistons of 9.2 millimeter diame-
ter are needed to give the required tuning range. These are
placed symmetrically at opposite locations on the cell di-
ameter, the resultant perturbation contains only even-order
multipoles (quadrupoles etc.) and was omitted in the fol-
lowing calculation due to their small amplitude.

The following two cells each contain one piston of 6.5
millimeter diameter at the cell diameter. From the theoret-
ical design, they should reach into the cavities by two mil-
limeters. The real, actual values have not been measured.
So, to be on the safe side, they were assumed to be posi-
tioned three millimeters in for the calculation. With only
one tuner per cell, we have asymmetry and the effect will
be a dipole kick to the beam. Also, both tuners are aligned,
so that both contributions will add up linearly.

The calculation follows essentially the same approach as
that for the coupling holes, the difference being, that one
does it for a dipole kick instead of a quadrupolar distribu-
tion. So the intermediate results are omitted and only the
final results are listed in table 3.

Table 3: Kicks and emittance dilution εN due to the cell
tuners in cell 2 and 3 (tuner position at 3 mm) for the two
operation modes. For comparison, the initial thermal emit-
tance εth is also included.

High Small
Bunch charge Q (pC) 200 10
Tuner in cell 2 3 2 3
Beam radius (μm) 790 142 790 142
Beam energy (γ) 9 9 9 9
Bunch length (ps) 10 10 4 4
σV⊥ (eV/c) 137 100 55 40
εN (nm rad) 24 28 1.7 1.8
εth (nm rad) 195 72 195 72

CONCLUSION

A concern for using CERN gun 5 in the PSI 250 MeV
injector was a possible emittance dilution due to transient
multipole kicks coming from the RF input coupler. The ef-
fect has been computed approximatively via a combination
of indirect techniques. The additional dilution due to the
coupler geometry is well below the initial thermal emit-
tance to be expected from the cathode and will fulfill the
specifications of the machine. Also the transverse kicks
coming from the tuners in the last two cells create dipole
kicks within the required tolerances.
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Abstract

Most charged particle beams under realistic conditions
have Gaussian density distributions in phase space, or can
be easily made so. However, for several practical appli-
cations beams with uniform distributions in physical space
are advantageous or even required. Liouville’s theorem and
the symplectic nature of beam’s dynamic evolution pose
constraints on the feasible transformational properties of
these density distribution functions. Differential Algebraic
methods offer an elegant way to investigate the underlying
freedom involving these beam manipulations. Here, we ex-
plore the theory, necessary and sufficient conditions, and
practicality of the uniformization of Gaussian beams from
a rather generic point of view.

INTRODUCTION

Several practical applications such as irradiation of tar-
gets for isotope production, uniform irradiation of detec-
tors for improved efficiency, irradiation of biological sam-
ples and materials for testing require manipulation of beam
density distributions. Typically, these applications require
uniform spatial distributions at the target location. How-
ever, most beams delivered by accelerators to these targets
are Gaussian. There are several approaches for uniformiza-
tion of Gaussian beams. One such method, the so-called
nonlinear focusing method, uses higher order multipoles
to provide a material-less, elegant, purely optical solution.
Prior work done in this direction, using nonlinear focusing
methods, can be found in [?] and references therein. In
this paper we present a new approach based on differen-
tial algebraic (DA) techniques to investigate the underlying
freedom involving these beam manipulations.

Background

Detailed understanding of the beam dynamics requires
the study of the motion of the reference particle as well as
the motion of the particle in the relative coordinates. The
position and momenta are usually sufficient to describe the
motion. Usually the arclength s along the reference orbit
is used as the independent variable. At each point on the
reference orbit it is possible to define an unique orthogonal
coordinate system, denoted by (êx, êy, ês), satisfying a cer-
tain set of conditions [?, ?]. In this coordinate system the
motion of the particles in the beam can be described using

relative coordinates, which are given by

~z (s) =

(
x, a = px

p0
, y, b =

py
p0
,

l = k(t− t0), δ = (E−E0)
E0

)

where the position (x, y) describe the position of the parti-
cle in the local coordinate system, p0 is a fixed momentum
and E0 and t0 are the energy and the time of flight of the
reference particle, a and b are the momentum slopes, E is
the total energy, and k has a dimension of velocity which
makes l a length like coordinate. The point ~z = 0 corre-
sponds to the reference particle.

Let position si, sf be the initial and final position on the
reference orbit. The transfer map or transfer function M
relates initial conditions at si to the conditions at sf via

~z (sf ) =M (si, sf ) (~z (si)) . (1)

For weakly non-linear systems, like an accelerator system,
the map can be expanded as a Taylor series. Implementa-
tion of such a map on a computer would require the map to
be truncated at a certain order. A detailed discussion of the
properties and use of the Taylor transfer maps can be found
in [?].

Beam Phase Space Density Function
Beam production mechanism usually determines the

phase space density function describing the distribution of
particles in the beam. Let function f (~zi) be the initial
phase space density function of the beam. According to
Liouville’s theorem, as long as the sytem can be consid-
ered a Hamiltonian system, the phase space distribution of
the beam will stay constant along the trajectories. It also
implies that the the volume of phase space occupied by the
beam is conserved. Hence, it can be written that

f (~zi) = g (~zf ) , (2)

where g is the final phase space density function at any
point sf along the reference orbit. In terms of the transfer
map of the system (1), (2) becomes

g (xf , af , yf , bf , δf ) = f◦M (si, sf )
−1

(xf , af , yf , bf , δf )
(3)

where (xf , af , yf , bf , δf ) are the initial and final phase
space coordinates. The function g (xf , af , yf , bf , δf ) is the
new phase space density function,M (si, sf ) is the trans-
fer map of the system. For most practical application the
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quantity that is more useful is the density function in po-
sition variables. This can be obtained by integrating the
phase space density function, g, with respect to the mo-
mentum and energy spread variables,

ρ (xf , yf ) =∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

g (xf , af , yf , bf , δf ) · daf · dbf · dδf

Gaussian Density Function Most charged particle
beams under realistic conditions have Gaussian density dis-
tributions in phase space, or can be easily made so. To keep
the discussion reasonably simple, we restrict ourselves to
an initial uncorrelated Gaussian distribution. This is with-
out loss of generality, since the formalism can be applied
essentially without change to the general, correlated Gaus-
sian situation. The Gaussian density function in phase
space, f (x, a, y, b, δ), is given by

f (x, a, y, b, δ) =

K exp

 − (x−µx)2
2σ2
x
− (a−µa)2

2σ2
a

− (y−µy)2
2σ2
y
− (b−µb)2

2σ2
b
− (δ−µδ)2

2σ2
δ


where µx,µa,µy ,µb,µδ and σx,σa,σy ,σb,σδ are the means
and variances in x, a, y, b, δ respectively, and the factor
K = 1/

(
(2π)

5/2
σxσaσyσbσδ

)
is a normalization con-

stant.

Computation of Beam Density Function Using
Differential Algebra

For a beam with initial Gaussian density distribution in
phase space a DA based technique has been developed to
compute the density function at end of a beam-optics sys-
tem, given by a transfer map M. For simplicity we de-
scribe the technique for a one dimensional case. The initial
phase space density function at point si is given by,

f (xi, ai) = K2 exp

(
− (xi − µxi)

2

2σ2
xi

− (ai − µai)
2

2σ2
ai

)
,

(4)
where K2 = 1/ (2πσxiσai). Without loss of generality we
can assume µxi = µai = 0. We denote the exponential in
the above equation as h (x, a) ,

h (xi, ai) = −
1

2

(
x2i
σ2
xi

+
a2i
σ2
ai

)
.

To compute the density function, ρ (xf ), at point sf on
the reference orbit, we need to solve the integral

ρ (xf ) =

∫ ∞
−∞

K exp (h) ◦M (si, sf )
−1

(xf , af ) daf

=

∫ ∞
−∞

K exp
(
h ◦M (si, sf )

−1
)
(xf , af ) daf .

(5)

Since the integration limits tend to infinity the above in-
tegral is difficult to solve directly using numerical tech-
niques. By changing the form of the integral to a Gaussian
integral and applying a perturbation method to evaluate the
the integral term-by-term, one can use the following closed
form solution for each term [?]:

∫ ∞
−∞

zn exp
(
−αz2 + βz + γ

)
dz =

√
π

α
exp

(
β2

4α
+ γ

) |n/2|∑
k=0

n!

k! (n− 2k)!

(2β)
n−2k

(4α)
n−k . (6)

Below we describe the steps to change the form of the in-
tegral in equation 5:

1. Compute the inverse map,M (si, sf )
−1, to a pre se-

lected truncation order N [?].

2. Compute h ◦ M (si, sf )
−1 and arrange the resulting

polynomials in powers of af by collecting its coeffi-
cients An. We express this as a sum of second order
polynomial and remainder termR3,

h (xi, ai) ◦M (si, sf )
−1

=

A0 (xf ) +A1 (xf ) af +A2 (xf ) a
2
f +R3 (xf , af )

R3 (xf , af ) =

N∑
n=3

An (xf ) a
n
f .

3. Expand the exponential of the remainder term
R3 (xf , af ) in Taylor series and arrange the result-
ing polynomial in powers of af by collecting its co-
efficients Cj , exp (R3 (xf , af )) =

∑N
j=3 Cj (xf ) a

j
f .

The equation 5 can now be rewritten as,

ρ (xf ) = K

N∑
j=3

Cj (xf )

∫ ∞
−∞

ajf exp
(
A0 (xf ) +A1 (xf ) af +A2 (xf ) a

2
f

)
daf .

(7)

The equation is the desired form where we can utilize
the Gaussian integral formula, equation 6. The same
procedure, essentially without any change, will work
for the 5D case too, where the steps shown above are
performed one-by-one for each integration variable a,
b and δ.

APPLICATIONS
We consider a system with an octupole magnet and a

quadrupole magnet, separated by a 20cm drift. The setup
is followed by a 110 cm drift to the final image. Each mag-
net is 25cm in length and 20cm full aperture. Both the
transverse beam optics, in coordinates (x, a, y, b), and ki-
netic energy spread are considered for the simulation. A
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Figure 1: XY distribution plot and the histogram plot of
10000 particles at the entrance of the system.The beam has
Gaussian density distribution in phase space.

100MeV proton beam with RMS emittance, εx = εy =
2× 10−5 and 5% kinetic energy spread is considered. Us-
ing the DA technique described in the section , the beam
density function at the final image is computed as a Tay-
lor expansion in position variables. By using the poletip
field of the octupole magnet as a fit parameter, the lower
order coefficients in the Taylor expansion of the beam den-
sity function are minimized leading to a near uniform beam
density distribution with resonable octupole strengths. Fig-
ures 1 and 2 show the x−y distribution and histogram in x
and y for the beam at the start and end of the system. It can
be noticed from the figures that the beam density function
changes from a Gaussian distribution to a near uniform one.
The uniformity can be improved in principle by the use of
even higher order multipoles, if necessary.

SUMMARY

We showed that DA-based methods are powerfull and
very general methods for applications to beam uniformiza-
tion of Gaussian beams. The main ingredients of the
method are DA-based methods that allow transfer map
computation and inversion of arbitrary lattice maps, Li-
ouville’s theorem, and a novel application of closed form
Gasussian integrals to this setting. Unlike previous meth-
ods, our method is free of assumed correlations in the initial
beam distributions, it is as easy to work with in 5D as it is
in 2D, takes into account arbitrary lattice nonlinearities to
any desired order, and the optimization of the system can
be automated. The method has been implemented in the
code COSY Infinity [?, ?]. More detailed studies and ap-
plications, including the available freedom in phase space
manipulations will be published in forthcoming papers.
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Figure 2: XY distribution for 10000 particles at the final
image.
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Abstract 
While COSY INFINITY provides powerful DA 

methods for the simulation of fragment separator beam 

dynamics, the master version of COSY does not currently 

take into account beam-material interactions. These 

interactions are key for accurately simulating the 

dynamics from heavy ion fragmentation and fission. In 

order to model the interaction with materials such as the 

target or absorber, much code development was needed. 

There were four auxiliary codes implemented in COSY 

for the simulation of beam-material interactions. These 

include EPAX for returning the cross sections of isotopes 

produced by fragmentation and MCNPX for the cross 

sections of isotopes produced by the fission and 

fragmentation of a 
238

U beam. ATIMA is implemented to 

calculate energy loss and energy and angular straggling. 

GLOBAL returns the charge state. The extended version 

can be run in map mode or hybrid map-Monte Carlo 

mode, providing an integrated beam dynamics-nuclear 

processes design optimization and simulation framework 

that is efficient and accurate. The code, its applications, 

and plans for large-scale computational runs for 

optimization of separation purity of rare isotopes at FRIB 

will be presented. 

INTRODUCTION 

The next generation of nuclear physics research will 

require advanced exotic beam facilities based on heavy 

ion driver accelerators.  There are many next-generation 

facilities that are currently under commissioning, 

construction, or envisioned [1-5].  Included amongst these 

is the future Facility for Rare Isotope Beams (FRIB) at 

the National Superconducting Cyclotron Lab at Michigan 

State University.  These facilities are capable of 

producing exotic beams composed of rare nuclei in large 

quantities.  The exotic isotopes are produced via projectile 

fragmentation and fission in targets.  High-performance 

fragment separators, a key component of all rare isotope 

facilities, consist of superconducting magnets that are 

used for the capture, selection, and transport of rare 

isotopes.  Large aperture magnets are necessary in order 

to accept rare isotope beams with large emittances 

resulting from their production mechanism. 

The beam optics code COSY INFINITY uses powerful 

differential algebraic (DA) techniques for computing the 

dynamics of the beam in the fragment separator through 

high order transfer maps [6].  However, until now it has 

lacked the ability to calculate the beam-material 

interactions occurring in the target and energy absorbers.  

Here, a hybrid map-Monte Carlo code has been developed 

and integrated into COSY in order to calculate these 

interactions.  The code tracks the fragmentation and 

fission of the beam in target and absorber material while 

computing energy loss and energy and angular straggling 

as well as charge state evolution.  This is accomplished by 

implementing auxiliary codes such as ATIMA [7] and 

GLOBAL [8].  EPAX [9] is utilized to return cross 

sections of fragmentation products.  The special case of 

fission has been treated by using the code MCNPX [10] 

to accurately predict the cross sections and dynamics of 

exotic beams produced by a 
238

U beam incident on a Li or 

C target.  The extensions to the code have made it 

possible to simultaneously compute high order optics and 

beam-material interactions in one cohesive framework. 

The hybrid map-Monte Carlo code can be used to 

calculate important quantities that describe the 

performance of the fragment separator.  These include the 

transmission and the separation purity.  In a map-only 

approach, calculations such as these are not possible.  

Experimental planning and optimization is possible with 

the map-Monte Carlo code, as various fragment separator 

settings can be readily adjusted.  Here we present a 

description of the code and how it is implemented in 

COSY. 

DESCRIPTION OF HYBRID MAP-MONTE 

CARLO CODE 

While COSY INFINITY possesses a powerful DA 

framework for accurate simulation of beam dynamics in 

electromagnetic fields, the master version does not allow 

for the simulation of beam-material interactions.  This 

ability is necessary, however, in order to model the 

dynamics of fission and fragmentation products.  In order 

to track heavy ions through target and absorber material, 

much code development to COSY was needed. 

New additions made to the code include the 

implementation of auxiliary codes to determine how 

many of each type of isotope are produced from the 

fragmentation and fission of an energetic heavy ion 

beam.of a given nuclear mass A and nuclear charge Z 

incident on a specified target of a given thickness.  Also, 

the dynamics of these new particles need to be 

determined.  It is necessary to model the cross sections 

and dynamics of fragmentation and fission separately due 

to the auxiliary codes available. 

Fragmentation Cross Sections 

In the case of any primary beam that has nuclear charge 

Z<92, the secondary particles of interest are 

fragmentation products.  The cross sections of these 

*This work was supported by the U.S. Department of Energy, Office 

of Nuclear Physics, under Contract No. DE-AC02-06CH11357 

#bandura@anl.gov 
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particles are found via the code EPAX, which has been 

integrated into the code.  The parameters that must be 

input to the code are the nuclear mass A and nuclear 

charge Z of the primary beam and the nuclear mass and 

charge of the product.  Also, it is necessary that the 

target’s nuclear mass and charge and thickness are input.  

EPAX will then return the cross section of the product in 

millibarns. 

Fragmentation Dynamics 

The secondary particles that emerge from the target 

have different kinematics depending on the production 

mechanism by which they were formed.  For nuclear 

fragmentation, the angular divergence and momentum 

deviation of the secondary particle will solely be based on 

its mass and on the initial mass of the nucleus that 

fragments.  This is called the “fireball” method, where 

thee momentum is given by a Gaussian distribution with 

the standard deviation given by. 

1

)(85






p

cpc

light A

AAA

c
 , 

where Ac is the child particle and Ap is the parent particle 

from which the child particle fragments.  The momentum 

of the new fragment is modified by adding a random 

number chosen by Gaussian distribution with standard 

deviation .  The parallel component of the momentum is 

used to calculate energy loss and straggling, and the 

perpendicular component is used to calculate the angular 

divergence of the particle and angular straggling. 

Fission Cross Sections 

In contrast to the fragmentation process, the cross 

sections of fission products are energy-dependent.  The 

map-Monte Carlo code utilizes MCNPX in order find the 

cross sections of all the isotopes produced by a 
238

U beam 

incident on a Li or C target.  These are two targets under 

development for the FRIB (Figure 1).  MCNPX was run 

for four different beam energy and target combinations, 

namely 200, 400, 800, and 1500 MeV/u incident on both 

Li and C targets of thickness 0.1068 g/cm
2
.  The 

238
U 

beam was assumed to be point-like and have no angular 

divergence or energy spread.  The output from MCNPX is 

the number of particles of each isotope produced Nprod.  

This number includes all the isotopes produced from all 

nuclear processes.  With this number, the cross section of 

any isotope may be computed by the formula: 

A

prod

cs
NxN

AN




0

 , 

where A is the nuclear mass of the target, N0 is the 

number of source 
238

U particles, x is the target thickness, 

 is the target density, and NA is Avogadro’s number.  

The number of source particles in each run was between 

6x10
8
 and 1x10

9
. 

The cross section data provided by MCNPX were used 

to interpolate the cross section of the fission products as a 

second order polynomial in energy given by 

2

210 EcEcccs  , 

where E is the energy of the 
238

U beam and the cn’s are 

the coefficients of the interpolation for a given isotope 

with nuclear mass A and nuclear charge Z.  The 

coefficients of this polynomial are listed in a file that is 

read once by COSY and stored in an array each time the 

code is run.  This method is fast and uses very little 

memory.  Another benefit to this method is the in which a 

more up-to-date fission model may be included in the 

future as developments in the field occur. 

 

 

 

 

Figure 1: Cross sections of all isotopes produced by 200, 

400, and 1500 MeV/u 
238

U beam incident on a 0.1068 

g/cm
2
 Li target. 
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Fission Dynamics 

For fission, the coordinates are not only based on the 

masses of the nuclei as is the case for fragmentation.  

There is an extra energy release that results from the 

fissioning nucleus.  This extra energy release means that 

the products will have large , or energy spread, and also 

large angular divergences.  If  and the angular 

coordinates are plotted, then the result is a “fuzzy” 

spherical shell that represents the phase space that is 

occupied by fission products (Figure 2). 

The fact that all fission products are emitted from the 

target in a sphere can be used to model the dynamics of 

the emitted beam.  More precisely, the coordinates of 

these fission products are best represented by a spherical 

shell with some thickness.  In order to determine the 

initial coordinates of each isotope that will pass through 

the fragment separator, we must have a method to obtain 

the “sphere” of each isotope in a random manner.  At low 

energies, the thickness of the spherical shell is large, with 

the most particle density at larger radii.  As the energy 

increases, the thickness of the spherical shell becomes 

thinner and more dense and, hence, represents a lower 

beam emittance. 

 

CONCLUSION 

A hybrid map Monte Carlo code has been developed to 

accurately model beam-material interactions for the 

purpose of fragment separator beam dynamics simulation.  

A comprehensive fission model was developed to 

accurately model cross sections and kinematics of 

isotopes produced from a 
238

U primary beam.  Using the 

code, one may simulate a variety of exotic beam 

experiments and compute important quantities such as the 

separation purity and transmission of various rare 

isotopes.

 

 

 

 

 

Figure 2: Kinematics of a 
132

Sn beam resulting from the 

fission of 200, 400, and 1500 MeV/u 
238

U primary beam 

upon interaction with a 0.1068 g/cm
2
 Li target.  The 

132
Sn coordinates are shown in black with the colored 

circles representing the projection of these coordinates 

on the various coordinate planes.  The coordinates shown 

are the momentum deviation (p) and scaled horizontal 

and vertical momenta (x,y). 
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OPTIMIZING SRF GUN CAVITY PROFILES IN A GENETIC ALGORITHM 
FRAMEWORK* 

A.S. Hofler#, P. Evtushenko, F. Marhauser, Thomas Jefferson National Accelerator Facility, 
Newport News, VA 23606, U.S.A.

Abstract 
Automation of DC photoinjector designs using a 

genetic algorithm (GA) based optimization is an accepted 
practice in accelerator physics. Allowing the gun cavity 
field profile shape to be varied can extend the utility of 
this optimization methodology to superconducting and 
normal conducting radio frequency (SRF/RF) gun based 
injectors. Finding optimal field and cavity geometry 
configurations can provide guidance for cavity design 
choices and verify existing designs. We have considered 
two approaches for varying the electric field profile. The 
first is to determine the optimal field profile shape that 
should be used independent of the cavity geometry, and 
the other is to vary the geometry of the gun cavity 
structure to produce an optimal field profile. The first 
method can provide a theoretical optimal and can 
illuminate where possible gains can be made in field 
shaping. The second method can produce more 
realistically achievable designs that can be compared to 
existing designs. In this paper, we discuss the design and 
implementation for these two methods for generating field 
profiles for SRF/RF guns in a GA based injector 
optimization scheme and provide preliminary results. 

OPTIMIZATION SYSTEM OVERVIEW 
Alternative Platform and Programming Language 

Independent Interface for Search Algorithms (APISA) [1] 
builds on the Platform and Programming Language 
Independent Interface for Search Algorithms (PISA) [2] 
system. PISA provides a modular way to combine GAs 
and problems. It uses two communicating state machines 
to separate the GA implementation from the problem 
model evaluation. It is easy to apply different GAs to a 
given problem because the state machine structures are 
well defined and the files used to communicate between 
the two state machines are standardized. Changing the 
GA only requires running the optimization scheme with a 
different GA state machine; the problem model is 
unchanged. APISA takes advantage of this 
compartmentalization and provides problem model 
evaluations customized for accelerator physics. APISA 
uses A Space Charge Tracking Algorithm (ASTRA) [3] 
or General Particle Tracer (GPT) [4] to simulate particle 
dynamics making it a suitable tool for injector design 
optimization. The version of APISA described in this 
paper relies on ASTRA for the beam dynamics 
simulations. 

FIELD MORPHING 
The original version of APISA assumes that the field 

descriptions provided for the magnets and rf accelerating 
components are fixed and that the optimization can vary 
the amplitude and/or phase of these elements. This 
version of APISA, which is geared toward designing 
SRF/RF gun based injectors, allows the functional form 
of the on-axis field description of the gun to be varied. 

Under the assumption that the desired field pattern 
resembles a π  mode, the software uses a sine wave as the 
fundamental form for the field description. A truncated 
Fourier series, 

15 15

1 1cavity cavity
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n n

z zf z a n b n
L L

π π
= =

⎛ ⎞ ⎛ ⎞
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where cavityL  is the length of the cavity, is then applied to 
the fundamental form to produce the field description 
used in the beam dynamics simulation. Each coefficient 
of the series can be designated as a variable controlled by 
the optimization scheme or fixed to a specified value. The 
default value for all coefficients is zero. Other variables 
that can be fixed or varied are the frequency of the 
underlying sine function and the number of cells the 
underlying sine function should represent. The fractional 
part of the number of cells is interpreted as a gun cell, that 
incorporates the beam emitting cathode and generally 
precedes the full cells. The number of cells and the sine 
frequency are used to calculate cavityL  and the free space 
wavelength of the cavity. 

The system computes characteristics of the generated 
field profile and the morphing function, ( )f z , and these 
characteristics can be used as constraints or objectives in 
the optimization. For example, to preserve the nodes that 
occur between cells in a π  mode, the minimum of ( )f z  
must be positive; otherwise, additional unwanted zero 
crossings are introduced in the generated field profile. 
Because ( )f z  can change the frequency of the generated 
field, the system determines the resonance frequency 
from a Fourier transform of the field profile. The 
frequency can be used as a constraint and an objective to 
guide and restrict the frequencies of the fields produced. 

Preliminary results for a PITZ-like 1.5 cell RF gun 
operating at 40 MV/m followed by an emittance 
compensation solenoid [5] indicate that the field 
amplitude in the half cell should be much larger than in 
the full cell.  These results are obtained using 128 nodes 
of a Jefferson Lab cluster computer. Each case represents 

 ___________________________________________  
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14 generations with 128 individuals in each generation. 
The optimization attempts to minimize the beam size and 
emittance for a 1.65 nC 24 ps FWHM plateau electron 
bunch 1.618 m downstream of the cathode [6] for a fixed 
RF phase and solenoid setting. The variables in the 
optimization are the coefficients of ( )f z  subject to the 
constraints that the beam size, emittance, and the 
minimum of ( )f z  are all positive. Two cases are shown 
in Figures 1 and 2 where the half cell amplitude is more 
than twice the full cell amplitude. 

 

 

Figure 1: Varying the first three Fourier coefficients. 

 

 

Figure 2: Varying the first seven Fourier coefficients. 

 
In Figure 1, the optimization is changing six 

coefficients, a1 through a3 and b1 through b3 of ( )f z , 
while in Figure 2 the optimization is varying fourteen 
coefficients, the first seven for each an and bn. In Figure 2, 
with more and higher frequencies available to include in 
the field profile, the optimization pushes the peak field 
closer to the cathode. Both cases strongly indicate that 
high electric fields on the cathode yield better gun 

performance. These cases, also, have significant particle 
loss which requires further study. 
 

 

Figure 3: Standard balanced field PITZ geometry. 

 

 

Figure 4: Unbalanced field geometry. 

 
Table 1: Changes relative to the balanced geometry 

Element Dimension Change 

Half Cell radius -37.4 µm 

Iris radius +0.5 mm 

Full Cell radius +162.6 µm 

 

 

Figure 5: Normalized Ez profiles for the two geometries. 

 
To test the validity of this conclusion in a realistic 

cavity design, two variations of the PITZ 1.5 cell cavity 
have been modelled. The first yields the standard well 
balanced field profile design in Figure 3. Figure 4 shows 
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the second case where the geometry is modified slightly 
to create a field with the amplitude in the half cell being 
roughly twice the full cell amplitude. Table 1 summarizes 
the relative changes in the physical dimensions for the 
unbalanced geometry relative to the balanced case. The 
on-axis field profiles for both geometries are shown in 
Figure 5. 

As in the optimization, the main solenoid strength and 
RF injection phase are fixed in the ASTRA simulations. 
In addition, simulations using ASTRA’s autophase 
feature to find the phase for maximum energy gain are 
provided for comparison. For the balanced field cases, the 
peak electric field is 40 MV/m whereas it is 80 MV/m in 
the unbalanced case. Figures 6 and 7 show the transverse 
normalized emittance and beam size, respectively, for all 
cases. 

 

 

Figure 6: Transverse emittance along beam line. 

 

 

Figure 7: RMS beam size along beam line. 

 
While the final emittance for the fixed phase 

unbalanced field case is comparable to both balanced 
field results, the unbalanced results show a general 
improvement in emittance due to the increased RF 

focusing from the higher gradient in the half cell. The 
charge transmission is significantly better in the 
unbalanced case where particles are lost on apertures. In 
contrast, the balanced case particle loss is due to 
backward travelling particles. The difference in beam size 
is due to changes in RF focusing and can be managed by 
increasing the solenoid strength. 

CAVITY GEOMETRY MORPHING 
Cavity geometry determines the field characteristics, so 

it is necessary to consider a system that varies the cavity 
geometry. Including the geometry configuration in the 
optimization allows for studying the impact of changes in 
the cavity geometry on the beam dynamics of an injector 
design. It is also a step forward in automating the injector 
design and optimization process since the cavity shape 
can be developed and tested concurrently with the other 
injector elements. 

Including cavity geometry in the optimization 
framework requires incorporating into APISA a field 
solver to compute the field from the specified geometry. A 
goal of this effort is to use free software packages as 
much as possible. Poisson Superfish [7] is a generally 
accepted tool for computing the field information for 
cylindrically symmetric cavities and will be the field 
solver used in this system. Using Wine (Wine Is Not an 
Emulator) [8] with Xvfb, the X Window’s virtual frame 
buffer [9], to capture the graphics output, Poisson 
Superfish can run on a monitorless Linux machine in a 
cluster computer. 

 

 

Figure 8: Straight line approximations for re-entrant (left), 
pillbox (center) and elliptical (right) cavities. 

 
Poisson Superfish relies on a drive point that is treated 

as a source of a fictitious magnetic current to compute the 
cavity fields [7]. The drive point must be placed in an area 
of the cavity geometry that has a sufficiently high 
magnetic field. Changing the drive point location can 
significantly affect the cavity mode that is excited in the 
structure. Also, the search frequency can impact the field 
mode Poisson Superfish finds. To isolate these issues 
from the optimization, the Poisson Superfish processing, 
which will consider the results of several drive point 
locations and search frequency choices, will be 
encapsulated in a separate program that feeds back to the 
optimization scheme the generated field profile for the 
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most π –like mode and characteristics of the field and 
cavity properties that can be used as constraints or 
objectives. The Poisson Superfish processing will not 
include tuning the cavity geometry as that can change 
parameters that are under the control of the optimization 
and therefore mislead the optimization. 

The geometry file generation will be broken into two 
phases. The first will use straight line cavity geometries 
shown in Figure 8 that can be easily morphed from a 
pillbox cavity to approximations for elliptical and re-
entrant cavities by changing the tilt of the cavity end caps. 
The second phase will generate more realistic cavities 
using smooth elliptical curves to describe the geometry. 

CONCLUSION 
Two methods for bringing cavity field characterization 

into an automated injector optimization framework have 
been presented. The first method assumes a general 
underlying form of the optimal cavity field profile that the 
optimization can transform by varying the coefficients of 
a truncated Fourier series used to morph the fundamental 
form. Applying this approach to a PITZ style 1.5 cell RF 
gun based injector leads to the conclusion that higher 
accelerating field in the cathode region of the gun 
improves gun performance. An unbalanced field profile, 
with the field stronger in the half cell, is preferred. 
Because the field morphing method does not consider the 
boundary conditions of the cavity, a second approach that 
works with cavity geometries is needed to develop more 
realistic optimized injector designs. The design for a 
scheme that morphs the cavity geometry has been 
described. The two methods balance each other because 
the first concentrates on what the injector designer wants 

from an optimal field profile to achieve the desired 
injector beam characteristics and the second considers the 
optimal performance that can be realized subject to the 
physics of the cavity. 
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COMPUTATIONAL MODELS FOR MICRO CHANNEL PLATE SIMULATIONS* 

V. Ivanov, Muons, Inc. 522 N. Batavia Ave., Batavia, IL 60510, U.S.A#.

Abstract 
Many measurements in particle and accelerator physics 

are limited by the time resolution with which individual 
particles can be detected. This includes particle 
identification via time-of-flight in major experiments like 
CDF at Fermilab and Atlas and CMS at the LHC, as well 
as the measurement of longitudinal variables in 
accelerator physics experiments. Large-scale systems, 
such as neutrino detectors, could be significantly 
improved by inexpensive, large-area photo-detectors with 
resolutions of a few millimetres in space and a few 
picoseconds in time. The invention of a new method of 
making micro-channel plates (MCP) promises to yield 
better resolution and be considerably less expensive than 
current techniques. 

INTRODUCTION 

One of the first full numerical models for MCP 
simulations was suggested by A.J. Guest [1]. Further 
improvements of this model were done by Y. Kulikov [2] 
in simulation of spatial resolution for light amplifiers of 
static images. Here, two different numerical models for 
short-pulse MCP simulations are suggested [3]. The semi-
analytical approach is a powerful tool for the design of 
static image amplifiers (night vision devices, electron 
optical converters, streak cameras etc.). Monte Carlo 
simulations can be successfully used for large area photo 
detectors with micron and pico-second resolution range. 
Both approaches have been implemented in the computer 
codes MCPS [4] and MCS (Monte Carlo Simulator). The 
results of computer modelling for electric fields and MCP 
parameters are presented. 

ELECTRIC FIELD DISTRIBUTION FOR 
TILTED CYLINDRICAL CHANNELS IN A 
DIELECTRIC MEDIUM  

 
The chevron pair is a typical MCP configuration which 

can prevent ion feedback and increase the efficiency of 
the first strike problem. It consists of two glass plates with 
tilted cylindrical pores with a different orientation for 
each plate. The side surfaces of the plates are metalized, 
and the voltage V applied to them. The internal surfaces 
of the pores are coated with a resistive layer and 
secondary emitter material. Typical dimensions are: plate 
thickness – 0.5 mm, pore diameter 5-10 um, coatings – 10 
nm, tilt angle - 8˚. The field distribution in the pore has a 
complex structure comparised with straight channels, 
where the electric field vector is parallel to the z-axis, and 
the field is a 1D one. This tilted field can change the gain 
factor of secondary emission in the pore. One can show 

that the field for the most internal part of the pore can be  
described analytically, but the fringe fields should be 
evaluated numerically. 

 

 
 

Figure 1: Chevron type MCP. 

Problem 1 
The potential distribution and electric field for a 

straight cylindrical pore in a uniform external field 
(Figure 1) are given by formulae 

(1) 

   (2)

  
 

 

Figure 2: Cylindrical channel of radius R with dielectric 
constant ε1 is in the medium ε2 in an external electric field 

of strength E. 
____________________________________________  
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Problem 2 
The external field can be expanded into parallel and 

perpendicular components 
 

 (3) 
 

The parallel component does not make a perturbation, 
but the perpendicular one excites the field of Problem 1. 
The actual field in a cylindrical channel is 

 

  (4) 

Finally, the angle between the cylindrical axis and the 
vector of the internal electric field is 

   (5) 

 

 
Figure 3: Cylindrical channel in tilted electric field E0 

with angle α. 

Problem 3 
 The presence of conductive material excites surface 

currents, which increase the electric field from the 
external side of the layer and decrease it from the internal 
one – the analogue of a dipole charge layer. It creates the 
screening effect of lowering for the external field Eext in 
the pore. The field relaxation ratio for an infinitely thin 
layer with conductivity σ is 

 

                          (6) 

 
An example of fringe-field numerical simulation is 

presented in Figure 5. Some simulations of the electric 
field in a tilted pore were done by E.Gatti [12], but no 
fringe fields were studied there. 

   

 
Figure 4: Screening effect of a resistive layer. 

 

 
Figure 5: Field map for the fringe field. 

DIFFERENT MODELS OF SECONDARY 
EMISSION 

Publication [1] describes a complete model of 
secondary emission (SE).  Here, the energy and angular 
dependence for true SE is presented by Guest’s formula 

 

  (7) 

 
where  θ – incident angle, V – impact energy, Vmax – 
impact energy corresponding to a maximum SE yield of 
σm, α – surface absorption factor, β – smoothness factor 
(β= 0.55 for V<Vmax, and β=0.25 for V>Vmax). Numerical 
results of the gain evaluation for MCP thickness 
L=0.5mm, voltage V = 2kV, σm = 3 using Guest’s model 
are shown in Figure 6.  
 

 
Figure 6: Gain factor vs. MCP diameter D. 

 
The method of MCP simulation [2] was used in 

modelling of “Planacon” light amplifier (Figure 7) by 
Burle/Photonics [13]. Our results for simulation (Figures 
8-10) show good agreement with experimental data [3], 
[6]-[7].  
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Figure 7. Chevron-type photo multiplier 85022. The 
MCP is 2”x2” large, there are 1024 anodes, all 
equally spaced by 1.6 mm. Pore diameter D=25 um. 

 
 

 
 

Figure 8. Gain factor vs. MCP voltage. 
 

 
 

Figure 9. Gain factor vs. ratio L/D. L – length of pore, 
D – its diameter. 

 

 
 
Figure 10. Time resolution including photo cathode – 
MCP gap,  
 

There are number of other SE models [8-11]. All of 
them more or less agree each with other for different 
materials (Figure 11). 

 

 
Figure 11: Different models of SE (Courtesy of 

Z.Insepov). 
 

As for composite materials, these analytical models 
(Figure 12) do not give good agreement with 
experimental data. 

 

 
 
Figure 12: SE curves for a composition of 30% Al2O3 + 

70% ZnO. Blue – Guest’s model; magenta – Ito’s models, 
green – experimental data. 

 
These approximations were used in simulation of the 

INCOM MCP with parameters: D = 40um, L/D = 40, L = 
1.6 mm, voltage U=1kV. The results of numerical 
simulations of gain and time resolution for different SEE 
models are presented in Table 1. 

 
Table 1: Comparative analysis of SEE models 

Model Guest Ito Composite 
Gain 1179 1132 1016 

T res., ps 28.3 32.9 26.7 

FUNNEL-TYPE MCP SIMULATION  
There are ideas for improving the open-area ratio for 

better determination of the location the first strike, 
including making the entrance to the channel into a 
funnel, so that the electron strikes the surface of the 
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funnel and secondary electrons are sucked into the 
channel. Alternatively, the funnel could be directly coated 
with the photo-cathode material, with the photo-electron 
or electrons then initiating the shower in the channel, as 
shown in the simulation in Figure 13. The funnel solution 
is attractive in that it hides the photo-cathode from ion 
feedback- ions that are created on the channel walls and 
accelerated back up the channel. These ions are a cause of 
aging of MCP’s, and can be a problem at high gain. 
Figure 14 demonstrates the result of optimization for 
photo electron capturing in varying the funnel diameter 
and photo cathode resistance. The general-purpose 
electromagnetic and electron optic code “POISSON-2” 
[14] was used to simulate the two dimensional 
electrostatic fields and particle tracking. 

 

 
 
Figure 13: A two of funnel-type cells. Magenta – 
incoming photon bunches; red – photo electrons; green – 
cascades of secondary electrons. 
 

 
 

Figure 14: Geometric parameters of the funnel and 
photo cathode resistance were varied to optimize the 
capture ratio for photoelectrons. 
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RECENT IMPROVEMENT OF TRACKING CODE BBSIMC

H. J. Kim and T. Sen, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

Abstract

The beam-beam simulation code (BBSIMC) is a incoher-
ent multiparticle tracking code for modeling the nonlinear
effects arising from beam-beam interactions and the com-
pensation of them using an electromagnetic lens. It imple-
ments short range transverse and longitudinal wakefield,
dipole noise to mimic emittance growth from gas scatter-
ing, beam transfer function, and wire compensation mod-
els. In this paper, we report on recent improvements of the
BBSIMC including a beam-beam compensation model using
a low energy electron beam and a current carrying wire.

INTRODUCITON

A beam-beam simulation code BBSIMC has been devel-
oped at FNAL over the past few years to study the effects of
the machine nonlinearities and the beam-beam interactions.
The code is under continuous development with the empha-
sis being on including the important details of an accelera-
tor and the ability to reproduce observations in diagnostic
devices. At present, the code can be used to calculate tune
footprints, dynamic apertures, beam transfer functions, fre-
quency diffusion maps, action diffusion coefficients, emit-
tance growth and beam lifetime. Calculation of the last two
quantities over the long time scales of interest is time con-
suming even with modern computer technology. In order
to run efficiently on a multiprocessor system, the resulting
model was implemented by using parallel libraries which
are MPI (interprocessor Message Passing Interface stan-
dard) [?], state-of-the-art parallel solver libraries (Portable,
Extensible Toolkit for Scientific Calculation, PETSc) [?],
and HDF5 (Hierarchical Data Format) [?]. The follow-
ing section describes the physical model used in the simu-
laiton code. Some applications are presented for the Large
Hadron Collider (LHC) wire compensator and the Rela-
tivistic Heavy Ion Collider (RHIC) electron lens.

PHYISCAL MODEL

In the collider simulation, the two beams moving in op-
posite direction are represented by macroparticles of which
the charge to mass ratio is that of each beam. Fewer num-
ber of macroparticles are chosen than bunch intensity of
the beam because it becomes prohivitive for few revolu-
tions around accelerator even with modern supercomput-
ers. They are genernated and loaded with an initial distri-
bution for a specific simulation purpose according to the
beam parameters at the interaction point, for example, six-
dimensional Gaussian distribution for long-term beam evo-
lution. The transverse and longitudinal motion of particles
is calculated by transfer maps which consist of linear and

nonlinear maps. In the simulations, the following nonlin-
earity is included: head-on and long-range beam-beam in-
teractions, external electromagnetic force by current carry-
ing wire, mulitipole errors due to quadrupole triplets, and
sextupole strength of chromaticity correction. In the fol-
lowing, linear and nonlinear tracking models are described
in detail.

Transportation through arc

The six-dimensional accelerator coordinates x =(
x, x

′
, y, y

′
, z, δ

)T

are applied, where x and y are hor-

izontal and vertical coordinates, x
′

and y
′

the trajectory
slopes of each coordinates, z = −cΔt the longitudinal
distance from syncrhotron particle, and δ = Δpz/p0 the
momentuem deviation from the synchrotron. The linear
rotation between two elements denoted by i and j can be
written as

xj =
( M D̂

0 L
)

xi. (1)

Here, M is coupled transverse map of off-momentum mo-
tion defined by M = RjM̃i→jR−1

i , where M̃i→j is the
uncoupled linear map described by twiss functions at i and
j elements, and the transverse coupling matrix R is defined
as

R =
1√

1 + |C|

(
I C†

−C I

)
, (2)

where C† is the 2 × 2 matrix and the symplectic con-
jugate of the coupling matrix C. The dispersion matrix
is described by D̂ = (0,D), and the dispersion vector

D =
(
Dx, Dx′ , Dy, Dy′

)
is characterized by the trans-

verse dispersion functions and the map M:

D = Dj −MDi. (3)

L is a longitudinal map and a nonlinearity of synchrotron
oscillations is applied by adding the longitudinal momen-
tum change at rf cavity.

Beam-beam interactions

For head-on and long-range beam-beam interactions, we
assume that one beam is strong and is not affected by the
other beam while the other beam is weak and experiences
a beam-beam force due to the strong beam during the col-
lision, so called weak-strong beam-beam model. Besides,
the charge distribution of the strong beam is assumed to be
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Gaussian:

ρ (x, y, z) =
nq

(2π)3/2
σxσyσz

exp
(
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

)
,

(4)

where n is the number of particles and q is the electric
charge of the beam. Note that the coordinates (x, y, z),
denote the rest frame of the strong beam. The beam-beam
force between two beams with transverse Gaussian distri-
bution ρ (x, y) =

´
dzρ (x, y, z) is well-known, and the

expression for the slope change is given by, for elliptical
beam with σx > σy :

Δx
′
=

2ñr0

γ

√
π√

2
(
σ2

x − σ2
y

)�F (x, y) , (5a)

Δy
′
=

2ñr0

γ

√
π√

2
(
σ2

x − σ2
y

)�F (x, y) , (5b)

where F (x, y) is a complex function defined in [?]. New
constants are defined as r0 ≡ qq∗/4πε0m0c

2 and ñ ≡
n

(∣∣∣�β
∣∣∣−1

+
∣∣∣�β∗

∣∣∣
)

/
(∣∣∣�β

∣∣∣ +
∣∣∣�β∗

∣∣∣
)

. Here, a subsript aster-

isk designates a variable of weak beam.

Electromagetic lens

It is well known that for a large separation distance
(� σ) at parasitic crossings, the strength of long-range in-
teractions is inversely proportional to the distance. Its ef-
fect on a test beam can be compensated by current carrying
wires which create just the 1

r field. The advantage of such
an approach consists of the simplicity of the method and
the possibility to deal with all multipole orders at once. For
a finite length lw embedded in the middle of a drift length
L, the transfer map of a wire can be obtained by

M(L)
w = DL/2 ◦M(L)

k ◦ DL/2, (6)

where DL/2 is the drift map with a length L
2 , and M(L)

k is
the wire kick integrated over a drift length. The change in
slopes of a test beam is

(
Δx

′

Δy
′

)
=

μ0

4π

Iwlw
(Bρ)

u − v

x2 + y2

(
x
y

)
, (7)

where Iw is the current of wire , u and v are√(
L
2 + lw

)2
+ x2 + y2 and

√(
L
2 − lw

)2
+ x2 + y2 re-

spectively. Besides, we take into account the wire place-
ment including pitch and yaw angles. The transfer map of
wire can be written by

Mw = D−L/2 ◦ SΔx,Δy ◦ T−1
θx,θy

◦ DL2 ◦Mk

◦ DL1 ◦ Tθx,θy ◦ D−L/2, (8)

where Tθx,θy represents the tilt of the coordinate system by
horizontal and vertical angles θx, θy to orient the coordi-
nate system parallel to the wire, and SΔx,Δy represents a

shift of the coordinate axes to make the coordinate systems
after and before the wire agree. When the wire is paral-
lel to the beam, Eq. (??) becomes Mw = Mk. For can-
celling the long-range beam-beam interactions of the round
beam with the wire, one can get the desired wire current
and length; the integrated strength of the wire compensator
should be commensurate with the integrated current of the
beam bunch, i.e., Iwlw = cq∗n∗.

Electron lens

An electron lens is expected to improve beam lifetime
and luminosity of the colliding beams by reducing the be-
tatron tune shift and spread from the head-on collisions. A
space charge force of low-energy electron beam is acting
as a focusing or defocusing lens depending on the high en-
ergy bunches. In BBSIMC, two electron beam distribution
functions are implemented: (a) Gaussian distribution and
(b) Smooth-edge-flat-top (SEFT) distribution. The trans-
verse kick on the high energy beam from the electron beam
is given by

Δ�r′ =
2ñr0

γ

�r⊥
r2
⊥

ζ (r⊥ : σ̄) ,

where ñ is the number of electrons of the electron beam ad-
justed by the electron speed, r0 is the classic particle radius,
σ̄ is the electron beam size, and γ is the Lorentz factor. The
function ζ is given by

• for Gaussian distribution

ζ (r⊥ : σ̄) =

»

1 − exp

„

− r2
⊥

2σ̄2

«–

,

• for SEFT distribution

ζ =

√
2ρ̃0

8

»

1

2
log

„

θ2
+ + 1

θ2
− + 1

«

+ tan−1 θ+ + tan−1 θ−

–

,

where ρ̃ is a constant, and θ± =
√

2
(

r
σ̄

)2 ± 1.

Finite bunch length

The bunch length effect needs to be considered in case
of (1) the longitudinal bunch length σz is comparable to
the transverse lengths σx and σy , (2) the orbit function βx

and βy are not constant through beam-beam interactions,
and (3) the transverse beta functions are small and com-
parable to σz . We make slices of both beams moving in
opposite directions. Each slice is integrated over its longi-
tudinal boundary, and has only transverse charge distribu-
tion at the center of its longitudinal boundary. We take into
account the collision between a pair of slices: each slice in
a beam interacts with particles in the other beam in turn at
the collision points. In additon, electric field energy varies
along the bunch due to the inhomogenity of beam param-
eters in the longitudianal direction, and couples transverse
and longitudinal motions. The coupling can be modelled
by including beam-beam interactions due to the longitudi-
nal component of the electric field as well as the transverse
components [?].
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Particle Loading

At the start of the simulation, the particles in the weak
beam are distributed over the phase space. The number of
simulation particles is limited by the computational power.
In order to make the best use of a relatively small number
of simulation particles compared to the bunch intensity, the
initial distribution should be optimized. Indeed the initial
distribution is very important because a proper choice can
reduce the statistical noise in the physical quantities. The
simulation particles are generated in two steps: (i) The par-
ticle coordinates (x, y, z) of particles can be directly gen-
erated from the spatial Gaussian distribution, ρ̄ (x, y, z) =
ρ̄x (x) ρ̄y (y) ρ̄z (z), where ρ̄ζ (ζ) = ρ̄ζ0 exp

(
− ζ2

2σ2
ζ

)
.

Since the particle coordinates are not correlated, one can
generate them by inverse mapping of each cumulative dis-
tribution function of horizontal, vertical, and longitudinal
Gaussian distributions, using bit-reversed sequence to min-
imize nonphysical correlations [?]. (ii) An equilibrium dis-
tribution in transverse phase space e.g. in the (x, x ′) plane

is ρ̂
(
x, x

′
)

= ρ̂0 exp

(
−x2+

“

βxx
′
+αxx

”2

2σ

)
. Since the

spatial coordinate x is determined at the first step, the slope
x

′
can be obtained from the random variate r of a univari-

able Gaussian, i.e., x
′
= (r − αxx) /βx.

APPLICATIONS

LHC

Long-range beam-beam interactions are known to cause
emittance growth or beam loss in the Tevatron and are ex-
pected to deteriorate beam quality in the LHC. Increasing
the crossing angle to reduce their effects has several un-
desirable effects, the most important of which is a lower
luminosity due to the smaller geometric overlap. For the
LHC, a wire compensation scheme has been proposed to
compensate the long-range interactions by applying exter-
nal electromagnetic forces. At large beam-beam separa-
tion, the electromagnetic force which a beam exerts on in-
dividual particles of the other beam is proportional to 1

r ,
which can be generated and canceled out by the magnetic
field of a current-carrying wire. However, several issues
need to be resolved for efficient compensation. With the
present bunch spacing, there are about 30 long-range in-
teractions on both sides of an interaction point (IP). The
beam-beam separation distance varies from 6.3 σ to 12.6
σ. The resulting beam-beam force is not identical to that
generated by a single or multiple wire(s).

The wire-beam separation distance is one of major pa-
rameters which determine the performance of a wire com-
pensator. Figure ?? shows the angle-averaged dynamic
aperture for off-momentum particles with 3 σΔp/p for dif-
ferent wire-beam separations. The reference separation (9
σ) is choen as the average of beam-beam separations. The
dynamic aperture calculated at different phase angles is the
largest radial amplitude of particles that survive up to a cer-

Figure 1: Plot of angle-averaged dynamic apertures accord-
ing to wire separation distance with wire strength 82.8 Am.

Figure 2: Plot of particle loss according to wire-beam sep-
aration distance with wire strength 82.8 Am.

tain time interval; in this simulation, 106 turns. When the
beam-beam compensation is not present, the dynamic aper-
ture is around 8 σ. However, for a wide separation range,
the dynamic aperture is smaller than 8 σ by about 2-4 σ.
The dynamic aperture decrease linearly as the separation
decreases. Figure ?? shows the results of particle loss in
1× 106 turns for different wire-beam separations. The par-
ticle loss saturates at large separation while there is a sharp
increase of particle loss at small separation. We directly
see the minimum particle loss between 0.9 and 1.0 of the
reference separation. It reveals that the average of beam-
beam separations is close to an optimal separation between
the wire and the high energy bunch.

RHIC

Increasing the luminosity requires higher beam intensity
and often focusing the beam to smaller sizes at the inter-
action points. The effects of head-on interactions become
even more significant. The head-on interaction introduces a
tune spread due to a difference of tune shifts between small
and large amplitude particles. In the proton-proton run of
RHIC, the maximum beam-beam parameter reached so far
is about ξ = 0.008. The combination of beam-beam and
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Figure 3: Plot of particle loss according to electron beam
intensity for a 1σ Gaussian electron beam profile .

machine nonlinearities excite betatron resonances which
diffuse particles into the tail of beam distribution and even
beyond the stability boundary. It is therefore important to
mitigate the head-on beam-beam effect.

In order to seek the electron lens parameters at which the
beam life time is improved, we choose three different elec-
tron beam distribution functions: (a) 1σ Gaussian distribu-
tion with the same rms beam size as that of the proton beam
σ, (b) 2σ Gaussian distribution with rms size twice that of
the proton beam, and (c) Smooth-edge-flat-top (SEFT) dis-
tribution with an edge around at 4 σ. When the electron
beam profile matches the proton beam, the full compres-
sion of the tune spread requires the electron beam intensity
Ne = 4 × 1011 which is defined as the electron beam in-
tensity required for full compensation or 1x bbc. Figure
?? shows the results of particle loss for different intensities
with the 1σ Gaussian electron beam profile. At an inten-
sity of 1x bbc, the particle loss is nearly six times the loss
without beam-beam compensation. The beam lifetime of
1
2x bbc however is comparable with that of no bbc. As
the electron beam intensity is decreased, the particle loss
decreases significantly below 1

4x bbc, and is reduced to
30% of no bbc at 1

8x bbc.
For the 2σ Gaussian and SEFT electron beam profiles,

we calculated dynamic apertures and particle loss for dif-
ferent electron beam intensities. The results are summa-
rized in Table ??. The upper limits of the electron beam
intensity for the two distributions are chosen so that peak
of the electron profile is matched to that of 1x bbc at 1σ
Gaussian. For the 1

2x bbc and 1x bbc of 2σ Gaussian pro-
file, there is a small increase in the dynamic aperture of off-
momentum particles. There is however a significant reduc-
tion in beam loss, for example, below 10% of the particle
loss without beam-beam compensation when the electron
beam intensity is 1

2x bbc. The dynamic aperture obtained
with the SEFT profile remains almost the same up to 2x
bbc. Nevertheless a significant improvement of beam life-
time is also observed below 2x bbc. There is a threshold
electron beam intensity below which beam life time is in-
creased: 1

2x bbc for the 1σ Gaussian, 2x bbc for the 2σ

Profile Intensity(
4 × 1011

) DA
(σ)

Particle loss†

(%)
1σ Gaussian 1 4.48 635

1/2 5.10 115
1/4 5.44 63
1/8 5.63 30

2σ Gaussian 4 3.53 93
2 5.05 10
1 5.40 8

1/2 5.63 6
SEFT 8 3.60 330

4 4.77 21
2 5.46 22
1 5.47 6

1/2 5.57 6
†relative to that without beam-beam compensation

Table 1: Comparison of dynamic apertures and particle loss
for different electron beam profiles and intensities.

Gaussian, and 4x bbc for the SEFT profile. Particle loss
is relatively insensitive to electron lens current variations
below threshold current with the 2σ Gaussian and SEFT
profiles. This looser tolerance on the allowed variations in
electron intensity is likely to be beneficial during experi-
ments.

SUMMARY

In order to study the effects of the machine nonlinear-
ities and the beam-beam interactions, and the effective-
ness of compensation schemes of beam-beam interactions,
we have developed a six-dimensional weak-strong code
BBSIMC. The simulations are carried out using both LHC
and RHIC. The results of LHC simulation show that the
particle loss is minimized at the wire separation which cor-
responds to the average of beam-beam separations. We ob-
served, from the redults of RHIC, that there is a threshold
electron beam intensity below which proton beam life time
is increased. A wider electron beam profile than the proton
beam at the electron lens location is found to increase beam
life time.
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A NEW MODEL-INDEPENDENT METHOD FOR OPTIMIZATION OF
MACHINE SETTINGS AND ELECTRON BEAM PARAMETERS∗

Martin J. Lee, GO AI Services, Los Altos, CA 94024, USA
Jeff Corbett and Juhao Wu, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

Abstract

Nonlinear programs are widely employed in particle ac-
celerators and storage rings to compute machine settings
for optimal model-predictive control of beam parameters.
Conventional iterative methods today suffer from problems
with finding the global optimal solution when the start so-
lutions are outside the basin-of-attraction for a given objec-
tive function to be minimized. A new iterative matrix in-
version global optimization (IMIGO) method [1] has been
developed to overcome this limitation. IMIGO unlike the
existing iterative nonlinear solvers, it calculates only the
Jacobian vector of the objection function and not the Hes-
sian matrix at each iteration-this unique feature has led to
a new application of IMIGO for optimization of electron
beam parameters for cases when a model is unavailable or
only an inaccurate model is available. Some possible appli-
cations of this IMIGO-based model-independent optimiza-
tion method will be presented in the paper.

INTRODUCTION

A nonlinear program is a solver typically employed to
find the global minimum of a given objective function sub-
jected to certain conditions known as constraints. For op-
timization of beam parameters, (b1, b2, · · · , bn), the con-
trol variables are the strengths or settings of a group of
accelerator elements, (a1, a2, · · · , am), that are used to
control these beam parameter values. In general, an ob-
jective function is defined as a function of the beam pa-
rameters. Since each of the beam parameters is a func-
tion of the control variables, the value of a given ob-
jective function is determined by the values of the con-
trol variables, fobj(a1, a2, · · · , am). In beam parame-
ter optimization, the start values of the control variables
(astart

1 , astart
2 , · · · , astart

m ) are known. Nonlinear programs
are used to find the lowest value of a given objective
or ‘cost’ function for the values of the control variables
within given bounds: Δk > (ak − astart

k ) > −Δk for
k = 1, 2, · · · , m. When the absolute minimum value of the
objective function is found, fobj ⇒ fmin

obj , the set of vari-
able values is commonly referred to as the global minimum
solution: (asol

1 , asol
2 , · · · , asol

m ).
The inherent difficulty of using an iterative method to

find the global-minimum solution is well known. In gen-
eral, an iterative method requires an initial guess solution.
If this start solution is too far from the global-minimum
solution, the program will find only a local-minimum solu-

∗ JC and JW’s work is supported by the US Department of Energy un-
der contract DE-AC02-76SF00515.

tion. This problem is known as the basin-of-attraction limit
(BOA). A BOA is defined to be the biggest region around
a given minimum solution. The problem with the existing
iterative nonlinear programs is that they will only find the
actual solutions for a special case in which the start solution
is inside the BOA corresponding to the global-minimum
solution. The new nonlinear programming method IMIGO
provides a mitigation to this limitation.

Existing nonlinear programs can be classified into two
basic types: One uses an analytical iterative method and
the other relies on a stochastic search method such as a
genetic algorithm. The inherent difficulty of using an iter-
ative method to find the global-minimum solution is well
known. In general, an iterative method requires an ini-
tial guess solution. If this start solution is too far from
the global-minimum solution, the program will find only
a local-minimum solution. As an illustration, a surface plot
of the objective function for a minimization problem with
two variables is shown in Fig. 1. This figure shows the lo-
cations of local-minimum points and the global-minimum
point.
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Figure 1: Object function of two variables.

AN OVER VIEW OF IMIGO

IMIGO, like conventional solvers, finds the solution by
solving the following set of equations iteratively starting
from a given start solution:

fk(a1, · · · , am) = ∂fobj/∂ak = 0 (1)

for k = 1, 2, · · · , m .
One unique feature of IMIGO is that it solves these

equations without the using the values of the derivatives:

THPSC023 Proceedings of ICAP09, San Francisco, CA

Accelerator/Storage Ring Control Systems

308



∂fj/∂ak = 0 for j, k = 1, 2, · · · , m, i.e., Hessian ma-
trix [1]. In other words, IMIGO is a non-derivative based
solver. The iterative process in OASIS is shown in Fig. 2.
When the values of the variables converge, the set of val-
ues of the variables at the end point is a solution that cor-
responds to a minimum, maximum, or saddle point of the
objective function. This unique feature has led to a sim-
ple two parameter (s, p) search method to find the global
minimum of the objective function.

Figure 2: Block diagram of the iterative process to find a
solution that minimizes the value of a given objective func-
tion.

A main advantage of IMIGO is that it can find the
global-minimum solution even when the start solution is
not within the BOA corresponding to the global-minimum
solution. Another salient feature is that it can search for
a path that ends at the global-minimum solution indepen-
dent of the size and complexity of a given problem, i.e.,
the problem and the objective function can include many
variables and the problem may be very non-linear. To use
IMIGO, the user makes a guess on the variable values at
the start point for a given objective function to be min-
imized. The user also imposes specific upper and lower
bounds on each of the variables. IMIGO first uses an ex-
haustive search method to find the start values of the two
convergence control parameters.

A Two-Variable Problem

As an illustration of how OASIS works, the results ob-
tained for a typical small-scale minimization problem with
two variables a1 and a2 are presented [2]. In this exam-
ple, the same bounds, Δ = 0.2, are imposed on the values
of both bounded variables: Δ > (ak − astart

k ) > −Δ for
k = 1, 2 with astart

1 = 100 and astart
2 = 102. Figure 3

shows a plot of the objection function for a solution path
starting at a given point and ending at the global minimum
point. It can be seen from this plot that, because IMIGO
is a non-Hessian-based algorithm, the objective function
values it finds for points on the solution paths first rise
above the objective function value at the start point before
falling toward zero at a minimum point: aend

1 = 100.13
and aend

2 = 102.04. Figure 4 also shows another special
feature of OASIS Pathfinder-Its unique ability to find the
global-minimum solution when the start point is outside of
the BOA of the global-minimum point.

An Eight-Variable Problem

As an application of IMIGO to a real accelerator project,
we have used IMIGO to optimize the two bunch compres-
sor setting for the LCLS at SLAC [3]. The objective func-
tion is formed to set the final electron rms bunch length,
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Figure 3: Variation of objective function on solution paths
to the global minimum.
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Figure 4: Plot of a solution path that ends at the global
minimum point.

the final centroid energy, and the final energy chirp along
the electron bunch; and simultaneously minimize the rms
bunch length fluctuation and the final energy chirp fluctua-
tion. The objective function is a function of eight variables:
the LINAC acceleration phase and total acceleration volt-
age in the three linac section, and the R56 of the two bunch
compressors. As an example, the objective function as a
function of the two LINAC section (L1 and L2) phases is
shown in Fig. 5. However, as described about, even though
this is an eight-dimensional optimization, IMIGO in fact
does the search in two-dimension, namely in the (s, p) 2-
dimensional space. The IMIGO was able to find minimum
solution. Yet, the model in Ref. [3] does not include the
space charge effect or the coherent synchrotron radiation
(CSR) effect. Going into more detailed study with space
charge and CSR effects are time consuming with numer-
ical simulation, and is not easy to get a closed analytical
expression for the objective function. Hence in the follow-
ing we will discuss the possibility of using IMIGO to do a
model independent beam optimization. The machine is in
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fact the ‘model’, and the measurement data is the output of
the ‘model’. Directly working with the machine measure-
ment data, one can also optimize the system by running
IMIGO to tell how to set the machine parameters. Hence
this is the model-independent approach.

MODEL-INDEPENDENT BEAM
OPTIMIZATION

In reality, as described above, normally the model is ei-
ther too simplified compared to real situation, if an analyt-
ical expression for the objective function is needed; or the
model can be time-dependent, which will need the control
system to be self-adaptive or at least to have a dynamics re-
sponse function. Therefore, staying with an over-simplified
model, or using a static model for a dynamic system will
lead to the malfunction of the accelerator system. A model-
independent analysis is therefore needed.

Figure 6: Illustration of the flowchart for model-
independent beam optimization.

Shown in Fig. 6, we show the difference between
a model-independent optimization and a conventional
model-based optimization. In the model-based case, the
model is first validated and then the objective function is
either constructed analytically or numerically. While in the
model-independent case, the real machine measurement
data are used to form the objective function.

As emphasized above, since IMIGO is a non-Hessian al-
gorithm, the real measurement data even though will error,
can provide objective function accurate enough for IMIGO
to find the global minimum. As the follows, we describe a
Gedanken experiment to do model-independent beam opti-
mization for a space charge dominated beam. We assume
that the machine will deviate from the single particle model
significantly, i.e., the space charge is not negligible.

Since the space charge effects are small at low beam
current, the objective function predicted from the single-
particle model is approximately equal to the value mea-
sured on the real accelerator. As the beam current in-
creases, the measured value of the objective function
changes. Thus, the size and shape of the BOA of the ob-
jective function are different for different beam currents.
Since the global-minimum solution is at the ‘bottom’ of
the BOA, its value is also different for different beam cur-
rents. By replacing the model-predicted objective function
with the measured objective function, IMIGO can be used
to find the global minimum solution for any desired value
of beam current without using the model as shown in Fig.
6. In practice, the optimization process can be carried out
incrementally by repeating it over many min-step current
changes. As long as the global minimum solution for the
previous step is within the BOA of the objective function of
the next step, the global minimum solution for the desired
beam current will be found.

DISCUSSION

In this paper, we introduce a new nonlinear optimiza-
tion package, called IMIGO. We demonstrate the power of
IMIGO by both working out a detailed challenge example
normally associated with the famous Levenberg-Marquardt
method. It is shown that IMIGO can find the global mini-
mum even if the start value is out of the BOA of the global
minimum. We also demonstrate that IMIGO can solve real
accelerator optimization problem as in Ref. [3]. Further-
more, with IMIGO a model-independent beam optimiza-
tion is possible. Additional research is being conducted
to find the global optimal solution for other objective func-
tions such as luminosity and beam lifetime in colliders, and
Free Electron Laser peak power and brightness for light
sources.
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RF-KICK CAUSED BY THE COUPLERS IN THE ILC ACCELERATION 
STRUCTURE 

A. Lunin, I. Gonin, A. Latina, N. Solyak, and V. Yakovlev, Fermilab, IL 60510, U.S.A.

Abstract 
In this paper new results of calculation of the RF kick 

from the power and HOM couplers of the ILC 
acceleration structure are presented.  The RF kick is 
calculated by HFSS and CST codes. Special measures 
allowing the calculation of the effect are described. 

INTRODUCTION 
The standard 1.3 GHz SC RF cavity of the ILC linac 

contains 9 cells, an input coupler, and two HOM couplers, 
upstream and downstream, see Fig. 1.  

 

 
Figure 1: The ILC RF cavity with the main and HOM 

couplers. 
 

The couplers break the cavity axial symmetry that 
causes a) main RF field distortion and b) transverse wake 
field. These effects may cause beam emittance dilution.  
RF-kick and coupler wake increase with the bunch length 
[1]. Calculations of the RF kick for the ILC cavity have 
been performed by different groups, with mismatching 
results, see Tab. 1.  

Table 1: Results of RF-kick calculations. 

 FNAL [1] 
Q=3.5106 

HFSS 

DESY [2] 
Q=2.5106 

MAFIA 

SLAC [3] 
Q=3.5106 

OMEGA3P 
106Vx 

    Vz 

-105.3+69.8i -82.1+58.1i -86.0+60.7i 

106Vy 

    Vz 

-7.3+11.1i -9.2+1.8i -4.6+5.6i 

 
 The main reasons of the disagreement are the 

following: transverse fields caused by the couplers are 
extremely small (about 5-6 orders of magnitude smaller 
than the longitudinal fields); cancellation takes place 
between upstream and downstream coupler. Such 
characteristics demand for very high precision 
simulations of the field, better than 10-6. This is a severe 
challenge for all numerical methods and codes.  

GENERAL 
In order to achieve reliable estimation for the RF kick, 

we used the following approaches: (i) different mesh 
geometry, (ii) different mesh size, (iii) different order of 

finite elements, (iv) different methods of the kick 
calculations (direct and Panofsky – Wenzel theorem), (v) 
different number of cells (from ½ cell to entire 9-cell 
geometry), and (vi) different codes (HFSS and CST). 

HFSS code allows the use of a non-uniform mesh.  A 
special three-zone mesh (see Fig. 1) was used in order to 
improve the field approximation near the axis. 
Intermediate mesh is necessary to match the fine mesh 
near the axis and regular mesh in the rest of the cavity. 

 
 
Figure 2: The three-zone mesh for HFSS used in order to 
improve the field approximation near the axis.  Fine mesh 

repeats the pattern of the intermediate one. 
 
A special symmetric mesh pattern was used in order to 

reduce the mesh noise. Different techniques of mesh 
symmetrization were used near the axis.  The number of 
mesh nodes was up to 0.8106. Cross-check of the direct 
RF kick were performed applying the Panofsky – Wenzel 
theorem.  Fig. 3 shows the field pattern near the coupler. 
 

 
Figure 3: The field pattern near the coupler. The field 

asymmetry causes RF-kick. 
 

Fig. 4 shows the results of the RF-kick HFSS 
simulations for upstream and downstream couplers for 
three cases: different finite element orders, different mesh 
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numbers and direct calculation and Panofsky – Wenzel 
(PW) theorem.  One can see that convergence takes place 
for large number of mesh nodes, and that both 1st and 2nd 

order elements and direct and PW method give the same 
results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: The results of the RF-kick simulations for upstream and downstream couplers for different finite element 

order, different mesh number and for direct calculation and Panofsky – Wenzel (PW) theorem. One and half cells were 
calculated.  

 
In the Fig. 5 the results for the RF-kick for upstream 

coupler are presented for different number of the cells. 
Calculations were made by both HFSS and CST codes. In 
the CST case the mesh position was adjusted to the cavity 
axis in order to achieve symmetry in this region.  One can 
see that the results are very close for all the cases and that 
the only difference is in the first cell, where the transverse 
field’s components are not completely dumped. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: RF-kick for upstream coupler for different 
number of the cells calculated by both HFSS and CST 
codes.  

 
In order to cross check the results, the entire structure 

with the couplers were simulated, see Figure 1.  The total 
RF-kick is close to what was calculated separately, see 
Tab. 2.  Thus, all the results show the same values of the 

transverse kick that however differ from the previous 
results for the vertical kick, that is the most critical for 
ILC.   

 
a) 

 
b) 

Figure 6: Transverse magnetic field (a) and electric field 
(b) of the 9-cell ILC structure axis. 
 

The vertical kick ratio to the energy gain per cavity is 
(-6.8+18.4i)10-6 versus (-7.4+11.1i)10-6 in our old 
calculations.  However the beam vertical dilution is still 
small for the main linac.  For the bunch compressor the 
girder optimization technique [4] still allows to 
compensate the emittance dilution 
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Table 2. RF-kick calculated separately for Upstream Coupler (a), Downstream End (b) and  Total  RF-kick  (c) of  
ILC  structure . 

a) 

b) 

NEW FNAL* 
(HFSS) 

OLD FNAL 
(HFSS) 

SLAC 
(Omega3P) 

DESY 
(Mafia) 

 

Direct PW Direct PW Direct Direct 

KickX 
 

106 · Vx 
Vz 

-34.8+70.1i -35.6+69.6i -36.5+66.1i -27.3+67.2i -25.1+51.4i -25.0+51.5i 

KickY 
 

106 · Vy 
Vz 

41.1+14.1i 42.1+13.1i 41.0+14.5i 40.9+12.8i 36.5+8.9i 32.2+5.2i 

c) 

NEW FNAL* 
(HFSS & CST MWS) 

OLD FNAL 
(HFSS) 

SLAC 
(Omega3P) 

DESY 
(Mafia) 

 

Direct PW Direct Direct Direct 

KickX 
 

106 · Vx 
Vz 

-97.5+91.5i (HFSS) -99.1+89.2i (HFSS) -105.3+69.8i -86.0+60.7i -82.1+58.1 

KickY 
 

106 · Vy 
Vz 

-4.2+18.8i (HFSS) 
 

Full ILC Cavity 
0.4+20.6i  (CST) 

-3.8+18.0i (HFSS) 
 

Full ILC Cavity 
0.1+21.2i (CST) 

-7.3+11.1i 
 

-4.6+5.6i 
 

-9.2+1.8 
 

* The End Group effect is taken into account during Vz calculation 
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NEW FNAL* 
(HFSS & CST MWS) 

OLD FNAL 
(HFSS) 

SLAC 
(Omega3P) 

DESY 
(Mafia) 

 

Direct PW Direct PW Direct Direct 

KickX 
 

106 · Vx 
Vz 

-62.8+21.1i (CST) 
 

-62.7+21.4i (HFSS) 

-61.7+20.4i (CST) 
 

-63.5+19.6i (HFSS) 
-68.8+3.7i -65.6+7.6i -57.8+7.0i -57.1+6.6i

KickY 
 

106 · Vy 
Vz 

-43.5+5.2i (CST) 
 

-45.3+4.7i (HFSS) 

-43.8+5.5i (CST) 
 

-45.9+4.9i (HFSS) 
-48.3-3.4i -53.1-2.1i -40.9-3.5i -41.4-3.5i 
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COMPUTATION OF A TWO VARIABLE WAKE FIELD INDUCED BY AN
ELECTRON CLOUD ∗

A. Markoviḱ, G. Pöplau, U. van Rienen, Rostock University, Germany

Abstract

The instability of a single positron or proton bunch
caused by an electron cloud has been studied using analyti-
cal and semi-analytical methods which model the influence
of the cloud with the wake field to the bunch. Usually this
simulations are fast because the transverse wake due to the
electron cloud is being pre-computed and then it is being
applied to the bunch turn after turn to simulate the head
tail instability. The wake field [1] in these cases is com-
puted in the classical sense as excited electromagnetic field
that transversally distorts those parts of the bunch trailing
a certain transversal offset in the leading part of the same
bunch. The transversal wake force depends only on the
longitudinal distance between the leading part of the bunch
producing the wake force and the trailing parts of the bunch
feeling the wake force. However during the passage of the
bunch through the electron cloud the density of the cloud
near the beam axis changes rapidly. That means that the
environment changes in the time as the bunch proceeds
through the cloud and therefore it is not sufficient to ap-
ply the single variable (the distance) approximation for the
wake field.

In this paper pursuing the idea of K. Ohmi [2] we com-
pute the wake forces numerically as two variable function
of the position of the leading part of the bunch and the po-
sition of the bunch parts trailing the leading offset in the
bunch.

INTRODUCTION

In order to simulate a single bunch instability due to
the electron cloud (e-cloud) the bunch movement should
be followed turn by turn until the synchrotron tune of the
bunch has been resolved, which may take some thousands
of turns of the bunch in the ring. At each turn along the
ring, the bunch interacts with the e-cloud. A fully self-
consistent beam – electron cloud interaction simulation at
every turn, even with only one interaction point per turn,
would inevitably lead to high computational costs. An idea
to speed up the single bunch instability simulation would
be to pre-compute the transverse kick of the e-cloud on the
bunch. Such a pre-computed kick will be later applied on
the bunch at each turn during the tracking of the bunch with
the appropriate transport matrices.

Because of the nature of the beam – e-cloud interaction
there is a dipole kick on the bunch only if a part of the
bunch perturbs the cloud, typically if a slice of the bunch
has a slight transversal offset at the entrance in the cloud

∗Work supported by DFG under contract number RI 814/20-1

of homogeneously distributed electrons. However, if the
bunch enters the e-cloud with no parts transversely dis-
placed, it does not perturbs the e-cloud asymmetrically.
During its passage, it only destroys the homogeneous dis-
tribution of the electrons because it attracts them towards
the beam axis. As a result, the concentration of electrons
near the beam axis grows very fast during the bunch pas-
sage. As a matter of fact the electrons near the beam axis
start oscillating in the beam potential while the electrons
from higher radiuses are approaching the beam axis and
constantly increase the number of electrons near the beam
axis. Thus, if the transversal offset in the bunch occurs in
the rare part of the bunch the number of electrons on the
beam axis which will be perturbed by the beam offset is
very high. Consequently the kick from the cloud on the
following bunch slices would be expected to be stronger.
On the contrary, if the transversal offset occurs in the front
part of the bunch then the number of electrons that will be
perturbed is not going to be that large and so the expected
transverse kick on the following bunch slices would not be
as strong as if the electron perturbation happens later dur-
ing the bunch passage.

From this very simple consideration it is obvious that the
pre-computed kick due to the interaction with the e-cloud,
would depend on the longitudinal position of the bunch
slice with the transverse offset and the longitudinal posi-
tion of the slice that receives the transversal kick. Hence it
is necessary to pre-compute the matrix of kicks from every
transversally slided slab of the bunch to the trailing bunch
slabs. The resulting triangular matrix can be used for the
single bunch instability tracking.

3D SELF-CONSISTENT PIC SIMULATION

The interaction of two different particle species is be-
ing simulated by the particle in cell program MOEVE PIC
Tracking [3]. The bunch and the cloud are represented by
a 3D distribution of macro-particles in a beam pipe with
elliptical cross-section. The macro-particles are defined in
the six-dimensional phase space Ψ(x, px, y, py, z, pz) and
typical values of their number are of order 106 for both
species. Usually the bunch particles have a Gaussian spa-
cial distribution. The cloud particles are assumed to be
homogeneously spreaded in the 3D space bounded by the
beam pipe in the transverse plane and with a certain size in
longitudinal direction. The interaction is simulated during
the bunch passage through the e-cloud. Figure 1 shows the
longitudinal profile of the ILC bunch (blue) before it has
entered in a 3D homogeneously distributed e-cloud (red).

In this paper the interaction with the electron cloud is
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Figure 1: Longitudinal profile of the ILC bunch and the
e-cloud, before the bunch enters in the cloud.

simulated for a region without external magnetic field,
hence only the fields of the beam and the e-cloud are acting
on the both particle species. Beside the strong transver-
sal electrical field Eb, the beam, being ultra relativistic
vb ≈ c, evokes also a strong transversal magnetic field
Bb = (vb × Eb)/c2. The e-cloud produces only it’s own
space-charge field Ee. Because of the cancelling of the
own magnetic and the electric forces the only force that af-
fects the bunch particles Fb is the space-charge force of the
e-cloud:

Fb = q(��Eb + Ee +�������
vb × vb × Eb

c2
).

On the other hand, the electrons feel their own and the
space-charge forces of the beam:

Fe = q(Eb + Ee +�������
ve × vb × Eb

c2
).

Since the electrons are relatively slow (approximately ve ≈
0.01c) the magnetic force from the beam can be neglected.
Consequently in order to integrate the trajectory of the both
species it is necessary to compute the electrical fields of the
beam Eb and of the e-cloud Ee. The time integration of
the particle trajectory is computed for a discrete time step
with typical values of dt = 1 ps. Before the particles are
pushed, following algorithmic steps are performed at every
time step in the simulation:

• Definition of the 3D laboratory frame grids for the dis-
tributions of the bunch and the cloud which is fol-
lowed by weighting the particle charge on the grid
nodes as an input for the discretized Poisson equation.

• The computation of the Poisson equation for the ultra-
relativistic bunch takes place on it’s centre-of-mass
system which does not correspond with the laboratory
frame grid in which the grid Poisson equation for the
e-cloud will be solved. Hence two separate computa-
tions of the grid Poisson equation for both species are
performed in parallel.

• Interpolation of the grid fields Eb and Ee on each par-
ticle position in the space and optionally superposition
with external fields if present.

Once the forces are computed for every macro-particle
of the bunch and the cloud, their trajectories will be all
pushed by the leap-frog method for one time step dt fur-
ther. The total time simulated equals the time the bunch
needs to cross the thickness of the defined e-cloud.

In order to evaluate the interaction we first simulate a
symmetrical passage of the ILC bunch (parameters given
in Table 1) through a homogeneous e-cloud with a density
ρe = 1012m−3. The bunch is represented by 106 and the
10 mm thick e-cloud slab by 0.5 · 106 macro-particles.

Figure 2 shows a vertical stripe of electrons in the trans-
verse plane gathered during the bunch passage through the
initially homogeneous e-cloud. Figure 3 represents the ver-
tical phase space of the initially static electrons after the
bunch passage. It displays qualitatively two types of elec-
tron motion during the bunch passage. The electrons from
the periphery are attracted to the bunch centroid position.
The more they approach the beam axis the more energy
they win. By the time they reach the beam axis the bunch
moved further and these particles continue non-braked un-
til they hit the chamber wall on the opposite side.

Figure 2: Transversal profile of the ILC bunch (blue dots)
and the e-cloud (red dots) after the bunch passes through
the cloud.

Figure 3: Electron distribution in the transversal (y) phase
space after the passage of the ILC bunch.

On the other hand the fine time discretization of the sim-
ulation allows us to monitor the oscillations of the electrons
of the cloud near the beam axis. First those electrons are
attracted in the beam potential. Later as the electron con-
centration in a very small space grows, the repelling own
space-charge force prevails over the beam attractive force
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and the electrons would disintegrate. This attraction and re-
pulsion of the electrons to and from the beam centroid posi-
tion in the transverse plain continues until the whole bunch
passes by that certain longitudinal position. The frequency
and the amplitude of this oscillations depend mainly on
the longitudinal charge profile of the bunch, of course the
longer the bunch the higher the number of oscillations will
be. An indication of the e-cloud oscillations around the
beam axis can be also seen at Figure 4, where the transver-
sal momentum of the bunch particles is displayed in the
function of the bunch length. The transversal momentum
of the bunch particles at the beginning of the interaction
is set to zero. As the bunch passes through the cloud the
head particles receive a kick towards higher radiuses. As
the time passes and the electron concentration on the beam
axis grows the bunch particles will be kicked towards the
beam axis. The envelope of the distribution of the trans-
verse impulse of the bunch particles along its length reflects
the e-cloud oscillations. Nevertheless in the case of a sym-
metrical bunch passage through an initially homogeneous
cloud the net transverse force on the bunch over its length
remains around zero (red line in Figure 4).

Figure 4: Transversal impulse (py) of the ILC bunch parti-
cles after the passage through the e-cloud.

Simulation with parts of the bunch offset

The following interaction simulations are done with a
bunch which has a 3D slab shifted in the transversal plane.
The offset in the y-plane for the examples presented in Fig-
ure 5 and 7 is equal to σy of the ILC bunch.

Figure 6 displays the transversal impulse of the bunch
particles after the passage through an initially homoge-
neous e-cloud as shown in Figure 1. The red line is the
average value of the transversal impulse of the particles
at a certain longitudinal position in the bunch. It can be
observed that the particles of the offset part got a vertical
kick towards a higher radius of the pipe. This is due to
the fact that the electrons from the higher radiuses started
moving towards the beam axis attracted from the previous
head parts of the bunch. Since this electrons did not had
the time to reach the beam axes until the offset part arrived
in the e-cloud, the offset part has been attracted towards the
approaching electrons from the higher radii.

Figure 5: Profile of the ILC bunch with an offset slab in the
leading part of the bunch.

Figure 6: Transversal impulse (py) of the ILC bunch parti-
cles from Figure 5 after the passage through the e-cloud.

Figure 7: Profile of the ILC bunch with an offset slab in the
middle part of the bunch.

Figure 8: Transversal impulse (py) of the ILC bunch parti-
cles from Figure 7 after the passage through the e-cloud.
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On the other hand, Figure 8 displays the transversal im-
pulse of the bunch for the case that it’s offset part is in it’s
middle as shown on the Figure 7. Here by the time the off-
set part arrives in the e-cloud enough electrons gathered on
the beam axis to pull the offset part down towards the beam
axis. The offset particles receive an impulse in the negative
direction as it can be seen from the trend of the red line at
the longitudinal position of the offset part. In the same time
the electrons on the beam axis will be perturbed and shifted
towards the centroid position of the offset part of the bunch.
Thus the following bunch parts will receive an transversal
kick in the positive direction (towards the centroid position
of the previous offset part). This sort of a head-tail coupling
between the bunch part perturbing the cloud and the follow-
ing bunch parts happens on a very short time scale, due to
a very rapid movement of the electrons in the transversal
plane around the beam axis. The transversal movement of
the beam particles is comparatively slow.

TWO VARIABLE WAKE FIELD INDUCED
BY AN ELECTRON CLOUD IN

KEKB-LER AND ILC E+ DR

Parameter symbol
KEKB-
LER

ILC e+ DR

Circumference L 3016 m 6695 m
Beam energy Eb 3.5 GeV 5 GeV
Population Nb 3.3 · 1010 2.0 · 1010

Charge Q 5.28 nC 3.22 nC
Length (rms) σz 6 mm 9 mm

Beam size(rms)
σx 420μm 156μm
σy 60μm 7.8μm

Damping time τx(y) 4000 turns 1150 turns

Table 1: Bunch parameters of the low energy ring of the
KEK B-factory and the ILC positron damping ring.

The interaction simulations presented in Figure 6 and 8
showed that the transverse kick of the e-cloud on the bunch
depends strongly on the longitudinal position of the shifted
part of the bunch zi. In order to compute the kick from
a transversally slided slab i on the trailing bunch slabs j
(zi > zj), both bunches (ILC DR and KEKB LER) are
longitudinally divided into Ns slabs. Thus we performed a
series of Ns interaction simulations. For each simulation a
single slab i (i = 1 . . . Ns) was shifted by Δyi = σy and
sent through an initially homogeneous e-cloud.

As a result we obtained a matrix with the average dipole
kicks Δpy(j, i), from every transversally shifted slab i, on
the trailing bunch slabs j (zi > zj). This matrix is triangu-
lar with non-zero entries for j = i . . . Ns and i = 1 · · ·Ns.
The equation of motion for the beam in the y-plane is given
by

Δpy(j, i)
pb

=
FyTt
pb

=
γEeqTt
mocγ

= reW1(zj , zi)ΔyiNi.

(1)

Figure 9: Two variable wake field W1(zj , zi) for the ILC
damping ring, Ns = 50 slabs.

Figure 10: Two variable wake field W1(zj , zi) for the
KEKB, Ns = 50 slabs.

The computed kick Δpy(j, i) is extrapolated for the total
length L of the corresponding ring, thus Tt is the revolu-
tion period of the bunch in the ring. On the left hand side
the change of the transverse impulse Δpy(j, i) is given rel-
ative to longitudinal impulse of the bunch pb. On the right
hand side the classical electron radius re is multiplied by
the wake function W1(zj , zi) and ΔyiNi. The parameter
ΔyiNi represents a measure of how many particles Ni are
shifted for a Δyi in the slab i. Note that because of the
Gaussian profile of the particle distribution in longitudinal
direction Ni varies considerably. Finally the wake function

W1(zj , zi) =
Δpy(j)

pbreΔyiNi
(2)

was computed for both rings as shown in Figure 9 and 10.
Since the computed two variable wake matrix scales lin-

early with the transversal shift Δy in the next step it could
be applied during the tracking simulation with the program
of K. Ohmi to investigate the single bunch instability.
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Abstract
ANKA is a synchrotron radiation source located near

Karlsruhe, Germany. While the control system has always
provided access to technical parameters, like power supply
currents or RF frequency, direct access to physical param-
eters like tune or chromaticity has been missing. Thus the
operator has to change and monitor the technical parame-
ters manually and to calculate the physical parameters us-
ing separate tools. Therefore effort has been made to inte-
grate the monitoring of physical parameters and simulation
tools into the control system. At ANKA the MATLAB-
based Accelerator Toolbox is used for simulation purposes,
however the control system framework ALMA Common
Software (ACS) does not support MATLAB natively. For
this reason, a software bridge has been created, which
provides direct access to control system components from
MATLAB. Thus operators can write their own MATLAB
code simultaneously using simulation code and compo-
nents from the control system. This system has already
been used to automate measurements, thus allowing unat-
tended long-term measurements, which have not been pos-
sible before. Future plans include creating a graphical user
interface and various monitoring and stabilization loops.

ABOUT ANKA
The ANKA facility is a synchrotron radiation facility lo-

cated near Karlsruhe, Germany. A 2.5 GeV electron stor-
age ring is used to generate synchrotron radiation for var-
ious X-ray and IR beamlines. The storage ring can be op-
erated with different optics, in order to provide radiation
for different purposes. A low emittance optic is used for
normal user operation at a beam energy of 2.5 GeV [1]. A
special “low alpha” optic is used to generate coherent THz
synchrotron radiation for the IR beamlines in the so called
“special user operation” mode [2].

CONTROL SYSTEM
The ANKA control system [3] is based on the software

framework ALMA Common Software (ACS) [4, 5]. ACS
uses CORBA as a communication link between compo-
nents. At the moment, components written in C++, Java
or Python are supported by the framework. The central
ACS manager provides a naming service which is used by
clients to find a component by name. The ACS manager

∗This work has been supported by the Initiative and Networking Fund
of the Helmholtz Association under contract number VH-NG-320.

also stores configuration information for components, thus
centralizing all configuration information.

The ACS components represent technical components of
the storage ring (e.g. power supplies, beam position moni-
tors, RF generators) and are written in C++ and Java. The
ACS clients (at ANKA they are all written in Java) provide
a GUI for displaying data provided by the components as
well as controls for changing the settings of the devices
represented by the components. Apart from the lookup and
configuration process, the ACS manager is not involved in
the communication between clients and components. The
architecture of the control system is shown in Fig. 1 (com-
ponents within the box “Legacy Components”).

Limitations of the legacy control system
The legacy control system is build around the hardware

of the accelerator / storage ring. This means that it basically
provides remote control and monitoring of all relevant de-
vices, but it is not aware of the physics of the accelerator.
The only exception is a software client specially built for
performing orbit corrections. However, this client basically
is just a special GUI and the code concerning physics is not
part of the control system backend components.

As the ANKA storage ring has a flexible lattice and is of-
ten operated with different optics (a low-emittance, a low-
alpha or a low-beta optics), having a good model for calcu-
lating the accelerator settings for different modes of opera-
tion is very important. However, without a direct connec-
tion between the model and the real acclerator, all changes
calculated in the model have to be transferred into technical
parameters manually.

Features of the new high-level interface
The new high-level interface allows for an easy inte-

gration of new diagnostic components. As the diagnostic
components can easily access all control system parame-
ters, task like logging tunes against beam energy can be
performed very easily. Even measurements that require the
change of machine parameters (e.g. chromaticity measure-
ments) can easily be automated using the new high-level
interface as it also allows for write access to most parame-
ters.

ACCELERATOR MODEL
The Accelerator Toolbox for MATLAB (AT) provides

tools to create a generic accelerator model [6]. This model
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Figure 1: Architecture of the ANKA control system

can be used for many simulation tasks required in acceler-
ator physics. However, real world accelerators always dif-
fer from the model because of effects which cannot easily
be measured directly or change over time and can hardly
be monitored automatically (e.g. small asymmetries, im-
perfect alignment of magnets, higher order effects in the
magnet fields, collective effects).

Therefore, LOCO (Linear Optics from Closed Orbits
[7]) is used to fit parameters (i.e. the quadrupole gradi-
ents) in the model to match the real accelerator [8]. This
is done by measuring an orbit response matrix (change of
orbit at beam position monitors against kick at corrector
magnets) and then fitting the model to make the model’s
orbit response matrix match the measured one.

Connecting the model with the control system
While the typical accelerator model parameters are mag-

net fields or kick angles, the parameters in the control
system are magnet currents. Thus a conversion between
model parameters and control system parameters is neces-
sary. While an absolute conversion is error-prone, a relative
conversion works quite well. Therefore a model that was
fitted using a response matrix measured at a similar accel-
erator state (especially at a similar beam energy) is used as
a base. For a magnet the current that was in effect when
the model’s response matrix was measured is compared to
the present current and the difference is calculated. This
current difference is then converted to a difference in the
magnetic field, which is applied to the model.

This means the following process is used in order to get

a model that matches the current state of the accelerator:

1. Load the accelerator model best fitting the current
state.

2. Compare magnets’ currents in model with currents
from control system and calculate difference.

3. Convert currrent difference to field difference.

4. Apply field difference to model.

The model resulting of this process is a good approxi-
mation of the real state of the accelerator. It can be used
to predict effects of changes in the magnets’ currents or,
what is even more important, to calculate changes in the
magnets’ current needed to attain certain changes in the ac-
celerator optics. The results of these calculations can then
be used to apply the changes using the reverse process:

1. Compare magnets’ fields with fields from intial
model.

2. Convert field differences to current differences.

3. Apply current differences to control system.

By using this process iteratively many small changes can
be applied in order to finally attain a big change.

TECHNICAL REALIZATION
As the control system cannot be directly accessed from

MATLAB, a “Web Service Gateway” is used. This
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software connects to control system components using
CORBA and (from the view of the legacy control system)
works like a usual ACS client. The gateway exposes the
components of the control system using a simplified fa-
cade that can be accessed through a web service protocol
(at the moment Hessian is used). This allows for a sim-
ple, lightweight client which can easily be integrated into
MATLAB, using MATLAB’s support for integrating Java
components.

This approach allows for automation of measurements
and integration of simulation methods without having to
change or even rewrite the legacy control system. On one
hand the complexity of the communication protocol of the
control system (CORBA) is hidden from the high-level ap-
plications. On the other hand the control system can fo-
cus on its main task, the control of many hardware-devices
in a reliable and efficient way. Thus the most important
goals are attained with minimal effort and virtually all ex-
isting components of the control system can be reused by
the high-level interface.

EXAMPLE USAGE
The working point of the storage ring has a significant

effect on the beam life-time. Therefore it is important to
choose a good working point and take care of stabilizing at
or near to this working point.

However, changing the gap of a wiggler in the storage
ring has major impact on the vertical tune, thus moving the
working point (see Fig. 2).
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Figure 2: Change of vertical tune against gap of the SUL
wiggler in the ANKA storage ring.

The new high-level interface can now be used to calcu-
late changes for the quadrupole magnets in order to com-
pensate the tune drift caused by the wiggler and stabilize at
a chosen working point.

A similar problem occurs in the energy ramp: Different
working points are chosen for different energies. Besides,
the quadrupole power supplies have to be ramped in order

to account for the changed beam energy. This ramp uses a
pre-defined table, so the working point is well-known for
certain energies. However, between the defined data points
the working point not controlled explicitly and therefore
might move on a suboptimal path. Furthermore, the val-
ues for the ramping table, which is defined in the term of
magnet currents, have to be changed manually.
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Figure 3: Working point of the storage ring against beam
energy.

Fig. 3 shows the horizontal and vertical tune against the
beam energy in the ramp from the injection energy of 505
MeV to the final energy of 2.5 GeV. In the future the high-
level control system might be used to perform the energy
ramp instead of using predefined tables for the magnet cur-
rents. This energy ramp algorithm could take care of choos-
ing a working point that is not to close to one of the reso-
nances or other instabilities.
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Figure 4: Betatron functions and dispersion along the ring
for the low-alpha mode.
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BENEFITS FOR THE LOW-ALPHA MODE
The new high-level interface can be used to further de-

velop and investigate the low-alpha optic. For example us-
ing the fitted model the optics functions (shown in Fig. 4)
can be calculated, taking into account individual gradient
errors of each quadrupole.

Another use of the model integration is the calculation
of the momentum compaction factor α. The bunch length
correlates with α and getting a short bunch length is the
main goal of using the low-alpha optic. Therefore a good
estimation of α from the model can help in estimating the
expected bunch length for a certain optic.

A more detailed description of the low-alpha optic can
be found in [2].

FUTURE PLANS
While the present solution is a good start for a more

physics-aware control system, the architecture is not yet
suitable for a long-term solution. As the accelerator model
is integrated within the client applications, the synchroniza-
tion between model and control system has to be performed
for each client individually. Besides there is no abstraction
layer between model and client code, thus the client soft-
ware is tied to the model implementation.

Therefore a Java-based application server will be added
to the system. This application server connects the clients
to the accelerator model and the legacy control system. Due
to the abstraction layer provided by the application server,
the actual implementation of the model or the control sys-
tem could be changed, without having to modify the client
software. For example there are plans to try using MAD
[9] instead of AT for the accelerator model.

Having only a single component for the accelerator
model will also mean, that the synchronization between
model and accelerator is performed at a single place and
thus different clients are less likely to interfere with each
other.
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PteqHI DEVELOPMENT AND CODE COMPARING

J. Maus∗, R. A. Jameson, A. Schempp, IAP, Frankfurt, Germany

Abstract

For the development of high energy and high duty cycle
RFQs accurate particle dynamic simulation tools are im-
portant for optimizing designs, especially in high current
applications. To describe the external fields in RFQs, the
Poisson equation has to be solved taking the boundary con-
ditions into account. In PteqHI this is now done by using a
finite difference method on a grid. This method will be de-
scribed and simulation results will be compared to different
RFQ particle dynamic codes.

PTEQHI WITH POISSON SOLVER
PteqHI is a program to simulate particle dynamics in

RFQs. It has its roots in PARMTEQ and has continuously
been developed and adapted to meet several problems by R.
A. Jameson [1]. It describes the external field with the same
multipole expansion method than PARMTEQM and it also
uses the SCHEFF routine for its space charge calculation,
but it uses time as the independent variable. Simulations of
a set of 10 RFQs, which are similar to the IFMIF designs in
terms of final energy, frequency, emittance, beam current,
but with changing aperture have revealed same limitations
of these original methods.
This was one of the reason to change the way the electric
field is calculated along the RFQ. The new routines solve
the Poisson equation directly. This is done by a Solver that
uses the finite difference method on a grid.

Generating the grid

The first step is to set up the grid with the boundary
conditions figuring out which grid points lie in or on the
electrodes. The tip of the electrodes are found using the
cell table for the geometry data and interpolating them at
each z position using cubic splines. Once the tip position
is known the electrode is represented by an arc with a se-
lectable brake out angle. Since the boundary conditions at
the electrodes are Dirichlet boundary condition the voltage
±U0

2 is assigned to the grid points which lie inside the elec-
trodes. In order to describe the surface as smooth as possi-
ble the grid points are shifted in such manner that there is
always a grid point on the surface. Longitudinal boundary
conditions are more difficult to realize, because it cannot
be assumed that the structure is symmetric in longitudinal
direction. The small changes of the aperture and modula-
tion which disturb the symmetry can be seen in results of

∗maus@iap.uni-frankfurt.de

the solver. To overcome this problem many cells are com-
bined to a segment and calculated at the same time. Since
the segments overlap, the regions with are influenced by
the asymmetry are never used for the dynamic calculation.

Transition Region A real RFQ does not start directly
with the electrodes, but with a tank wall. So we decided to
let the particles start outside the tank wall, where the poten-
tial is close to zero. Then they drift through the small gap
between the electrodes and the tank wall seeing the rising
RF-field. The first segment of the RFQ includes the tank
wall, the gap, the radial matching section and the first two
regular cells of the RFQ to be able to simulate the effects
of the rising RF-field.

Space charge grid The space charge effect is also cal-
culated by solving the Poisson equation which a charge
density ρ �= 0. Therefore a second grid is needed which
is generated in the same way as the grid for the external
field, but with zero potential on the electrodes. By forcing
the potential to be equal to zero on the electrodes the image
effect is also taken into account directly, since the purpose
of the image effect is to make sure that the potential of a
conducting surface vanishes. There is also the option to
”turn off” the image effect by setting the boundary condi-
tion of the grid to a cylinder (e.g., radius m*a) with zero
potential on its surface. So the effect of the image charges
can be studied.

Poisson solver

For solving the Poisson equation the finite difference
method is used. This method is an iterative method where
at each iteration step the new value for a grid point is a
function of the old value of that point and the values of the
neighboring points

ϕ0,n+1 = F (ϕ0,n, Σ6
i=1ai · ϕi,n, ρ0), (1)

where ϕ is the potential at the point 0 and ρ0 is the charge
density at that point. Each pair of grid points has a certain
distance hi between them. The ai are a function of these
distances. In general the hi can vary from one pair of nodes
to the next, so that the shifted grid points can be taken into
account in order to represent the electrodes correctly with-
out introducing some kind of steps. From one iteration to
the next the value at each node converges to the exact an-
swer. The accuracy is limited by the hi. This basic method
is known as the Gauß-Seidel relaxation. For speeding up
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the time the solver needs to converge, a successive overre-
laxation (SOR) method can be used. The new value for the
node is than calculated as a combination of the old value
and the value from the neighboring nodes.

ϕ0,n+1 = ϕ0,n + ω (ψ − ϕ0,n) , (2)

where ω, ψ are a fixed relaxation parameter and the com-
bination of neighboring nodes. A further improvement in
calculation time can be achieved by increasing the relax-
ation parameter from 1 to its final value. This is called
Chebyshev acceleration. For further details see [2] [3].

SIMULATIONS
For studying the influences of the different simulation

methods and different simulation programs a set of 12
RFQs was designed with the same design strategy but with
different values for the minimum aperture. That leads to
a set of RFQs with different performances. Some have an
aperture which is too small (cases with a high a-factor) and
therefore a bad transmission. Other RFQs have quite big
aperture, but a bad ability to catch the beam longitudinally
(small a-factor). Overall, RFQs with a high or a low aper-
ture have a bad performance and in the middle there is op-
timum value for the aperture. The question is, does that
optimum depend on the simulation method which has been
used?
Figure 1 and 2 show the external field for the synchronous

Figure 1: Two Term field and field from the Poisson Solver
in the beginning of the RFQ for the synchronous particle.
Green curve is 10 times the difference of the two methods.

particle at the beginning and for the entire structure for one
of the RFQs with a high transmission. The black curve re-
lates to the field from the two term potential and the red
curve to the field found from the Poisson solver. The os-
cillation comes from the sinusoidal RF. The green curve
shows ten times the difference of the other two curves.
The differences appear mostly in the beginning of the RFQ
and at the end where the amplitude of the field has in-
creased. The major discrepancy is in the region closer

to the electrodes where the Two-term-potential assumes a
pure quadrupole shape which can differ a lot from the real
geometry.

Figure 2: Two Term field and field from the Poisson Solver
for the entire RFQ for the synchronous particle. Green
curve is 10 times the difference of the two methods.

Space charge and image effect

Δ

Figure 3: Momentum Δpx for a specific particle, compar-
ing SCHEFF and Poisson space charge solver with image
effect.

The basic routine for space charge calculation in pteqHI
as well as PARMTEQM [4] is SCHEFF routine. It is a two
dimensional routine assuming cylindric symmetry. So it is
normally called once per cell when the shape of the beam
is round. There are transformations for a non-cylindrical
beam. SCHEFF represents the beam by charged rings and
calculates analytically the effect of charged rings on rings.
Figure 3 and 4 show the resulting change of the momentum
(Δpx and Δpz) for a specific particle over the entire RFQ
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with image effect turned on and figures 5 and 6 with the im-
age effect turned off. The Poisson solver was used to drive
the space charge calculation and SCHEFF ran passively to
get the corresponding momentums. The basic shape of the
curves are very similar, but when the particle has left the
center of the beam and the amplitude of the space charge
effect increases a difference between the two curves can be
seen in any case.

Δ

Figure 4: Momentum Δpz for a specific particle, compar-
ing SCHEFF and Poisson space charge solver with image
effect.

In figure 6 it can be seen that the amplitude of the lon-
gitudinal momentum change from the Poisson solver with
image effect turned off is lower than the with image effect
on (Fig. 4). This is due to the fact that the potential was
forced to be zero on the cylinder with the radius of m · a,
but the transverse results are very similar (Figs. 3 and 5).

Figure 5: Momentum Δpx for a specific particle, compar-
ing SCHEFF and Poisson space charge solver with image
effect turned off.

Figure 6: Momentum Δpz for a specific particle, compar-
ing SCHEFF and Poisson space charge solver with image
effect turned off.

Results

Figure 7 and 8 show the transmission and the percentage
of accelerated beam for the set of RFQs. All curves have
in common, that they have a peak for a certain RFQ. The
transmission and the percentage of accelerated beam dif-
fer for the RFQs with a small a-factor and therefore with
a rather big aperture. Once the aperture is small enough,
all particles get accelerated or radically lost. The black
curve is the standard pteqHI using the multipole expansion
method for the external field and SCHEFF for the space
charge routine without the image effect. Its peak is at a
a-factor of 41 to 48 and then it falls of in both directions.
For the red curve the external field was described using the
Poisson solver and SCHEFF was used for the space charge
calculation. The curve is similar to the black one with the
same peak, but it does not fall off as fast on the right side as
the multipole expansion method curve. When the Poisson
solver (with image effect turned off) is used for the space
charge calculation as well (green curve), the shape of the
curve and the position of its optimum change. The peak of
the curve is shifted to the left to wider apertures. But the
value for the maximum transmission is nearly the same.

This suggests that the treatment of the space charge ef-
fect has big influence on the simulation and should there-
fore be the focus for further studies.

Image charge

As shown above the inclusion of the image charge has
an effect on the corresponding change of momentum. In
Fig. 9 the effect of the image charge is shown. For a
big a-factor the image charge will cause the transmission
to drop down (small aperture). For the optimum of the
curve the transmission increases with the image charge and
on the left hand side it just has a minor effect. The image
charge becomes important when particles come close to the
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Figure 7: Transmission for the set of RFQs with different
simulation methods

Figure 8: Percentage of accelerated beam for the set of
RFQs with different simulation methods

electrodes. This happens more easily when the aperture is
small. That can explain, why the transmission drops on the
small aperture side. When the aperture is wide enough and
the core of the particles stays away from the electrodes the
image effect should not make a big difference.

COMPARISONWITH OTHER CODES

Comparing different codes has been a tedious task. One
has to make sure, that the different programs simulated the
same RFQ with the best match. Some codes start directly
with the electrodes while others start the beam inside the
tank wall. There were some hidden tricks one needs to
know to make the program do what it is supposed to do.
Often one must deal with a “black box” with sometimes
no support from the coder. That was one major reason for
writing an open-source Poisson solver where it is known,
what is inside and what decisions have been made.

Figure 9: Effect of the image charge on transmission and
accelerated particles.

CONCLUSION
For detailed beam dynamic simulation of high current,

high power and high energy applications, accurate simu-
lation tools are needed that treat the involved physics cor-
rectly and use as few assumptions as possible. One step
in that direction has been made by replacing the old multi-
pole expansion method, the SCHEFF routine and the image
charge routine with a 3D Poisson solver. It has been shown,
what the effects of the routines are and how they change the
results of the simulation.
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TRACY#* 

H. Nishimura 
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.

Abstract 
Tracy# is a C# class library for single particle beam 

dynamics in full 6-dim canonical phase space. The code is 
based on Goemon that is a C++ version of the Tracy2 
library. This paper describes the new features in Tracy# 
from a software engineering aspect. 

INTRODUCTION 
During the ALS[1] design phase, Tracy[2] was 

developed in Pascal for modeling and tracking studies by 
using embedded Pascal compiler/interpreter to parse the 
user logic. It evolved to a 6-dimensional version called 
Tracy2[3].  Subsequently its accelerator physics library 
was separated from Tracy and ported to C/C++ 
independently at multiple light sources, including SLS[4], 
Diamond[5], Soleil[6] and NSLS-2[7], mostly for model-
based accelerator controls. At the ALS, the library was re-
written in C++ as Goemon[8], which has now been re-
written in C# [9] and called Tracy#.  

FEATURES 

 Library Layers 
Tracy# is a library that implements single particle beam 

dynamics for modeling, simulation and analysis studies. 
An application built with Tracy# has 3 layers:  
 
 Physics layer, which is Tracy# itself. 
 Accelerator layer to model particular accelerators. 
 Application layer. 

 
The Physics layer is for beam dynamics and uses the 

following integrators: 
 
 The 4x5 linear matrix formalism. 
 The 2nd and the 4th-order symplectic integrators[10] 

in 6-dim. 
 K-pot Hamiltonian[11] that models small rings 

properly. 
 

In Tracy# these integrators were implemented in C# 
taking advantage of some of the important language 
features. For example, operator overloading is used for: 
 
 Vector and matrix calculations. 
 Differential algebra (DA) [12]. 
 Lattice definitions. 
 
The second layer is to model particular accelerator 

structures. This is the place where virtual accelerators are 

built in forms of C# classes. Starting with an ideal lattice, 
a virtual machine is enhanced to be a practical one that 
provides realistic error emulations, various control knobs, 
and customized physics routines to calculate a range of 
quantities including dynamic apertures.  

The application layer is for client application programs 
that access the virtual accelerators. These programs can 
use any features of the .NET libraries that cover database 
access, XML, networks and graphics. Tracy# is designed 
to be compatible with these standard .NET libraries. 
Actually, Tracy# needs only one external routine that is 
for the singular value decomposition to invert the large 
sensitivity matrices. We chose an open–source math 
library in C#[13].  

Environment 
Tracy# is built on the .NET Framework 3.5, and works 

on Windows XP SP2 as well as Vista. The development 
environment is Visual Studio 2008. The programming 
language for the physics layer is C# 3.0. The client 
programs are also developed in the same development 
environment and usually in C# 3.0. However, they can be 
in other .NET languages, such as Visual Basic.NET or 
IronPython[14] that we mention later. 

Tracy# can also work non-Windows platform by using 
MONO[15] that is an independent, open-source 
implementation of the .NET Framework that covers 
various platforms, including Linux, Solaris and 
Macintosh. As Tracy# itself is a plain C# code, it is 
compatible with MONO. It is also possible to make its 
application program portable by carefully choosing the 
graphics components for GUI programming. 

Implementation 
As mentioned, Tracy# uses advanced features of the 

.NET Framework. In particular, .NET generics proved 
invaluable especially List< >. In case of Goemon in C++, 
we did not use C++ generics called template to keep the 
compile-and-link time reasonably short. 

Porting the routines for vector/matrix and DA was not 
trivial. Goemon used local variables allocated on the 
memory stack to carry out calculations rapidly. This trick 
in C/C++ does not work with C#. Therefore the C# 
routines needed fine tuning to restore execution speed[9]. 
Currently, we are rewriting routines further to enable 
parallel computing as mentioned later. 

Graphics is not a core part of Tracy#. Instead, the 
accelerator layer uses it extensively. The graphics 
programming was in WinForm of .NET 2.0, and is 
migrating to Windows Presentation Foundation (WPF) of 
.NET 3.0.  

Tracy# also uses relational databases and XML as 
described in the following sections. 

 ___________________________________________  

*Work supported by the U.S. Department of Energy under Contract  
   No.  DE-AC02-05CH11231   

THPSC035 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

326



DATABASE 
There has been an increasing need for data 

management to track lattice configurations, simulation 
conditions, and the results of calculations with proper 
context. Tracy# makes use of standard SQL and XML for 
these management tasks. Both technologies are well 
supported on .NET.  

Currently, Tracy# uses ADO.NET 2.0 for database 
access. Its DataSet component is a kind of on-memory 
database embedded in a client program.  Its external data 
source can be almost any major SQL database including 
MySQL.  

At the ALS MySQL is the most common database 
system. It is used by controls applications including 
various Matlab programs dealing with automated machine 
control[16]. Tracy# reads tables produced by these 
programs to retrieve the current operational reference 
values. For example, there is a table for the measured 
sensitivity matrix produced by a Matlab program. This is 
the table most referred by Tracy#.  

Tracy# usually restores the data of a database table to 
an ADO.NET DataTable object in memory, and then they 
can be stored in other database, or to XML. This part is 
not limited to any particular database system. 

XML 
Tracy# uses XML extensively to manage its own data 

through a new API called LINQ to XML[17]. The merit 
of using XML rather than SQL is the flexibility to support 
complex data structures. One XML file can replace 
multiple SQL data tables and relations among them. 
Although XML may look complicated, it simplifies the 
data management significantly.  This is especially true 
with LINQ to XML as it provides an API that is much 
simpler than other XML APIs like DOM or SAX. For 
example, an XML node can be created independently 
from the XML document, and later it can be inserted to 
another XML node that may already be in the XML 
document. Therefore, we can even use an XElement 
object like an ordinary variable. Here XElement is a new 
class of LINQ to XML that supports XML nodes.  

Currently, Tracy# uses XML for the following 
functions: 

 
 Lattice description 
 Algorithm description 
 Data storage 

 

Lattice Definition in XML 
In constructing a virtual accelerator using Tracy#, a 

lattice structure is typically defined in the creator of its 
custom ring class by using operator overloading like: 
SEC=SYM+L1+QF+L2+BL2 where SEC is a new beam 
line object and the right-hand side is a series of either 
single elements, such as magnets, or lines of them. So the 
lattice is defined in C# which allows the lattice to be 
defined in a very detailed fashion.  

There is also a complementary way of defining a 
simple lattice in a descriptive manner. For example: 

 
 <Lattice Name="BR0"> 
    <Element Class="Quad" Name="QF" L="0.15" 
   K="2.62488449385119" /> 
    <Element Class="Quad" Name="QD" L="0.1"  
                        K="-2.44458454557616" /> 
    <Element Class="Bend" Name="B" L="1.05"  
                        K="0" T="15" T1="7.5" T2="7.5" /> 
    <Element Class="Drift" Name="L1" L="0.5469" /> 
    <Element Class="Drift" Name="L2" L="0.4969" /> 
    <Element Class="Drift" Name="L3" L="2.0938" /> 
    <Eline Name="S1" Line="QD, L1,B,L2,QF"/> 
    <Eline Name="S2" Line="QF,L3, QD"/> 
    <Eline Name="S3" Line="QD,L1,B,L2,QF "/> 
    <Eline Name="SGA"  Line="S1,S2,S3,-S1"/> 
    <Element Class="Marker" Name="SYM"/> 
    <Eline Name="SEC" Line="SYM,SGA,-SGA" /> 
  </Lattice> 

 
Tracy# accepts such a lattice defined in XML that follows 
the same convention of defining a lattice in Tracy2 and 
Goemon. Without writing a complex lattice parser, or 
defining a special grammer, we can use XML to define a 
lattice as a data input to Tracy# at runtime. 

XML can also be used to define a very complex lattice. 
We had such scenario with the radiation safety studies for 
top-off injection at the ALS[18]. This was a tracking 
study far off the reference orbit. The horizontal offset can 
be over 50 cm which is enough to bypass the bending 
magnet (the vacuum chamber has an ante-chamber that 
allows this path). Therefore magnetic field profiles and 
the chamber apertures must be included in the lattice. We 
created a special version of Tracy# for this study. 
Transferring the lattice in XML, extra nodes were added 
to assign the magnet field profiles and chamber 
geometries.  XML was flexible enough to accommodate 
complexities of the lattice definitions. 

Simulation Logic in XML 
Similar to the case of a simple lattice definition in 

XML, simple simulation logic can be described in XML. 
Here is an example of initializing the ideal lattice of the 
ALS Booster Ring that uses the lattice just defined above.  

 
  <Ring Name="BR0" Lattice="BR0" ELine="SEC"   
                                    Symmetry="4"> 
    <Energy Value="1.9E9" /> 
    <GetTwiss Value="1" /> 
    <SetQforTune QF="QF" QD="QD" /> 
    <FitTune Nux="5.25" Nuy="2.75" /> 
  </Ring> 

 
This example shows that XML can describe simple logic 
in a reasonable manner. 

Note that XML is used for both lattice definitions and 
algorithms, which means that they can be in the same 
XML document. Currently, we have very simple parsers 
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that use LINQ to XML, and add to their functionality  
whenever reuired.  

XML also served an important role for providing very 
complex logic as in the case of the top-off radiation safety 
studies. There was no established methodology from 
other accelerators that could be applied to the ALS. 
Therefore the specification of the safery calculation 
evolved as our understanding of the problem grew. The 
flexibility of XML was crucial to accommodate the 
evolving nature of the simulation. 

XML for Data Storage 
Tracy# uses XML as its primary data format of files. 

The most recent example is for our sextupole upgrade 
project[19] to reduce the storage ring emittance down to 
1/3 of the current value. We are in a process of optimizing 
the lattice with two new families of sextupole magnets. 
There is a need to store various lattice configurations, the 
result of simulations for each one of them, and retrieve 
the stored content. The resulting XML file contains over 1 
million lines. We wrote several client programs of Tracy# 
to read and update the XML file.  

An interesting observation is that there is no real 
distinction between input and output data in the case of 
XML. This is similar to the case of using a relational 
database. A program reads what it needs from the XML 
files, avoiding redundant calculations and keeping the 
previous context, then carries out certain tasks and 
updates XML by changing the attribute values, and also 
adding new nodes. This means that it grows as the 
simulation evolves. If we use a relational database, the 
process of adding nodes corresponds to modifying a table 
design (schema) or creating a new table with new 
relations which will be far more complex than a case of 
XML. 

Potential problems with XML can be its file size and 
processing speed. Fortunately, we have not yet 
experienced any significant limitation. 

The XML effort happened first with the control system 
upgrade in C#[20]. Tracy# is benefitting from our 
previous and continuing work on the control system. 
Routines for database access using ADO.NET, and 
graphics programming in WPF that were first used for the 
machine controls have also been migrated to Tracy#. 
Concerning resource sharing, our C# development is 
catching up with Matlab that has been used for both 
physics[21] and controls[16] at the ALS. 

INTERACTIVE SCIPTING 
Interactive scripting offers a convenient option to the 

traditional software development cycle which includes 
editing, compiling before execution. Our early attempts 
were TracyM and TracyML[22] that have been 
superseded by AT[16] in Matlab. An inconvenience is 
that an interactive programming language isolates itself 
and requires specially compiled modules to access 
external routines that are written in compilers. However, 
on the .NET Framework, it can access the .NET libraries, 

including Tracy#, normally and directly without any extra 
layer. 

IronPython Example 
Below is an example of using Tracy# interactively from 

IronPython[14]. Invoking IronPython, establishing the 
link to the Tracy# library, and importing its name spaces, 
we can use all the routines directly without any special 
layer. This example calculates the emittance of the 
nominal and the new low-emittance lattices of the ALS 
storage ring. ( >>> is a prompt.) 

  
>>> import sys 
>>> sys.path.append('T:/Tracy/IronPython') 
>>> from ipTracy import * 
>>> SR=ALSSRW() 
>>> SR.getTwiss(1) 
True 
>>> SR.fitNuxNuyEta(14.25, 9.20, 0.06) 
True 
>>> SR.getTwiss(1) 
True 
>>> SR.calcIntegral() 
>>> SR.calcEmittance(1.9E9) 
>>> print 'Emittance=', SR.NtlEmittance 
Emittance= 6.8094734722e-009 
>>> SR.fitNuxNuyEta(16.25, 9.20, 0.15) 
True 
>>> SR.getTwiss(1) 
True 
>>> SR.calcIntegral() 
>>> SR.calcEmittance(1.9E9) 
>>> print 'Emittance=', SR.NtlEmittance 
Emittance= 2.16587971373e-009 
>>> 
 

Here T:/Tracy/IronPython is the location of the directory 
of the Tracy# library and the module ipTracy.py contains 
lines to import the several .NET assemblies of Tracy#. 
This kind of capability of interactive scripting is one of 
the major merits of the .NET Framework. 

ONGOING EFFORT 
There are multiple efforts in progress to upgrade 

Tracy# by taking newer functions of the .NET 
Framework. The most important one is the parallelism to 
make use of modern multi-core CPUs. We have just 
added new routines to track particles simultaneously and 
testing it[23]. A parallelized for statement has tripled the 
execution speed in case of tracking for dynamic aperture 
calculations on a PC with a quad-core CPU. 
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MODELING SINGLE PARTICLE DYNAMICS IN LOW ENERGY AND
SMALL RADIUS ACCELERATORS

E. Nissen, B. Erdelyi, Department of Physics, Northern Illinois University, Dekalb, IL 60115, USA

Abstract

This research involves the development of a model of
the small circumference (11.5 m) accelerator in which the
earth’s field has a strong effect, and in which image charge
forces are also included. The code used for this simulation
was COSY Infinity 9.0 which uses differential algebras to
determine high order map elements, as well as quantities
such as chromaticity. COSY also uses Normal Form algo-
rithms to determine the betatron tune and any amplitude de-
pendent tune shifts which may result. The power of COSY
is that it can derive the required quantities directly form
the map without costly integration and tracking. Thus de-
termining the map for both the default elements of the ring,
plus the effects of image charge forces, and the earth’s mag-
netic field is both non-trivial, and important. This research
uses the Baker Campbell Hausdorf method to determine
the map of the ring with the external fields included. Fur-
thermore COSY has the ability to directly implement mis-
alignments within the beamline itself allowing for a study
of their effects on beam dynamics. The presentation will
include both coding development and applications to the
University of Maryland Electron Ring.

INTRODUCTION

With the increase in demand for high current accelera-
tors, methods for determining the effects of space charge
become more important. One method for gaining experi-
mental data on the effects of space charge is to use a low en-
ergy electron beam to model a high energy heavy ion beam,
this is the approach used by the University of Maryland
Electron Ring (UMER) [?]. UMER sends 10 Kev electrons
through a storage ring that is only 11.5 meters in circum-
ference. Currently all acceleration occurs in the electron
gun, which sends the beam through a matching section and
into the Y-shaped injector. This injector involves offsets on
both the injection and recirculation sides, the ring then uses
an additional 17 sections comprised of a bending dipole
between a pair of quadrupoles, followed by a diagnostic
chamber, followed by another set of quadrupoles enclosing
a dipole. The arrangement of the elements in the ring are
shown in Fig. 1. Due to the small radius and low energy
of the beam the effects of the earth’s field on the trajec-
tory of the beam is nontrivial. Furthermore, the offsets in
the injection and recirculation parts of the Y-shaped section
mean that the effects of image charge on the beam should
also be taken into account.

First there will be a brief introduction to COSY Infinity
and its unique properties, then there will be an overview of
how the earth’s field, the image charge force, and unique el-

Figure 1: COSY Infinity produced diagram of the Uni-
versity of Maryland Electron Ring. Sections marked RC
contain ring chambers which house both non-intercepting
Beam Position Monitors, and intercepting Phosphor
screens. Sections not marked with an RC number contain
glass gaps for current monitors.

ements contained in this particular beam are implemented.
Finally there will be a brief look at some experimental ob-
servations.

CODE DEVELOPMENT

The code used in this study is COSY Infinity 9.0. This
code uses differential algebraic vectors which allow not
only for an accurate calculation of numerical derivatives,
but also carries them through the various mathematical op-
erations. This behavior means that COSY can integrate a
test particle through an electromagnetic field and all of the
variable dependencies will be preserved, allowing for fast
accurate computation of maps [?]. COSY also has a large
library of default beam elements, so in this study they were
used as often as possible.

Short Solenoid

One issue that was dealt with early on was the field pro-
file of a short solenoid in the injection line. The field profile
that was measured for the physical element was very dif-
ferent from the kind used in the available COSY solenoids,
so the open architecture of COSY allowed us to model the
solenoid using a field profile provided by fitted data. The
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field profile of the short solenoid is shown in Fig 2.

Figure 2: This is a representation of the field of the UMER
short solenoid.

Earth’s Magnetic Field

The earth’s magnetic field accounts for approximately
20% of the bending in the ring, and its direct effects, as well
as the methods used to counteract them must be modeled.
The earth’s field is implemented as a kick using the Baker
Campbell Hausdorf (BCH) method. This method shows
that if we have a set of two differential equations using the
independent variable s, and that they each have a solution
that is valid over a given interval in s that is represented by
�.

d�z

ds
= �g1(�z, s) =⇒ �f1(�), (1)

d�z

ds
= �g2(�z, s) =⇒ �f2(�), (2)

Then the best way to find a solution for the combination of
the two equations is to compose the solutions in this man-
ner, with increasing accuracy with decreasing � [3].

d�z

ds
= �g1(�z, s) + �g2(�z, s)

=⇒ �f1(
�

2
) ◦ �f2(�) ◦ �f1(

�

2
). (3)

In the case of an accelerator element that is being acted
on by the earth’s magnetic field, the two solutions are ex-
pressed as a kick placed between two maps. The number of
kicks was determined by increasing the number for the var-
ious elements one by one until the answers had converged
past the number of significant figures available for the field.
The drifts and dipoles each used 6 kicks per element, and
the quadrupoles used 15 kicks per element.

The strength of the kick is determined from the equations
of motion for the beam, and the strength of the earth’s mag-
netic field is interpolated from a series of measurements
previously taken at UMER. The magnetic field kicks are
given as:

Δa(s) = (bi − By

Bz
) sin(

Bz

χm0
(1 + hxi)s) +

+ (ai − Bx

Bz
) cos(

Bz

χm0
(1 + hxi)s) +

Bx

Bz
,(4)

Δb(s) = (
Bx

Bz
− ai) sin(

Bz

χm0
(1 + hxi)s) +

+ (bi − By

Bz
) cos(

Bz

χm0
(1 + hxi)s) +

By

Bz
.(5)

In this case COSY is using a coordinate system in which x
and y are the horizontal and vertical positions respectively,
and a and b are analogous to the momentum for each vari-
able. In the case above Bx, By , and Bz are the measured
field strengths. χm0 is the magnetic rigidity of the beam,
and h is the inverse of the radius of curvature, h is zero for
a straight element.

In the interests of completeness, and in the unlikely case
that there is a zero Bz field, the following equations were
also calculated.

Δa(s) =
By

χm0
(1 + hxi)s, (6)

Δb(s) =
Bx

χm0
(1 + hxi)s. (7)

Image Charge Kick

This BCH method was also used to implement the image
charge force in the injection section. The image charge im-
plementation assumed cylindrical charge symmetry of the
beam, which places the image charge at a distance of R2/ξ
where R is the radius and ξ is the offset of the center of
the beam. The number of kicks required was analyzed in
the same manner as the earth’s field, it was found that the
number of kicks for the quadrupole and drifts/dipoles used
for the earth’s field was more than sufficient for the image
charge. This then leads to a kick on the beam center of:

Δa =
x̂

v0

√
− qλ

2πε0m
ln(

R2 − (x2 + y2)
R2

), (8)

Δb =
ŷ

v0

√
− qλ

2πε0m
ln(

R2 − (x2 + y2)
R2

). (9)

This allows for the image charge force to be calculated
for the center of the beam.

Dipole Modification

As previously stated the earth’s magnetic field accounts
for approximately 20% of the bending of the beam, in
UMER this is counteracted by changing the current to the
bending dipoles in the ring. These dipoles have a design
bending radius of 10 degrees, but they have their magnetic
fields reduced to counteract the earth’s magnetic field. This
will lead to a small angular and positional offset at the exit
of the magnet. COSY Infinity always assumes that if the
beam enters at the center of the element then it will exit
at the center of the element, so it was necessary to give
the bending dipoles in this simulation an offset and a tilt at
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their exit as a geometric correction. This effect can be seen
in Fig 3.

Figure 3: The top shows the COSY generated path of the
beam centroid as it moves uncorrected through a ring sec-
tion. The second shows the same beam with the dipoles
adjusted to counteract the earth’s magnetic field.

OBSERVATIONS

A series of experiments was recently performed to deter-
mine how accurately the COSY model portrayed real life.
Fig 4 shows that the agreement between theory and track-
ing is accurate through RC 9, after this point unresolved
issues make accurate simulations difficult. Also a compar-

Figure 4: Comparison of horizontal tracking data using the
beam position monitors (black) and the predicted location
of the beam centroid using COSY Infinity (blue).

ison was made between one set of earth’s field compensa-
tion values and those calculated using COSY. The previous
values were designed to have the bending dipole reduced
by an angle equal to the bending caused by the earth’s field
in that region. The values determined by COSY were found
by fitting the bending dipoles such that a beam that entered

a ring section with zero angle and zero offset would exit
that section with zero angle and zero offset. A comparison
of the tracking data is shown in Fig 5.

Figure 5: This is a comparison of the measured and pre-
dicted trajectories for both methods of earth-field compen-
sation. The black line uses the integrated offset method,
while the light blue line uses the COSY calculated values.
The dark blue and red lines are the cosy predicted values
for the compensation and the COSY calculated settings re-
spectively.

CONCLUSIONS

The adaptability and solid theoretical underpinnings of
the code COSY Infinity allow for accurate simulations to
be made not only of well behaved large accelerators, but
also small radius, low energy accelerators, which have non-
trivial complications such as image charge forces and the
earth’s magnetic field. Using this code on the University
of Maryland Electron Ring will allow for a better under-
standing of high space charge systems without the cost of
a heavy ion accelerator.
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Abstract 
Since 1997 RIKEN Nishina center has been 

constructing a next-generation exotic beam facility, RI 
beam factory (RIBF), based on a powerful heavy ion 
driver accelerator. Its accelerator complex was 
successfully commissioned at the end of 2006 and 
started supplying heavy ion beams in 2007. The four 
ring cyclotrons (RRC, fRC, IRC and SRC) connected 
in series accelerate the energy of the heavy ion beams 
up to 400 MeV/u for the lighter ions such as argon and 
345 MeV/u for heavier ions such as uranium. Intensity 
upgrade plans are under way, including the 
construction of a new 28 GHz superconducting ECR 
ion source. The new ECR will take all the succeeding 
accelerators and beam transport lines to a space charge 
dominant regime, which should be carefully 
reconsidered to avoid emittance growth due to space 
charge forces. Beam dynamics in the low energy 
cyclotron, RRC was studied with OPAL-cycl a flavor 
of the OPAL. The simulation results clearly show 
vortex motions in the isochronous field, resulting in 
round beam formation within the first 10 turns after the 
injection.  

INTRODUCTION  
RIKEN Nishina center has undertaken construction of 

an RI Beam Factory (RIBF) [1] since April 1997 aiming 
to realize a next generation facility that is capable of 
providing the world’s most intense RI beams at energies 
of several hundred MeV/nucleon over the whole range 
of atomic masses. The RIBF requires an accelerator 
complex which would accelerate the full mass range of 

ions and deliver ~80 kW of uranium beam at energy of 
345 MeV/nucleon. Figure 1 shows a bird’s eye view of 

RIBF.  The left part is the old facility completed in 
1990. Using the four-sector K540-MeV ring cyclotron 
(RRC), many experiments were carried with RI beams 
of light ions because RRC can accelerate relatively light 
ions up to 100 MeV/u, which is the lower limit for the 
RI-beam production as shown in Fig. 2. At first, the two 
ring cyclotrons, Intermediate Ring Cyclotron (IRC). 
Superconducting Ring Cyclotron (SRC) were designed 
as energy boosters for the RRC in order to expand the 

 

 

 

Figure 2: Performance of the RIBF accelerator complex. 

Figure 1: A bird’s eye view of RI Beam Factory. 
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mass range where RI beams can be produced as shown 
in Fig. 2. In 2000, after the appearance of the RIA 
project in the US , we realized that all the ion beams 
including uranium can be accelerated up to the 
maximum energy of 345MeV/u by adding another 
cyclotron, a fixed-frequency ring cyclotron (fRC), 
before the IRC. In this way, we are now able to generate 
a wide variety of RI beams from hydrogen to uranium.  
The intensity of the goal is more than 1 pA (6.0 x 1012 
pps). 

The RIBF accelerator complex was successfully 
commissioned at the end of 2006 and started supplying 
heavy ion beams in 2007.  In 2008 intensity of Ca beam 
extracted from SRC reached 170 pA (1.1 x 1012 pps) 
which is close to the goal intensity.  Uranium beam of 
0.4 pA  (2.5 x 109 pps) could be accelerated up to 345 
MeV/u in November 2008. [2] This intensity is a value 
of the world’s top level, but far from our goal.  

Key issues to increase the intensity of uranium ion 
beams can be clearly pointed out as follows. First, we 
need more beams from the ion source. A new 28GHz 
superconducting ECR ion source has been constructing. 
[3] This ion source is designed to have as large plasma 
volume as 1100 cm3 and expected to produce U35+ ions 
at an intensity of more than 15 pA, which is necessary 
to obtain 1 pA beams from the SRC. Beam tests started 
form the last May with 18 GHz rf power source and 
operation with a 28 GHz source will start from the next 
year. Next, we need a new injector which efficiently 
accelerates ion beams from the new powerful ion source 
in order to avoid the emittance growths due to their 

space charge forces. Figure 3 shows a plan for the new 
injector which is designed to accelerate ions with a 
mass-to-charge ratio of 7, aiming at heavy ions such as 
84Kr13+, 136Xe20+ and 238U35+, up to energy of 680 
keV/nucleon. [4] It consists mainly of the SC-ECR, an 
RFQ linac based on the four rod structure and three 
drift-tube linac (DTL) based on the quarter-wavelength 
resonator (QWR). A four-rod structure RFQ denoted by 
Kyoto University will be recycled for this purpose after 
some modifications to change the resonance frequency 
by about 10 %.  The new injector linac will be 
commissioned from the autumn of 2010. The following 
section of this paper will describe the space charge 
effects in the succeeding cyclotrons which may be taken 
to space charge dominant by the intensity upgrade 
program for uranium beam. 

MOTIVATION 
The intensity upgrade of uranium beam described in 

the previous section motivated us to study the vortex 
motions in the RIBF cyclotrons. Longitudinal space 
charge force causes additional acceleration for head 
particles and deceleration for tail particles. The 
accelerated or decelerated particles move to higher or 
lower radii due to isochronous condition in cyclotron, 
causing rotation of the bunch. The nonlinearity of space 
charge force produces spiral shaped halo, finally 
rotating sphere. These vortex motion phenomena were 
theoretically studied as shown in [5-9] and 
experimentally verified at the PSI Injector II.  

Pozdeyev described in his thesis [8] that the effects of 
the space charge force for bunches of similar lengths 
approximately scale as:  

35  mh

qI
                         (1) 

where I is the total beam current, h is the harmonic 
number and the momentum is p= mγRω. Table 1 lists 
the values of the parameter in the case of Injector II, 
RRC, fRC, IRC and SRC, indicating that RRC is 
approximately equivalent to the Injector II from the 
point of view of space charge force effects, while the 
effects in the other three cyclotrons are small. Therefore 
our beam dynamics study focused on the RRC, low 
energy cyclotron. 

Prebuncher 
18.25 MHz 

RFQ 
(4-rod) 

36.6 MHz 
Rebuncher 
36.6 MHz 

30 kW 30 kW 

SOL 

TQ TQ 

DQ DQ SOL TQ 

30 kW 30 kW 

DTL1 ~ 3 
(QWR) 

36.6 MHz 

to 
RRC 

100 keV/u 680 keV/u 

0 3 m 

28GHz

SC-ECRIS

 

Figure 3: A plan of the new injector. 

PSI  

Inj. 2 

RRC fRC IRC SRC 

1 0.644 0.096 0.031 0.016 
 

Table 1: List the value of the parameter of (1) in the text. 

Item Value 

K value 540 

Number of magnet sector 4 

Sector Angle 50 deg 

Inj. and ext. radius 0.39 and 3.56 m 

Number of Cavity 2 (double gap) 

Table 2: Main specification for RRC.  
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SIMULATIONS USING OPAL 
OPAL-cycl [10] is one of the flavours of the Object 

Oriented Parallel Accelerator Library (OPAL) 
framework. It is a new 3D PIC based self-consistent 
numerical simulation code covering neighbouring bunch 
effects. Self consistency is to be understood in the 
electrostatic approximation. A more detailed description 
of the OPAL framework and OPAL-cycl code can be 
found in the User’s Reference Guide [11]. 

Table 2 shows the main parameters of RRC which 
consists of the four-sector magnets and two double-gap 

rf resonators. Simulations using OPAL-cycl need 
realistic isochronous field map and radial distribution of 
rf voltage at the gaps. The field map for isochronous 
field was calculated by ANSYS with high accuracy. [12] 
Radial distribution of rf voltage was assumed to be 
constant since the resonator of RRC shows almost 
constant radial distribution in the case of 18.25 MHz.  

Single-particle tracking and tune calculation 
OPAL-cycl prepares single-particle tracking and tune 

calculation which are important to check isochronism of 
the field map, validity of the initial condition and 
matching phase ellipse before multi-particle tracking 
including space charge forces. Figure 4 shows the top 
view of the acceleration up to the final turn. It took 
about 296 turns for the particle to reach the final energy 
of the cyclotron. Phase slip at the rf gap crossing is 
shown in Fig 5, showing that the used field map is 
sufficiently isochronous. Betatron frequencies in the 
radial and vertical direction were calculated using the 
tune calculation mode of OPAL-cycl, as shown in Fig. 6. 
The result from AVFEQ [13] and OPAL-cycl shows 
good agreements even though different numerical 
algorithms are used, however we are in the process 
understanding the visible differences. Single-particle 
tracking was carried out with initial offsets of r (z) = 5.0 
mm, pr (pz) =0.0 mrad from the static equilibrium orbit 
at the injection energy, in order to get eigen-ellipses in 
the radial and vertical directions. The results in Fig. 7 
shows that the ratios between the semi major axis and 
semi minor axis are 5.0/4.2 and 5.0/2.5 mm/mrad in the 
radial and vertical direction, respectively. These ellipses 
were used as the initial conditions for multi-particle 
tracking described in the next subsection. 

Multi-particle tracking including space charge 
force effects 

Multi-particle tracking including space charge forces 
was carried out at the beam current of 0.5 mA after 
obtaining the initial conditions from the single-particle 
tracking studies. The first 10 turns after injection were 
simulated with acceleration because we are mainly 
interested in the behaviour of bunches just after the 
beam injection. Initial transversal rms emittance was 
assumed to be 2.5 mm mrad from the operational 
experiences. Initial rms bunch length was assumed to be 
2 or 4 degree in order to study how the bunch length 
impacts on the vortex motion. Figure 8 shows the results 
for the simulations. The results for both cases of 2.0 and 

 

Figure 4: Top view of single-particle tracking of the 
reference particle up to the final turn in RRC. 

 

Figure 5: Phase slip at the gap crossing in RRC. 

 

Figure 6: Tune diagram for RRC. 

 

Figure 7: Eigen-ellipses at the first turn of RRC in the 
radial and vertical directions.  
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4.0 degree clearly show the vortex motions of bunches 
toward stationary round distributions. The bunch in the 
case of 2.0 degree has smaller tails and rotates faster 
than that in the case of 4.0 degree. More detailed 
simulations up to the final turns including space charge 
effects from neighbouring turns are in progress. 
 

SUMMARY AND FUTURE WORKS 
The intensity upgrade of uranium beam is under way 

in the RIBF accelerator complex. This may be based on 
the vortex motions in the low energy cyclotron RRC 
from Pozdeyev’s scaling law, which motivated us to 
simulate the beam dynamics in RRC using OPAL-cycl. 
After obtaining the initial conditions using single-
particle tracking, as a first step we simulated the first 10 
turn of the RRC. The results show the clear signs of 
vortex motions, motivating us to carry out a more 
detailed simulation campaign up to the final energy, 
including neighbouring turns.  
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Figure 8: Result for multi-particle tracking. Turn 
numbers are shown in the left side of the contour plots. 
Rms of the initial bunch length is shown in the top of 
the contours. 
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SET CODE DEVELOPMENT AND SPACE CHARGE STUDIES ON ISIS
BG Pine, DJ Adams, CM Warsop, RE Williamson

Rutherford Appleton Laboratory (STFC), Oxfordshire, UK.

Abstract
The  ISIS  Facility  at  the  Rutherford  Appleton

Laboratory in the UK produces intense neutron and muon
beams for  condensed  matter  research. It  is based  on  a
50 Hz  proton  synchrotron  which  accelerates  ~3E13
protons  per  pulse  (ppp)   from  70  to  800 MeV,
corresponding to beam powers of ~0.2 MW. Studies are
under way for  major upgrades in the Megawatt regime.
Underpinning this programme of operations and upgrades
is  a  study  of  the  high  intensity  effects  that  impose
limitations on beam power.

The behaviour of the beam in the 50 Hz rapid cycling
synchrotron (RCS) is largely characterised by high space
charge levels and the effects of fast ramping acceleration.
High intensity effects are of particular importance as they
drive beam loss, but  are not fully understood with only
limited analytical  models available.  This paper  reviews
development of  a new space charge code Set, which is
designed to address key issues on ISIS and similar RCS
machines.

INTRODUCTION
ISIS high intensity operation is restricted by beam loss,

as  irradiation  of  equipment  limits  access  for  essential
maintenance.  Understanding  beam  loss  is  therefore  of
vital importance, however due to the complex interactions
between  the beam particles and their  environment such
understanding  is  challenging  both  analytically  and
numerically.

The ISIS Synchrotron Group is actively studying high
intensity effects  of  the  beam  in  a  number  of  different
ways, both to improve performance of the accelerator and
also to enable the design of upgrades which can achieve
significantly higher beam intensities. This paper focuses
on developments of the beam tracking code Set.

Figure 1: Rectangular ISIS vacuum vessel.

Figure 2: Profiled vacuum vessels in ISIS super-period.

SET
A new code Set  is  under  development  at  ISIS.  This

code is intended to supplement the use of ORBIT [1] for
2D and 3D beam tracking simulations, as a tool that can
be readily modified and redeployed as required to meet a
given  purpose.  In  particular,  the  focus  is  on  the
challenges of the ISIS RCS, including image forces from
the unique profiled vacuum vessel (Figures 1 and 2), halo
predictions,  2D and 3D RCS space charge effects  and
overall  to understand and predict  beam loss.  Set  works
using either  MAD input data or its own matrix routines
for  generating lattices,  and has  an FFT based  Poisson-
solver  for  calculating  the  beam's  space  charge.  Early
simulation  work  [2,  3]  focused  on  replicating  ORBIT
results for the half integer resonance. Example results for
the  ISIS  lattice  (2D,  coasting  beam)  driven  with  a
2Qv = 7 resonance are shown in Figures 3, 4 and 5. 

Figure 3: Envelope frequencies intensity sweep.

Figure 3 shows Set and ORBIT envelope frequencies as
the intensity is swept from 1 – 14E13. Figure 4 shows the
incoherent tune footprints after 100 turns, as the intensity

Set H
Set V
ORBIT H
ORBIT V
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is varied from 6E12 ppp to 13E13 ppp. Figure 5 shows
beam  phase  and  real  space  on  the  100th  turn  for  an
intensity of 6E13.

Figure 4: Incoherent tune comparison ORBIT - left, Set –
right.

Figure 5: Phase space on 100th turn ORBIT - left and Set
- right.

Set  has  been  used  to  study  tune shifts  from  image
forces and closed orbits [4] and the results compared with
Laslett theory (Figure 6). Direct space charge should have
no influence on  the coherent dipole tune, as the charge
distribution of the beam moves with the centre of charge.
However image forces will affect the coherent tune, as the
centre of charge does move relative to the vacuum vessel.
This is of particular interest on ISIS due to the vacuum
vessel  which  follows  the  design  beta  function  of  the
beam. At high intensities the machine is very sensitive to
closed  orbit  changes,  which  may  indicate  beam  loss
driven by image forces.

Present upgrade studies are investigating the benefits of
increasing injection energy from 70 to 180 MeV. Set has
been  used to study the space charge limitations at  this
higher energy. The half integer simulations carried out for
the  nominal  ISIS  ring  were  reproduced,  but  for  an
injection energy of 180 MeV rather than 70 MeV. 

Figure 6: Simulated versus analytical tune shift.

Figure 7: Envelope frequencies, incoherent tune and RMS
emittance growth associated with half integer resonance
for 180 MeV injection energy.

6E12

6E13

13E13

ORBIT Set

Incoherent Limit

Coherent Limit
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Simple scaling of the space charge force indicates peak
intensities  should  increase  by  a  factor  of  3  over  70  -
180 MeV.  As  can  be  seen  from  Figure  7,  the  RMS
emittance begins to rise at 3 times the intensity seen in the
previous  case.  Image  forces  become  more  significant
when  the  beam  is  executing  a  closed  orbit,  as  image
forces from the beam pipe only cancel when the beam is
well  centred.  Figures  8  and  9  show  the  results  of
simulation runs including  half integer driving terms from
the  trim  quadrupoles  (ISIS  has  special  programmable
quadrupoles distinct from the main lattice),  and also an
angular kick once per turn. Each set of simulations was
run  twice,  to  allow  the  resulting  perturbed  beam
distribution to be matched into the lattice. Figure 8 shows
the variation of  closed orbit (RMS position) around the
ring as a function of intensity, from 1 - 5E14 ppp. Figure
9 compares  RMS emittance  with  and without  a  closed
orbit at an intensity of 2E14 ppp. Image forces are clearly
influencing the behaviour of the beam, much as we expect
on  ISIS.  A  more  complete  analysis,  and  eventually
experimental work on the ISIS synchrotron, are to follow.

Figure 8: Matched closed orbit variation with intensity.

FUTURE WORK

Set
Work  is  also  under  way  on  a  1D  longitudinal  code

which includes space charge and impedances.  This will
eventually be added to Set to make it fully 3D. Results are
shown  in  Figure  10  for  bunch  length  and  phase
convergence versus macro-particle number.

A parallel version of 2D Set has been implemented, and
successfully run on the SCARF cluster [5]. Further work
will add a realistic injection scheme, including the effect
of foil scattering. The long term goal is to carry out a full
simulation of  the ISIS cycle and recreate the beam loss
patterns seen on the real machine.

SUMMARY
Understanding space charge, and hence beam loss,  is

essential for  the operation of  a high intensity RCS, and
even more important for the design of an upgrade.

A new code Set  is being developed to enable further
study of key beam dynamics issues that are important for
ISIS,  such  as  image  effects  and  any  dominant  loss
mechanisms.

Figure  9:  RMS  emittance  with  and  without  matched
closed orbit errors for 2E14 ppp intensity.

 
Figure 10: 1D convergence tests showing results for phase

and bunch length.
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COMPLETE RF DESIGN OF THE HINS RFQ WITH CST MWS AND HFSS* 

G. Romanov #, A.Lunin, Fermilab, Batavia, IL 60510, USA. 

 
Abstract 

Similar to many other linear accelerators, the High 
Intensity Neutron Source requires an RFQ for initial 
acceleration and formation of the bunched beam structure. 
The RFQ design includes two main tasks: a) the beam 
dynamics design resulting in a vane tip modulation table 
for machining and b) the resonator electromagnetic design 
resulting in the final dimensions of the resonator. The 
focus of this paper is on the second task. We report 
complete and detailed RF modeling on the HINS RFQ 
resonator using simulating codes CST Microwave Studio 
(MWS) and Ansoft High Frequency Structure Simulator 
(HFSS). All details of the resonator such as input and 
output radial matchers, the end cut-backs etc have been 
precisely determined. Finally in the first time a full size 
RFQ model with modulated vane tips and all tuners 
installed has been built, and a complete simulation of 
RFQ tuning has been performed. Comparison of the 
simulation results with experimental measurements 
demonstrated excellent agreement. 

INTRODUCTION 
   Within the framework of the High Intensity Neutrino 
Source (HINS) program at FNAL, we plan to build and 
operate a portion of the Front End (up to energy of 62 
MeV) as a technical feasibility proof of the proposal. A 
detailed description of the project and the current status is 
given in [1]. In the Front End test stand a four vane 325 
MHz Radio Frequency Quadrupole (RFQ) will be used 
for bunching the beam and accelerating it from 50 keV to 
2.5 MeV.  
   The complete beam dynamics design, resulted in a vane 
tip modulation table for machining, is described in [2]. 
The mechanical design concepts for this RFQ, tuning 
results, manufacturing of the RFQ in industry and the 
preliminary results of initial testing of RFQ at the Front 
End test stand are discussed in [3].  
   The electromagnetic design of RFQ resonators is rather 
complicated and requires essentially three-dimensional 
modeling. That, and also an additional complication with 
RF tuning because of some blunder made in the 
mechanical design of RFQ, urged us to develop a full 
length 3D RFQ model for simulation. Modern three-
dimensional electromagnetic codes are now available and 
successfully used for RFQ design [4, 5, and 6]. This paper 
focuses exclusively on the computational technique of 
electromagnetic design. We report complete and detailed 
RF modeling on the HINS RFQ resonator using 

simulating codes CST Microwave Studio (MWS) and 
Ansoft High Frequency Structure Simulator (HFSS).  

RFQ MODEL FOR ELECTROMAGNETIC 
SIMULATION 

   The basic parameters of the RFQ are given in table 1. 
Table 1 
Input energy 50 keV 
Output energy 2.5 MeV 
Frequency 325 MHz 
Total length of vanes 302.428 cm 
Average bore radius 3.4 mm 
 
   The RFQ design has several features that have been 
taken into account during electromagnetic simulations. 
   Instead of -mode stabilizing loops (PISLs) usual for 
RFQs longer than ~3, where is the rf wavelength [7], 
FNAL’s RFQ design uses the end-wall tuners - field 
stabilizers simpler than PISLs [8]. This method requires a 
precise knowledge of dipole mode spectrum, so 
simulating full length RFQ with end-wall tuners installed 
was needed. 
   Modulation of the vanes in the regular accelerating 
section of the RFQ is shown in Fig1. A variable 
modulation changes capacitive loading and therefore local 
frequency along RFQ as also reported elsewhere [4, 9, 
and 10]. In our RFQ the local frequency variation due to 
the modulation is significant, so the vane tip modulation 
has been included in the model. 
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Fig.1 Vane tip modulation along RFQ. Radial matchers 

are excluded. 
 

   The output radial matcher is designed to form axially 
symmetric beam exiting the RFQ, and because of this 
special function it is different than the input radial 
matcher. Fig 2 shows profile of the output radial matcher 
and imposed profile of the input matcher to compare with. 
The RFQ ends (cutbacks) can be tuned in simulations 
individually, but their combined effect on field flatness 
must be evaluated. Besides the end-wall tuners have 

*This work was supported by the U.S. Department of 
Energy under contract number DE-AC02-76CH03000. 
#gromanov@fnal.gov. 
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different tuning range and sensitivity for input and output 
ends of the RFQ. So again, for proper RFQ end design a 
full length model had to be considered. 
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Fig.2 The radial matcher profiles. 

 
   The basis of the 3D RF model prepared for simulation 
was a solid engineering model built in SolidWorks and 
stored in SAT format. The SAT file was then imported 
into CST Microwave Studio. CST MWS has its own well 
developed tools to work with solid models and to heal 
imported objects, so the RF model was completely 
prepared directly in MWS environment. 

PERIODS OF RFQ 
   Many basic RFQ parameters can be obtained and 
defined with 2D approach. CST MWS and HFSS are 
entirely 3D codes, but RFQ “slices” with thickness of one 
mesh step were effectively used to define the basic RFQ 
parameters. Some RF features like PISLs and slug tuners 
can be studied with periods of RFQ [6]. The period of 
RFQ defined by the slug tuner spacing was simulated to 
evaluate slug tuning sensitivity. Also magnetic field 
distortion around slug tuners was investigated since the 
bumps created by the tuners were visible at the bead pull 
axis which was close to the tuners. 
   The specific vane tip modulation (see Fig.1) attracted 
attention as a possible reason of the local frequency 
variation. To check whether the vane tip modulation 
affects local resonant frequency, one accelerating period 
with modulated vane tips (see Fig.3) has been simulated. 
The frequency of the model was found to be 324.7 MHz, 
while the frequency of the same model with identical 
average bore radius and no modulation was 323.5 MHz. 
The difference of 1.2 MHz is significant for such a long 
RFQ and must be taken into account. 

 
Fig.3. A model of accelerating period #267. 

RFQ END TUNING 
   Field flatness is always one of the most important tasks 
for RFQ tuning. This parameter is very sensitive 
(especially in long RFQs) to proper vane terminations. 
The RFQ ends are supposed to be tuned by appropriate 
geometry and dimensions of undercuts and the errors are 
usually hard to fix. 
   In the RF 3D model the end-wall tuners were set to a 
default value of 25.4 mm of penetration as it was during 
the initial RF measurements. The tuning slugs were flush 
with the inner wall of the RFQ cavity, so the slugs were 
not included in RF model for the vane end tuning. Each 
RFQ end can be tuned separately, so applying appropriate 
boundary conditions we used 1/8 of the full model, which 
is equivalent to full length RFQ with two input or two 
output ends. Actually the model can be of any length for 
this tuning, but we prefer to use field flatness as a tuning 
criterion which is more sensitive for longer cavity. If a 
local frequency is used as a tuning criterion, a reasonably 
short model should be used for higher sensitivity. 

 
Fig.4. A model of RFQ output end. The back wall 
(marked by arrow) is moved for tuning. 
 
   After main dimensions of cut-backs have been found, 
the back wall as the most influential parameter was being 
moved inward (i.e. “removing” of material) for fine 
tuning (Fig.4). We monitored the electric field distribution 
of quadrupole mode along RFQ at 4 mm and 45° off the 
axis (in the gap between tips). The field distribution 
changes with cut-back variation as it is shown in Fig.5, 
and it gets flat at optimal cut-back of 65.6 mm. 

COMPLETE SIMULATION 
   Initially the full length model was used to obtain 
realistic spectrum of quadrupole and dipole modes with 
end-wall tuners installed, since the exact mode spacing is 
a key for field stabilization in the RFQ. Then it was 
realized that the vane tip modulation cannot be ignored, 
and this feature has been added to the full length model. 
   The attempts to perform the simulation of the full model 
with MWS were not successful. It was decided to transfer 
the problem into HFSS. Using powerful MWS modeler 
the vane tip modulation was prepared in faceted 
representation of shape that is more appropriate for 
triangulated surface meshing in HFSS (see Fig.6).  

The model parameters were set in accordance with 
actual initial RFQ settings during RF measurement just 
after final assembly [11]. Fig. 7 shows the field 
distributions as simulated with and without vane 
modulation in comparison to the previous actual 
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measurements. With the vane tip modulation included in 
the model, the simulation reproduces the measurements 
with high accuracy, including both total field distribution 
tilt and sinus-like shape. Therefore, the theory that the 
vane tip modulation is responsible for the additional field 
distribution distortion is supported. Without modulation, 
the field tilt in the simulation is due only to the detuned 
output matcher. 

To check final RFQ tuning in simulation, the output 
matcher cut-back dimensions in the solid model were set 
to the specified values and slug tuners were introduced. 
Skipping intermediate simulations of the tuning process 
with slug tuners, the result is summarized in Fig. 9.  

RFQ. Field distribution tuning.
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Fig.7 Evolution of field distribution. Lines – simulations, 
points – measurements. Due to the axial symmetry H-
field distributions for only one quadrant are shown. 

   The slug tuners can only increase the local and overall 
frequency. After field flattening in the simulation, the 
RFQ frequency was well above required value of 325 
MHz. To decrease the initial frequency of the resonator a 
reduction of the average bore radius by 50-70 μm was 
recommended after test simulations. 

The results of simulations and the recommendations 
were taken into account during the final vane machining, 
RFQ assembly and tuning [4]. 

CONCLUSIONS 
   In the first time a full size RFQ model with 

modulated vane tips and all tuners installed has been 
built, and a complete simulation of RFQ tuning has been 
performed. Results of this complete simulation are in 
excellent agreement with the measurements made on the 
RFQ during initial assembly and tuning. All 
recommendation and predictions were proven correct by 
the final tuning results. 

This work is an important step toward entirely 
computational RF modeling on RFQ structures. 
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Fig.5 Field distribution with varying cut-back depths. 

 

 
Fig.6. Full length RFQ model with vane tip modulation, 
radial end matchers, end-wall tuners and slug tuners. 
 

THPSC047 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

342



H5PartROOT—A VISUALIZATION AND POST-PROCESSING TOOL FOR
ACCELERATOR SIMULATIONS

Thomas Schietinger
Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Abstract

Modern particle tracking codes with their parallel pro-
cessing capabilities generate data files of the order of 100
Gigabytes. Thus they make very high demands on file
formats and post-processing software. H5PartROOT is a
versatile and powerful tool addressing this issue. Based
on ROOT, CERN’s object-oriented data analysis frame-
work developed for the requirements of the LHC era, and
the HDF5 hierarchical data format, supplemented by an
accelerator-specific interface called H5Part, H5PartROOT
combines the statistical and graphical capabilities of ROOT
with the versatility and performance of the HDF5 tech-
nology suite to meet the needs of the accelerator commu-
nity. Providing the user with both a graphical user interface
(data browser) and a shared library to be used in an inter-
active or batch ROOT session, H5PartROOT passes on the
full power of ROOT without presupposing any knowledge
about the intricacies of either ROOT or C++.

INTRODUCTION AND MOTIVATION

Three-dimensional particle simulations (e.g., OPAL [1])
follow the trajectories of a large number (up to 109 and
more) of macro-particles through space as they are influ-
enced by external (electro-magnetic and or gravitational)
and internal (space charge) fields. The result of such a
simulation is typically stored as a sequence of time steps.
Each time step contains some quantities (often scalars or
3-vectors for the three spatial dimensions) describing prop-
erties of the macro-particle ensemble (bunch) as a whole
(e.g., centroid position, mean particle energy etc.) and, if
detailed analysis of the bunch evolution is desired, a full
dump of the macro-particle phase space (i.e., positions and
momenta of all macro-particles in the simulation).

With the increasing size of datasets produced by such
simulations, swift post-processing becomes an issue of
paramount importance. To address the problem we created
a tool based on ROOT, the data analysis software used by
CERN and its user community to analyze the vast amounts
of data produced by the Large Hadron Collider, and HDF5,
an extremely versatile and powerful data file format enjoy-
ing growing popularity throughout the scientific commu-
nity. The considerable power and flexibility of both HDF5
and ROOT come at the prize of rather complex user in-
terfaces. To spare the user the learning curves of these
packages as much as possible, we built a ROOT applica-

tion which allows fast extraction of statistical data and gen-
eration of publication-quality plots with just a few mouse
clicks. Since it makes use of the H5Part interface to HDF5,
the application is called H5PartROOT.

BUILDING BLOCKS

HDF5

HDF5 (“Hierarchical Data Format 5”) is a highly sophis-
ticated, “self-describing” data storage format. Originally
created by NCSA, it is now supported by the HDF group
[2]. The HDF5 technology suite allows the management
of extremely large and complex data collections. Its ver-
satile data model can represent very complex data objects
and a wide variety of meta-data. The file format is com-
pletely portable and puts no limits on the number or size of
data objects, making it an ideal format for large accelera-
tor simulations. The HDF5 software library provides var-
ious high-level interfaces (C, C++, Fortran 90, Java) and
runs on almost every computing platform, from laptops to
massively parallel systems. Furthermore HDF5 comes with
built-in performance features that optimize access time and
storage space as well as a whole set of tools and applica-
tions for managing, manipulating, viewing, and analyzing
the data.

H5Part

H5Part is a thin software layer on top of HDF5 to facil-
itate I/O for the simulation of particle accelerators (or any
other multi-particle system that evolves in time) [3]. De-
signed as a portable, high-performance parallel data inter-
face to HDF5 [4], it constrains HDF5’s very general data
format to a subset useful for three-dimensional particle ac-
celerator simulations, i.e., it knows about time steps, phase
space variables etc. H5Part is co-developed by LBNL and
PSI.

ROOT

ROOT is an object-oriented data-processing framework
developed at CERN for the requirements of the LHC era,
i.e., to handle complex datasets of sizes measured in Ter-
abytes [5]. Within the last decade, it has become the data
analysis and visualization tool of choice in high-energy
physics around the world.
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Figure 1: H5PartROOT main GUI showing an example
phase space plot.

Written in C++, ROOT can be used either as an exten-
sive class library to be linked to a C++ main program, or
via its C++ interpreter (CINT) as an interactive command-
line tool. The ROOT libraries include classes for plotting,
fitting and other statistical analysis, as well as graphical
user interfaces. ROOT is maintained by a core develop-
ment team at CERN supported by numerous users around
the world.

DESIGN OVERVIEW

The driving design philosophy behind H5PartROOT is
the desire to pass on to the user the full power of ROOT
without bothering him or her with the (sometimes rather
cumbersome) intricacies of the ROOT (or generally C++)
syntax. Since this is best achieved by a user-friendly graph-
ical user interface (GUI) a main data browsing window is
at the center of the H5PartROOT design. The GUI is im-
plemented as a class, TH5MainFrame,1 which processes all
user requests via buttons or pull-down menus and displays
information in a graphics window (“canvas”) embedded in
the GUI frame. A second class, TH5Dataset, provides the
link to a given HDF5 data file, and returns data processed
as plots or statistical quantities as requested by the client.
Figure 1 shows a screen-shot of H5PartROOT’s main GUI
with an example phase-space distribution. By dragging the
mouse, the user can rotate the plot or zoom in along the
axes (functionalities inherited from ROOT).

While an intuitive GUI is convenient for rapidly brows-
ing one or several datasets, it quickly reaches its limitations

1Like ROOT itself, H5PartROOT uses the Taligent coding convention.

Figure 2: Example of a line plot produced with the
H5PartROOT GUI (comparison of beta functions).

when it comes to producing elaborate plots combining in-
formation from different sources (e.g., measurement data).
For this reason, H5PartROOT can also be used as a shared
library within ROOT, which gives the user full access to all
TH5Datasetmethods from within the ROOT environment.

FEATURES

Besides simple data representations such as histograms
and scatter plots of phase-space distributions, or line plots
of time-step attributes, H5PartROOT provides a number of
features relevant to particle accelerator physics:

• Emittance: computation of the rms emittance
ε(�x, �x′) =

√〈x2〉〈x′2〉 − 〈xx′〉 for any two phase
space variables x, x′ from the particle distribution.

• Twiss parameters and phase space ellipses: Compu-
tation of the rms Twiss parameters α(�x, �x′), β(�x, �x′)
from the particle distribution, graphical representation
as a phase space ellipse.

• Bunch slicing: Evaluation of the above quantities or
graphs for longitudinal slices (subsets of the parti-
cle distribution as a function of z) of the bunch (see
Fig. 3). Both length and relative position of the slice
within the bunch can be set by the user. Gauss-
weighted slices are also supported.

• Screen projection: Evaluation of emittance and Twiss
parameters for fixed longitudinal position s (as op-
posed to fixed time).
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• Bunch clipping: Particle distributions or bunch prop-
erties after particles in sparsely populated regions of
the bunch have been removed. This feature is typi-
cally used to suppress the effect of bunch halos.
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Figure 3: Twiss phase space ellipses for bunch slices in 2D
(top) and 3D (bottom) representation.

USAGE

The Graphical User Interface

The main advantage of the GUI consists in the ease with
which a user can analyze a dataset and produce publication-
quality plots by clicking just a few buttons—without any
knowledge of neither ROOT nor C++. The GUI has fields
File Selection, Step Selection and Variable Selection, to tell
H5PartROOT what to plot and Histograms and Line Plots
to specify how to visualize the data. More sophisticated
settings (choice of binning, log scale etc.) are available via
an options menu.

Once a plot is done, its embellishments can easily be
changed via context menus. Thanks to ROOT’s many
graphics interfaces, it can then be printed to almost any
commonly known graphics format. A particularly useful
print format is C++ Macro, which will produce the exact
C++ code necessary to reproduce the plot inside a ROOT

session. This gives the user the possibility to save a result
without fixing the exact plot style, which may have to be
adapted later to the style of a larger document.

The Shared Library

To take full advantage of all ROOT features, however, it
is advisable to use H5PartROOT as a shared library. De-
pending of the complexity of the task at hand this library
may be

• loaded into an interactive ROOT session,

• used inside a ROOT macro, or

• linked to a compiled ROOT executable.

Figure 4 shows an example plot generated by the use of the
H5PartROOT shared library.
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Figure 4: Code comparison plot produced by a ROOT
macro after loading the H5PartROOT shared library.

In interactive sessions or macros the library is loaded
with the command
gSystem->Load("<libpath>/libh5root.so");
Once this is done, the user has access to the H5PartROOT
classes with all their methods:

TH5Style::SetStyle()
— set the H5PartROOT plotting style
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Figure 5: Prototype version of H5PartROOT featuring par-
allel coordinates. The plot shows a phase space distribution
(x, px, z, pz) with one selection in z (red) and another one
in x and z (blue).

TH5Dataset data("example.h5");
— load data from file example.h5

data.Histo2d("x","y");
— plot x and y (for default step 0, with default range)

INSTALLATION

The H5PartROOT source code and instructions on how
to install and run the application can be downloaded from
our web site [6]. Usage of the GNU build system (auto-
tools) ensures straight-forward installation across different
platforms.

FUTURE PLANS

Plans to improve and extend H5PartROOT include some
more particle selection features in the GUI, better 3D plot-
ting functionality (mainly by integration of the OpenGL
graphics engine [7]) as well as new visualization concepts.
An example are parallel coordinates, which have recently
been added to ROOT [8]. Figure 5 shows a prototype ver-
sion of the H5PartROOT data browser with parallel coor-
dinates.

Further down the line we plan to adapt H5PartROOT to
visualize slice-based simulations such as Homdyn [9]. An-
other possible development would be the parallelization of
the analysis code given sufficient user interest.

CONCLUSION

ROOT’s excellent data analysis and visualization capa-
bilities, developed for the high-energy physics community,
can also be harnessed in the context of computational ac-
celerator physics. In conjunction with HDF5 (and H5Part)
it provides a powerful yet elegant solution to the post-
processing needs of large-scale particle simulations. With
H5PartROOT, we have presented our implementation of
this promising approach.
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Abstract

Use of SDDS, the Self-Describing Data Sets file proto-
col and toolkit, has been a great benefit to development of
several accelerator simulation codes. However, the serial
nature of SDDS was found to be a bottleneck for SDDS-
compliant simulation programs such as parallel elegant. A
parallel version of SDDS would be expected to yield signif-
icant dividends for runs involving large numbers of simula-
tion particles. In this paper, we present a parallel interface
for reading and writing SDDS files. This interface is de-
rived from serial SDDS with minimal changes, but defines
semantics for parallel access and is tailored for high per-
formance. The underlying parallel I/O is built on MPI-I/O.
The performance of parallel SDDS and parallel HDF5 are
studied and compared. Our tests indicate better scalability
of parallel SDDS compared to HDF5. We see significant
I/O performance improvement with this parallel SDDS in-
terface.

INTRODUCTION

SDDS [1] is a self-describing data file protocol devel-
oped at Argonne National Laboratory’s Advanced Photon
Source (APS). It is a standardized way to store and ac-
cess data, and is the basis of a toolkit [2] of interopera-
ble accelerator physics programs. Over the years, several
SDDS-compliant accelerator programs (e.g,clinchor [3],
elegant [4], and shower [5]) have been developed at
the APS. Also, many existing accelerator design tools for
which the source code is available have been converted to
read and write SDDS files. This allows physicists to read-
ily use several codes in combination, with greater speed,
flexibility, and accuracy than otherwise possible. In addi-
tion to requiring accelerator codes to read and write SDDS
files, we created a suite of generic data processing and dis-
play tools that work with SDDS files. In effect, we created
a common pre- and postprocssing toolkit that is used by
our codes and codes we have modified. This set of approx-
imately 80 generic programs is referred to as the SDDS
Toolkit [2].

A major advantage of using SDDS files is that data from
one code can more readily be used by another. The self-
describing nature of the files makes this robust, meaning
that one code can be upgraded without requiring a change
in the other code. The SDDS Toolkit also provides the
ability to make transformations of data, which is useful
when codes have different conventions (e.g., for phase-

∗Work supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357.

† shang@aps.anl.gov

space quantities). Finally, using SDDS means that adding
capabilities to a simulation code is faster and easier. The
new data is simply placed in SDDS files where it can be
accessed with the existing suite of tools [2].

In addition to the SDDS Toolkit, users can import SDDS
data directly into programming environments like C/C++,
FORTRAN, IDL, Java, MATLAB, and Tcl/Tk, using li-
braries created and supported by APS. These libraries, like
the rest of the SDDS software and our simulation codes,
are covered by an Open Source license and are available
for download from our web site. The codes discussed are
all available for UNIX environments, including LINUX,
Solaris, and MAC OS-X, and (usually) for Microsoft Win-
dows. The programelegant [4] was the first of the SDDS-
compliant accelerator codes, and it is widely used for ac-
celerator design and simulation, and is at the center of the
SDDS-compliant accelerator simulation codes. The com-
puting power ofelegant has been enhanced significantly
through recent parallelizations and optimizations [6]. How-
ever, the SDDS tools with sequential execution are a bot-
tleneck for both memory and I/O operations. Therefore,
parallel SDDS is required for large simulations, as well as
for analysis and visualizations of the resulting large data
sets. This paper introduces the design, implementation, and
performance study on parallel SDDS. Since HDF5 [7] is
another popular scientific data format, the performance of
parallel HDF5 is also studied on Jazz [8] for comparison.
Although HDF5 already supports parallel I/O, it is not nec-
essarily beneficial to switch from SDDS to HDF5, given
the large number of programs and applications that already
use SDDS. Only if HDF5 offers a significant performance
advantage over parallel SDDS would such a conversion be
considered.

SDDS File Format and Data Storage

An SDDS file is referred to as a “data set”. Each data
set consists of an ASCII header describing the data that is
stored in the file, followed by zero or more “data pages”.
The data may be in ASCII or unformatted (i.e., “binary”).
Each data page is an instance of the structure defined by
the header. That is, while the specific data may vary from
page to page, the structure of the data may not. Three types
of entities may be present in each page: parameters, ar-
rays, and columns. Each of these may contain data of a
single data type, with the choices being long and short inte-
ger, single-/double-precision floating point, single charac-
ter, and character string. The names, units, data types, and
other descriptions of these entities are defined in the header.
Parameters are scalar entities. That is, each parameter de-
fined in the header has a single value for each page. Ar-

PARALLEL SDDS: A SCIENTIFIC  HIGH-PERFORMANCE 
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rays are multidimensional entities with potentially varying
numbers of elements. While there is no restriction on the
number of dimensions an array may contain, this quantity
is fixed throughout the file for each array. However, the size
of the array may vary from page to page. All columns in a
data set are organized into a single table, called the “tabu-
lar data section.” Thus, all columns must contain the same
number of entries, that number being the number of rows
in the table. There is no restriction on how many rows the
tabular data may contain, nor on the mixing of data types
in the tabular data. The tabular data is stored in the file by
row-major order, which is partly a legacy of SDDS’s ori-
gins in the APS control system, where it is used to collect
time-series data.

Obviously a column-major ordered data file would be
read and written faster since the data is stored as column-
major order in the memory. We will soon release in [9] a
column-ordered serial SDDS library, which has much bet-
ter performance over row-ordered serial SDDS library. For
parallel I/O, the relative advantage of column-major order-
ing in data files is not a given since the MPI-I/O can be ex-
ecuted in two modes: independent and collective [10]. In
collective mode, all processors pause until they are ready to
execute the I/O together. We expect that independent MPI
I/O benefits the row-major ordered SDDS files, while col-
lective MPI I/O benefits the column-major ordered SDDS
files.

We built parallel SDDS libraries in the four mode combi-
nations of independent I/O or collective I/O and row-major
ordered files or column-major ordered files for study and
comparison with other implementations of parallel I/O, say,
that of HDF5 [7]. In this reference collective I/O has been
found to be much more effective than independent I/O for
non-contiguous storage, though the authors didn’t specify
whether HDF files were column- or row-major ordered.

PARALLEL SDDS IMPLEMENTATION

Parallel SDDS is built on top of MPI-I/O in either in-
dependent I/O or collective I/O modes, and derived from
serial SDDS with minimal changes. In parallel SDDS, a
file is opened, operated on, and closed by the participat-
ing processors in a communication group defined by the
user interface. Other memory access functions are retained
from serial SDDS.

In parallel SDDS, each processor holds the SDDS header
data and the column data for only part of the rows, the total
number of rows being the sum of the row numbers of all
processors.

Similar to serial SDDS, parallel SDDS reads or writes a
file page by page. For parallel SDDS page reading, we first
read the header using the serial SDDS functions and then
close the file. Depending on the input request, either all
processors read the header or the master processor reads the
header and then broadcasts it to the other processors, which
reduces the file I/O load. Next, we use MPI-I/O to open the
file and to read the page title information, which are the pa-

rameters (if any), arrays (if any), and the total number of
rows (nt) in the current page. Again, either all processors
(np in number) read the title information or the master pro-
cessor reads it and then broadcasts it to other processors if
requested. Finally, each processor readsnt/np + r, where
r is 1 if the processor ID is less than or equal tont mod np,
otherwise, 0.

For parallel SDDS page writing, all processors hold the
layout information that is defined by the existing serial
SDDS functions, and part of the tabular data partitioned
by row. The file is opened for write with MPI-I/O. Only
the master processor writes the ASCII layout, parameters
(if any), arrays (if any), and the number of total rows, and
then its own part of tabular data into the file. Other proces-
sors write their own part of the tabular data into the file at
the same time.

PERFORMANCE COMPARISON

In this section we look primarily at row-major order
SDDS library performance compared with row-major or-
der HDF5, thus for clarity the term row-major order for
HDF and SDDS is dropped.

In the SDDS test code all processors read the header,
number of rows, parameters, and arrays in each page. Par-
allel SDDS was compiled with MPICH1 on ANL Jazz and
the performance was studied with PVFS version 1 file sys-
tem. There are 8 PVFS parallel file systems on Jazz run-
ning over 10/100 Ethernet. The theoretical peak I/O rate is
10 MB/sec per node.

In order to fairly compare parallel SDDS with HDF5,
the parallel HDF5 write/read code (ph5example.c), which
comes along with the parallel HDF5 package, was com-
piled with the same compiler used for parallel SDDS.

Reading Performance

Two HDF5 row-major-ordered data files were generated
using ph5example, with sizes of 1.2GB (1245710336B)
and 600MB (622856192B). Each file has one two-
dimensional dataset, with dimension 811008x384 for the
1.2GB file and 811008x192 for the 600MB file. The di-
mensions are chosen by the requirement of ph5example
that all dimensions must be a multiple of the number of
processors. Here, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64 pro-
cessors are used for performance study. However, SDDS
does not have any limitations on the dimension sizes. The
two HDF5 files were converted into two SDDS files us-
ing our hdf2sdds toolkit program. The SDDS file sizes
were 1245722085B and 622861029B respectively, which
are slightly bigger than the HDF5 files because the SDDS
header is written in ASCII, and there are many columns in
both files (making the header large). But in actual appli-
cations such as Pelegant [6], the SDDS files have only 8
columns, which produces less overhead than a HDF5 file
would. The read performance of both parallel SDDS and
parallel HDF5 was studied with the PVFS version 1 file
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system on Jazz. The results of reading the two files are
shown in Figure 1.

Figure 1: Parallel SDDS (psdds) and parallel HDF5 (phdf)
I/O performance of reading 600MB and 1.2GB files on
Jazz.

The figure includes a comparison of collective and in-
dependent I/O for HDF5. We didn’t have the collective-
I/O SDDS library run available for comparison. Figure 1
shows that independent HDF5 I/O has better performance
than collective HDF5 for reading the 600MB file. In addi-
tion, independent HDF5 has better performance than par-
allel SDDS when the number of processors is less than 32.
However, the speed of HDF5 starts drop after 32, and its
performance is similar to parallel SDDS after that. The
speed of independent-I/O SDDS continues increasing un-
til the number of processors reaches 48 and then starts to
drop. This may indicates that independent-I/O SDDS has
better scalability than collective-I/O HDF5. Apparently,
collective-I/O HDF5 is not a good choice for reading such
a 600MB row-major ordered file.

However, the performance of independent-I/O HDF5 in
reading a 1.2G file is so poor that our performance study
could not be completed with available sources. It is much
worse than collective-I/O HDF5, which is consistent with
the results of parallel HDF5 [7]. The performance of
collective-I/O HDF5 is slightly better than independent-I/O
SDDS when the number of processors is less than 20. How-
ever, the performance of this SDDS library is consistently
better than collective-I/O HDF5 when the number of pro-
cessors is greater than 20.

Data access performance is affected by many factors,
including caching, network bandwidth, and latency. Jazz
has two kinds of nodes, large memory nodes, which have
2.4GB memory, and smaller memory node which have
1.2GB memory. The network bandwidth is 10 MB/s. The
bandwidth per processor achieved by collective-I/O HDF5
is close to 10 MB/s with a small number of processors.
However, it drops quickly to 3 MB/s as the number of
processors increases. The bandwidth of parallel SDDS is
about 6 MB/s from 1 processors to 56 processors, and drops

at 64 processors. The relatively low efficiency of SDDS at a
low number of processors compared to parallel HDF5 may
have two causes: First, reading SDDS data requires at least
two times as much memory as the data size because of the
way SDDS encapsulates the data. Therefore the nodes may
not have enough memory to hold the data and swap space
may be needed when the number of processors is small.
Second, all processors read the SDDS layout at the same
time using serial code. Therefore, the time spent in layout
reading increases as the number of processors increases,
which reduces the speed when the file header is big (as in
our test files) and the number of processors is large. For
example, the time to read the 1.2GB file header with one
processor is 0.01 seconds, but increases to 2 seconds with
64 processors, while the data access time is only 3 seconds.
The layout reading could be improved in the future.

Still, the results indicate that independent-I/O SDDS has
better scalability than HDF of either I/O mode, and has bet-
ter performance with large files. This may be due to the rel-
atively simpler structure of SDDS data compared to HDF5.

Writing Performance

The writing performance of parallel HDF5 and SDDS
was studied when writing 811008x192 and 811008x384
two-dimensional datasets into HDF5 files or SDDS files.
Both collective-I/O and independent-I/O HDF5 writing
were tested. Again results for collective-I/O SDDS was
not available. The performance of parallel SDDS writing
was studied by reading a previously generated SDDS file of
811008x192 data or 11008x384 data into an SDDS dataset,
copying it into a new dataset in memory, and then writing
the new dataset into an SDDS file. This doubles the mem-
ory size for storing two SDDS datasets in memory, so that
memory requirements are more than four times the size of
the data file. The purpose of copying in testing parallel
SDDS writing is to verify that the write operation produces
a file that is identical to the original (which was the case in
all tests). The performance of parallel SDDS writing may
be improved when writing data that is generated internally.

The results of writing files are shown in Figure 2. Un-
like what we found for reading, independent-I/O HDF has
better performance that collective-I/O HDF for writing the
row-major ordered HDF5 file. Independent-I/O SDDS is
also better than collective-I/O HDF. Similar to reading,
independent-I/O HDF5 performs better than independent-
I/O SDDS with a small number of processors, but as the
number of processors increases, independent-I/O SDDS
starts to perform better than independent-I/O HDF5 for
writing both 600MB and 1.2GB files. The results again in-
dicate that parallel SDDS has better scalability than HDF5
and better performance with large files in our tests.

Since only one processor writes the layout, the time
spent in writing layout does not increase as the number of
processors increases. However, the layout writing can be
improved by buffered I/O, since right now each definition
uses a separate write operation, and the I/O times are the
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Figure 2: Parallel SDDS and parallel HDF5 I/O perfor-
mance of writing 600MB and 1.2GB files on Jazz.

sum of number of parameters, arrays and columns, plus the
time required to write other (generally small) parts of the
SDDS header. Buffering could reduce this by a significant
factor.

IMPROVEMENTS

We made further improvements in parallel SDDS that
include 1) changing the header reading strategy so that
only one processor reads the layout information, param-
eters, and total number of rows, and then broadcasts this
information; 2) using buffered I/O for writing the layout,
parameters, arrays, and the number of rows, and for read-
ing parameters, arrays, and the total number of rows; and
3) parallel reading and writing of SDDS in column-major
order.

Since the collective I/O seems to have better perfor-
mance on the GPFS file system, we also implemented
collective-I/O row-major SDDS. The performance was
studied on the Intrepid (IBM Blue Gene/P) GPFS file sys-
tem [11] with reading/writing a 2.4GB file. We have no
performance of HDF5 on Intrepid due to lack of time. The
results are as follows.

As expected, collective I/O does not benefit row-major
SDDS data. But it does benefit the column-major SDDS
data, especially in writing. The writing performance of
column-major SDDS data is 1GB/s with 350 processors,
which is close to the theoretical throughput (1GB/s for 320
processors).

Similar to the Jazz PVFS system, independent I/O row-
major SDDS shows good performance on GPFS in both
reading and writing. The maximum reading throughput is
600MB/s and the writing throughput is 370MB/s.

CONCLUSION

In this work, we implemented a parallel SDDS inter-
face with independent I/O and completed a performance
study of parallel SDDS and parallel HDF5 on Jazz with

PVFS version 1 file system based MPICH1 MPI-I/O. Par-
allel SDDS (for row-major ordered files) was found to have
better scalability than HDF5 on a PVFS file system and
better performance with large files. We also implemented
parallel SDDS with independent I/O and collective I/O for
row-major and column-major SDDS data, and studied the
performance on the Intrepid (Blue Gene P) GPFS file sys-
tem. The results show that collective writing of column-
major ordered SDDS data reaches the theoretical through-
put of the I/O nodes. Independent-I/O SDDS, which is cur-
rently being used in parallel applications such as Pelegant
[12], shows good performance for both reading and writing
row-major-ordered SDDS data.
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THE PYTHON SHELL FOR THE ORBIT CODE * 
A. Shishlo, J. Holmes, T. Gorlov, ORNL, Oak Ridge, TN 37831, U.S.A.

Abstract 
A development of a Python driver shell for the ORBIT 

simulation code is presented. The original ORBIT code 
uses the SuperCode shell to organize accelerator-related 
simulations. It is outdated, unsupported, and it is an 
obstacle to future code development. The necessity and 
consequences of replacing the old shell language are 
discussed. A set of core modules and extensions that are 
currently in PyORBIT are presented. They include 
particle containers, parsers for MAD and SAD lattice 
files, a Python wrapper for MPI libraries, space charge 
calculators, TEAPOT trackers, and a laser stripping 
extension module. 

INTRODUCTION 
The original ORBIT code has been very useful in the 

SNS ring design and in simulations of collective effects 
[1]. Thanks to a flexible structure, ORBIT can be 
extended very easily. After years of development by many 
scientists, ORBIT includes collimation, different types of 
space charge, impedances, electron-cloud effects, and 
numerous other features. These features are combined 
together by using a driving shell – the SuperCode (SC). 
SC is an interpreter programming language resembling C. 
At the time when ORBIT development started (1997), 
there were not many choices of driving shell language. 
SC was attractive because it is C-like, it is simple to learn, 
to understand, and to extend, and it has a set of effective 
auxiliary classes for arrays, vectors, strings, etc. As a 
result of deep integration, the ORBIT code has become 
inseparable from SuperCode, and SC has now become an 
obstacle to further ORBIT development. 

There are several problems related to SC. First, SC is 
not an object-oriented language. This significantly slows 
down ORBIT development and limits the functionality of 
the code. All contemporary interpreters are object-
oriented. Second, SC is not supported by anyone. Usually 
languages are surrounded by a community of users and 
developers, which facilitates an immediate response to 
problems and bugs. So, for SC the user is on his own. 
Finally, all auxiliary classes provided by SC have been 
implemented in the C++ Standard Template Library, and 
this implementation is probably more efficient. In SC 
none of these classes is protected by namespaces, and 
they could crush the ORBIT code compilation if there is a 
name conflict. 

In an attempt to preserve the legacy of the ORBIT 
code, the PyORBIT project has been started. The 
motivation of PyORBIT is to replace the SuperCode 
driver shell by a modern interpreter language, Python [2]. 
Unfortunately, it is not possible to directly import the 
code of core ORBIT modules into the new project 

because of ubiquitous SC dependencies. On the other 
hand, this gives us an opportunity to start from scratch in 
the architecture and the source code development and to 
keep all original ORBIT physical algorithms. 

DRIVER SHELL PARADIGM 
PyORBIT, like the original ORBIT code, uses a driver 

shell language approach instead of an input file analysis, 
as in traditional accelerator codes like MAD, MAD-X, 
PTC, PARMILA, Trace3D etc. These traditional codes 
construct an accelerator lattice and perform calculations 
according to information inside specialized input files. 
They each use their own language created for the 
particular code, and the list of possible tasks is predefined 
and limited. PyORBIT uses another approach. We use an 
existing programming language and extend it with 
specific accelerator-related functionalities. The user can 
create a unique simulation code in the form of a main 
program or script by using a predefined set of classes and 
methods. 

There are several requisites for a programming 
language that can be used for this scheme: 

• The program language should be popular among 
physicists. There are many languages that fall under 
this category: FORTRAN, C, C++, Ruby, Python, 
and Java. 

• It should be an object-oriented language with an 
automated garbage collection. This condition 
eliminates FORTRAN, C, and C++. 

• It should be fast. That will eliminate Ruby and 
Python, which are interpreted languages. 

• It should be capable of an effective usage of the 
Message Passing Interface (MPI) library for parallel 
calculations. That will remove our last candidate – 
Java. There are several available Java wrappers for 
MPI, but the overhead for array exchange makes 
these packages unacceptable for us. 

These constraints necessitate a two-language scheme. 
To provide the necessary speed we must use FORTRAN, 
C, or C++ at the low level, and Ruby or Python to 
organize the calculation at the upper level. For the 
PyORBIT project we chose C++ for its object-oriented 
nature, better standardization, and better free compiler 
availability than FORTRAN. For the upper level we 
preferred Python, because its pseudo-code compilation 
feature makes it significantly faster then Ruby. This 
combination of a scripting language for orchestrating 
simulations and a fast compilation language to perform 
calculations is very popular in scientific computing [3]. 
Generally, code development in a scripting language is 
considered 3-5-10 times faster than it is in languages like 
C++ or Java.  The downside of the two-level approach is 
the necessity of a “glue” code to connect the codes in the 
two languages.  

___________________________________________  

* ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. 
Department of Energy under contract DE-AC05-00OR22725  
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PYORBIT CODE STRUCTURE 
The directory structure of the PyORBIT code is shown 

in Fig. 1. PyORBIT consists of three main parts: a core, 
extensions, and pure Python classes.  

The core includes C++ classes and wrappers for them. 
The wrappers define the Python user interfaces for 
underlying C++ classes. After compilation of the core 
source code and linking with the Python language static 
library and MPI libraries, the PyORBIT executable is 
placed in the “bin” directory (see Fig. 1). This executable 
is an extended Python language interpreter that has all the 
functionality of Python and that can dynamically operate 
with classes and methods from the core and extensions. 

The extensions are independent packages that have no 
common classes. If two or more extensions use the same 
class, it should be moved to the core of PyORBIT. Each 
extension package is dedicated to some particular 
physical phenomena. At this moment PyORBIT has only 
one extension, a package that simulates different aspects 
of the laser-assisted stripping of H- ions [4]. The 
extensions are compiled into shared libraries and are 
placed into the “lib” directory.  The libraries are 
dynamically loaded when invoked in the user’s Python 
script. 

The pure Python classes’ directory in Fig. 1 has two 
subdirectories: one for core and one for extensions.  

 

Figure 1: The directory tree of the PyORBIT code. 

Today the C++ core of PyORBIT includes four 
components important for the future development: the 
MPI wrapper, the PyORBIT Bunch class, the TEAPOT 
elements library, and the 2D space charge package. The 
pure Python core components contain the accelerator 
lattice model, the TEAPOT-like implementation of the 
accelerator lattice, and the parsers for input files of MAD 
and SAD accelerator codes. Below we discuss these 
components. 

PYTHON AND C++ CLASSES 
To connect the Python and C++ levels, we want 

flexibility and full control and of our logic flow. 
Therefore, PyORBIT does not use an automated approach 
that extends the Python language with C++ classes. To 
create a wrapper class for a C++ class we follow the 
standard method described in the “Defining New Types” 
part of the Python documentation. Each wrapper class 

inherits from a PyORBIT_Object class that extends the 
standard PyObject with one void pointer to the wrapped 
C++ class instance. In turn each C++ class inherits from 
the CppPyWrapper class that keeps a reference to the 
Python wrapping object. This cross-reference scheme 
allows access to Python and C++ objects from any level, 
and it is used everywhere in PyORBIT except for the MPI 
library wrapper, because MPI is a collection of functions, 
not classes.  

PYORBIT MPI WRAPPER 
From the beginning, PyORBIT was developed as a 

parallel code based on MPI. At the same time all parallel 
features can be switched off if the user wants to use only 
one CPU. To provide this functionality, PyORBIT has the 
MPI wrapper, which isolates the standard MPI functions 
from the rest of PyORBIT. It accomplishes this by 
wrapping the MPI functions into functions with different 
names, but the same signature, and exposes these 
wrappers to the Python level. At this moment 45 MPI 
functions are available from the Python script level. In 
addition to the MPI functions, the MPI wrapper also 
transforms the MPI communicators, groups, operations, 
and the MPI status to PyObjects that can be accessed 
from the Python and C++ levels. The ability to move MPI 
objects between Python and C++ was the main reason to 
create our own MPI wrapper instead of using one of the 
available open sources. It is expected that MPI on the 
Python level will be used only to perform small data 
exchange and to create necessary MPI communicators 
which later will be used on the C++ level for fast and 
massive data exchanges. 

The PyORBIT MPI wrapper package is completely 
independent from the rest of the PyORBIT code and can 
be extracted and used anywhere. 

BUNCH CLASS 
PyORBIT is a particle tracking code, so a class 

representing a container for particles is the most 
important class of the code. The Bunch class of the 
PyORBIT core is this container class. By default it keeps 
6D coordinates and one flag specifying an “alive/dead” 
status for each particle, and it has the flowing features: 

• It is dynamic. The user can add or remove particles 
from this container. Its size will adjust to the number 
of particles. 

• It is efficient. It provides fast access to the 
coordinates and it maintains spare room to 
accommodate additional particles without frequent 
memory resizing. 

• It is extendable. The user can dynamically assign 
additional properties to each particle in the Bunch. 
This allows the Bunch class to be used for different 
kinds of physical problems. For instance, this 
additional information could be a macro-size of the 
particle, its spin, or amplitudes of different quantum 
states, as for the hydrogen atom in the Laser 
Stripping PyORBIT extension [4]. The possibilities 

THPSC052 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

352



are numerous. The absence of this kind of 
extendibility is a big drawback in the original 
ORBIT code.  

• It can be dumped and restored from a file. 
• It has parallel capabilities. It automatically 

distributes particles among CPUs in its local 
communicator when it restores a bunch from a file. 

• All methods of the C++ implementation are exposed 
to the Python level. 

The additional information that can be attached to each 
particle in the bunch should be stored as a double array of 
the predefined length. This condition limits the user 
freedom, but it provides a fast way to exchange particle 
information between CPUs in parallel calculations. Still, 
this approach is general enough to be acceptable for all 
physical phenomena that we have in mind right now. 

As said before, the Bunch class has 6 phase-space 
coordinates for each macro-particle. The Bunch class does 
not define the meaning of these coordinates, and it is up 
to the user to define them. In the TEAPOT-like tracking 
we follow the original ORBIT. We consider them as 
transverse displacements and angles for the transverse 
plane, and as position and energy deviation from the 
design energy for the longitudinal direction. However, in 
PyORBIT we change transverse units to meters and 
radians from millimetres and milliradians in ORBIT. The 
longitudinal position is also given in meters instead of 
radians. 

ACCELERATOR LATTICE PACKAGE 
The accelerator lattice package is a lightweight pure 

Python implementation of a structure shown in Fig. 2. 
The package includes three classes: the Accelerator 
Lattice class, the Accelerator Node class, and the Action 
Container class. 

 

Figure 2: The PyORBIT accelerator lattice structure. 

The Accelerator Lattice class is a container of the 
instances of the Accelerator Node class (nodes). The 
lattice class has methods to get the length of the lattice, to 
add a new accelerator node at any place in the lattice, to 
create a sub-lattice from the existing one, and to call the 
“trackAction” method for each accelerator node. This 
method accepts two objects: the instance of Action 
Containers and a dictionary with user parameters. The 
lattice puts into the parameters dictionary two references, 
one to itself and one to the accelerator node. 

The Accelerator Node represents a single node in the 
lattice and is built according to E. Forest's concept of 
“fibre bundle” [5]. Each part of the node is a container for 
references to child Accelerator Nodes. When the lattice 
calls for the “trackAction” method of the node, this 
method is performed recursively for each child node and 
executes actions that are in the Action Container. The user 
should consider the Accelerator Node class as an abstract 
class for subclasses that will perform meaningful actions. 

The Action Container class is a keeper of user-defined 
functions (actions) that will be called upon entering the 
node, at each part of the node, and at the exit of the node. 
By default this container is empty, and it is up to the user 
to supply the calculations and their order inside the 
container. The Python mechanism of lexical closures 
allows one to define such actions in the source code of the 
class methods. 

The accelerator lattice package is a very flexible 
construction that can accommodate almost any kind of 
functionality, but there is no restriction in PyORBIT to 
prevent other approaches to defining a model for the 
accelerator lattice. 

TEAPOT-LIKE ACCELERATOR LATTICE 
There are two PyORBIT components that enable 

TEAPOT-like tracking of the macro-particles. The first 
component is the collection of C++ functions that were 
developed for the original ORBIT to track 6D coordinates 
of charged macro-particles through simple accelerator 
elements including dipoles, drifts, quads, multipoles, 
solenoids, kickers, etc. These functions were thoroughly 
benchmarked against analytical models, and their source 
code was directly imported into PyORBIT. The second 
part is a collection of pure Python classes that are 
subclasses of the Accelerator Node class. These classes 
keep parameters of the nodes and call the C++ TEAPOT 
tracking functions. 

The TEAPOT lattice can be built right in the script by 
adding accelerator nodes one by one or by analyzing a 
MAD input file. PyORBIT includes a MAD parser that 
can read a MAD input file specifying the structure of the 
accelerator. The parser is discussed below. 

At present, the TEAPOT-like lattice does not have such 
nodes as a foil injection node, collimators, space charge 
nodes, diagnostics nodes, etc. that are in the original 
ORBIT code. We plan to import them into PyORBIT in 
the near future. 

MAD-FILE PARSER 
The original ORBIT does not have any internal tools to 

use MAD input files directly. The user has to run MAD to 
get MAD output files with transfer matrices and Twiss 
parameters that will be used by ORBIT. This dependency 
is one of the weak points of the ORBIT code. For 
PyORBIT the pure Python MAD parser is developed. It is 
completely independent from the rest of the code, and it is 
used as a generator for the TEAPOT-like input file for 
PyORBIT. The parser can perform mathematical 
calculations defined in the MAD file and can handle 
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insertions of external files. PyORBIT also has a 
modification of this parser for the SAD code input files. 
The SAD code is the accelerator design and simulation 
code developed by KEK accelerator theoretical group [8]. 

RUNGE-KUTTA TRACKER 
In addition to the TEAPOT-like tracking, PyORBIT has 

a package to solve the equation of motion with arbitrary 
electric and magnetic fields 

)(/ BvEqdtpd
 ×+⋅=                      (1) 

The package uses the Runge Kutta 4-th order (RK4) 
solver. The user must specify both electric and magnetic 
fields as functions of position and time. For prototyping, 
this can be done on the Python level, but the speed of 
calculations will be very slow. The user also can attach a 
custom implementation of the External Effects class. The 
user has to define the “applyEffects” method of this class 
which will be called at each time step of the RK4 solver. 
This allows the user to specify other things that can 
happen to the macro-particles during their motion through 
the electromagnetic field region. For instance, there may 
be decay, ionization, excitation, or interaction with a 
collimator material. In the laser-stripping package [4] this 
tracker is used to simulate the dynamics of the internal 
states of hydrogen atoms in the laser field. 

2D SPACE CHARGE SOLVER 
As a base for future space charge modules PyORBIT 

has a FFT-based Poisson solver package. The package 
includes three classes: Grid2D, PoissonSolver, and 
Boundary classes. The Grid2D class represents the two 
dimensional rectangular grid with a space charge density 
or the electrostatic potential. The PoissonSolver class 
calculates the potential on the grid 

 ′−

′⋅′−= 20
)()(
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by using the Fourier convolution theorem and discrete 
transformation (FFT) [9]. 

The Boundary class is a container of arbitrary boundary 
points inside the defined grid. It modifies the potential on 
the grid by adding the potential in empty space [10] 
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where r and θ  are the usual polar coordinates, N is a 
user defined maximum number of harmonics. The 

coefficients na  and nb  are found by minimizing the sum 
of potentials (2) and (3) at the boundary points in a least 
squares sense. The sum of two potentials is the solution of 
Poisson’s equation with zero potential on boundary 
points. The number of boundary points and the number of 
harmonics determine the accuracy of the solution. 

Again, this package is relatively independent from the 
rest of the PyORBIT code and can be used separately. 

CONCLUSIONS 
At present, PyORBIT does not have the full collection 

of physics modules of the original ORBIT code, but it has 
all the basic components to accommodate these modules. 
The new capabilities of PyORBIT include the 
customizable Bunch container, which provides the means 
to simulate a broader spectrum of physical problems. A 
fine example of these extended capabilities is the Laser 
Assisted Stripping module developed inside PyORBIT 
[4]. 
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RECENT PROGRESS ON PARALLEL ELEGANT ∗

Y. Wang † , M. Borland, H. Shang, R. Soliday, A. Xiao, ANL, Argonne, IL 60439, USA

Abstract

The electron accelerator simulation software elegant
[1] is being parallelized in a multi-year effort. Re-
cent developments include parallelization of input/output
(I/O), frequency map analysis, dynamic aperture search,
and position-dependent momentum aperture determina-
tion. Parallel frequency map, momentum aperture analy-
sis, and dyanmic aperture search provide rapid turnaround
for important determinants of storage ring performance.
The development of parallel Self-Describing Data Sets file
(SDDS) I/O based on MPI-IO made it possible for paral-
lel elegant (Pelegant) to take advantage of parallel I/O.
Compared with previous versions of Pelegant with serial
I/O, the new version not only enhances the I/O throughput
with good scalability but also provides a feasible way to run
simulations with a very large number of particles (e.g., 1
billion particles) by eliminating the memory bottleneck on
the master with serial I/O. Another benefit of using parallel
I/O is reducing the communication overhead significantly
for the tracking of diagnostic optical elements, where the
particle information has to be gathered to the master for
serial I/O.

INTRODUCTION

The parallel version of elegant, Pelegant, has proved
to be very beneficial to several computationally intensive
accelerator research projects. Simulation with a very large
number of particles is essential to study detailed perfor-
mance of advanced accelerators. This was demonstrated
in simulations of microbunching for FERMI [2]. In those
simulations the maximum number of particles was reached
at about 60M when the serial version of SDDS was used,
which limited our ability to probe microbunching effects
at shorter wavelengths. In the version of Pelegant used
in those studies, the bottleneck came from the memory us-
age of the master CPU, which was required to hold all the
particle information when simulating a diagnostic element,
such as a watch point, where all the particles have to be
gathered to master to be written on the disk.

The recent development of parallel SDDS [3] makes it
possible for Pelegant to take advantage of parallel I/O
through MPICH2 [4]. With parallel I/O, a common file
is opened by all the processors, but each processor is only

∗Work supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.

† ywang25@aps.anl.gov

responsible for reading/writing the particles allocated to it.
This technique improved I/O throughput significantly, es-
pecially on some parallel file systems, such as Parallel Vir-
tual File System (PVFS) [5] and General Parallel File Sys-
tem (GPFS) [6]. Pelegant can also run on Network File
System (NFS) file system, although the I/O performance is
not as good as on the parallel file systems. The overall per-
formance of Pelegant on all the file systems mentioned
above has also been improved due to reduced communica-
tion overhead compared with gathering particles to master
before writing to the disk with serial I/O. A nice feature
of this parallel SDDS I/O is that the output/input files are
the same as the files for serial I/O, which is very convenient
for data analysis and exchanging data in SDDS format with
other related simulation programs.

In this paper, we first describe the effort we made to in-
tegrate parallel SDDS with Pelegant, then we report the
progress made on the parallelization of frequency map, mo-
mentum aperture analysis, and dynamic aperture optimiza-
tion in Pelegant.

IMPLEMENTATION OF PELEGANT WITH
PARALLEL SDDS

The simulation code elegant is being gradually par-
allelized with particle-based domain decomposition to re-
duce the simulation time for multi-particle beams. Beam-
line elements are classified in the element dictionary as
parallel-capable or serial-only. Particles will be gathered
to the master CPU or scattered to slave CPUs when the
beam encounters a serial element or a parallelized ele-
ment [7, 8], respectively. As the majority of the frequently
used elements has been parallelized, Pelegant has been
efficiently used for several important accelerator research
projects [2, 9, 10, 11, 12].

Even in cases where one must use beamline elements
that are not yet parallel-capable, a very significant perfor-
mance improvement can be realized. However, for simu-
lations with large numbers of particles, I/O for input, in-
termediate output, and final output, can consume a signif-
icant portion of simulation time. In addition to the com-
munication overhead of gathering particles to the master,
memory also becomes a problem when we simulate a very
large number of particles with a central process (i.e., Mas-
ter) holding all the particle information for I/O operations.

To eliminate these bottlenecks, we developed parallel
SDDS [3] with MPI-IO recently. The parallel SDDS is
derived from the serial version of SDDS [13], which has
been successfully applied to several accelerator simulation
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codes. We made significant efforts to integrate Pelegant
with parallel SDDS:

1. For large-scale simulation, if one element in the lat-
tice is not parallelized, the gather-scatter procedure will
downgrade the performance of Pelegant, and the mem-
ory problem will appear. So we parallelized almost all of
frequently used elements. A warning message will be given
whenever a serial element is tracked.

2. Besides the final output of the simulation, some inter-
mediate outputs from elements have to be adapted with par-
allel I/O, which was previously done by the master. Such
I/O becomes impossible for simulations with extremely
large numbers of particles.

3. The statistics information for the particles allocated to
each slave will be calculated locally first, then the master
will calculate the global statistics results based on the in-
formation provided by the slaves. Both the communication
overhead and computation load on master are significantly
reduced compared with previous versions, where the mas-
ter gathers all the particles to perform the statistics calcula-
tion. The parallelization of the statistics calculation is not
straightforward, as elegant provides more than 100 statis-
tical parameters for the properties of the output beam. Par-
allelization of these statistical calculations requires a num-
ber of strategies to meet the different requirements of the
specific statistic.

4. Validating results through numerical comparison with
the serial version result is a challenge when simulating with
a randomly generated beam, as the number of random num-
bers generated on each of the CPUs is unpredictable, espe-
cially for a beam with some cut-off criteria in more than
one dimension. elegant provides several different types
of beam generation. For certain types of beam distribu-
tions, we were able to make elegant generate the same
random sequence as Pelegant by using the same set of
random seeds as Pelegant and generating beam sequen-
tially with several iterations. For some types of beams,
it is essentially impossible in any straightforward way for
Pelegant and elegant to generate the same sequence,
and we have to do the reconciliation by visualization.
Pelegant with parallel SDDS has been successfully

applied to accelerator research and operations at the Ad-
vanced Photon Source (APS) at Argonne National Lab-
oratory. To test the performance of the new version of
Pelegant, we chose a simulation requiring a significant
amount of I/O operations. The system being modeled is a
very large energy recovery linac (ERL) upgrade of the APS
[11]. It includes a two-pass 7-GeV linac, nine 48-m-long
undulators, and numerous transport-line magnets. Beam is
accelerated from 10 MeV to 7 GeV and then decelerated
through the same linac. Modeling includes rf acceleration
with exact time dependence, coherent synchrotron radia-
tion, longitudinal space charge, wakefields, quantum exci-
tation, and beam apertures.

There are nearly 20 watch points in the system, provid-
ing valuable information about the phase space at important
locations. In addition, statistics are computed at the exit of

every beamline element. The input beam is read from an
SDDS file. Because of these factors, this simulation would
be inefficient using the previous version of Pelegant for
a large number of simulation particles, due to both I/O and
memory bottlenecks.

Figure 1: Weak scaling test of Pelegant on NERSC’s
Cray XT4 Franklin supercomputer.

We did a weak scaling test by increasing the number
of particles in proportion to the number of CPU cores
(i.e., keeping workload per CPU same) on the Cray XT4
Franklin supercomputer at National Energy Research Sci-
entific Computing Center (NERSC). The performance test
started from 448K particles on 32 cores and ended with 115
million particles on 8192 cores. This is significant because
115 million particles is approximately the actual number of
electrons in the 19 pC beam.

From Figure 1, we can see that Pelegant achieved op-
timal performance when the number of cores is less than or
equal to 2048. When the number of cores is above 4096,
it takes a little bit more time than the test with fewer CPU
cores due to the I/O scalability limit and communication
overhead. A test with a quarter billion particles was also
conducted on the Franklin supercomputer, but we ran out
of allocated CPU hours. The simulation with a quarter bil-
lion particles is expected to be done in about 6.5 hours,
which is still reasonably good from an efficiency point of
view. Technically speaking, Pelegant should be able to
simulate a billion particles efficiently. We can also increase
the number of particles for each core (longer run time is
expected) to run Pelegant more efficiently, as the mem-
ory requirement for the weak scaling test designed above is
just under 1 percent of 2GB memory for each core on the
Franklin supercomputer.

PARALLELIZATION OF
FREQUENCY-MAP ANALYSIS

The frequency-map analysis command in elegant is
very useful to quickly identify resonances in a circular ac-
celerator. The task is to track particles with a grid of start-
ing coordinates and determine frequencies of x and y mo-
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Figure 2: Result of parallel frequency map analysis with
Pelegant.

tion. In the parallel version, the simulation is done by
distributing the starting coordinates to different CPUs and
tracking the particles simultaneously. We chose 2D domain
decomposition to parallelize this operation. As there is no
inter-process communication requirement for the tracking
of each grid point, and the final frequency map results from
all the processors are written with parallel I/O, a very good
speedup of this type of simulation can be achieved. For ex-
ample, we set the number of grid points in the x direction
to 100 and the number in the y direction to 80. The sim-
ulation was done with 3 hours and 35 minutes with serial
elegant, while it took 3.5 minutes on 100 CPUs on a clus-
ter at APS. To use this operation efficiently, a user should
choose the total grid points to be a multiple of the number
of CPUs.

Figure 2 shows the frequency map for the APS Par-
ticle Accumulator Ring (PAR) lattice as computed with
Pelegant. With this parallelized command, the user can
choose very fine grids and get the frequency-map analysis
result very quickly. This result took under 10 minutes on
an 8-core desktop.

PARALLELIZATION OF MOMENTUM
APERTURE SIMULATION

The position-dependent momentum aperture[14] is an
important aspect for storage ring optimization, as it
strongly affects the Touschek lifetime. The purpose of this
simulation is to determine the range of momentum devi-
ation for which the particle will survive as a function of
starting longitudinal position. The end of each element will
be used as the longitudinal position to scan, and hundreds
of passes must be tracked for each starting longitudinal po-
sition. For a damping ring with a large number of elements,
such as the International Linear Collider (ILC) damping
ring, it would take several days or weeks to finish one sim-
ulation on a single processor. For this type simulation, we
chose element decomposition for parallelization. The lat-
tice is partitioned to several segments that are distributed to
different CPUs. An equal number of elements are allocated

to each processor. The workload is largely independent of
where the simulation starts, so the static load balancing will
be good enough for efficiency considerations.

We did a test with 780 elements, which is a small por-
tion of elements from the ILC damping ring, on a cluster at
APS. The simulation was done in 55 hours and 50 minutes
with the serial elegant. It took 7 hours and 13 minutes
on 8 CPUs, and 17 minutes on 250 CPUs. This is another
application where Pelegant allows finishing large simu-
lations quickly enough to provide a useful design tool for
day-to-day work.

DYNAMIC APERTURE OPTIMIZATION
WITH PELEGANT

Dynamic aperture is another important aspect of storage
ring optimization. We have successfully parallelized the
line search mode to find the dynamic aperture. The line
mode searches for the aperture boundary starting from the
origin and moving outward. The exploration starts from (0,
0) to (xmax ∗ sin(θ), ymax ∗ cos(θ)), where θ takes values
from −π/2 to π/2. The area of the dynamic aperture is
given in the output file with a parameter called “Area”[15].
The easiest way to parallelize this application is to dis-
tribute the workload to different processors with different
θs. In this case, the maximum number of CPUs would be
limited to the number of lines to search. As the number
of grid points in a line is usually greater than the number
of lines to search, a better approach would be distributing
different grid points of a line for each θ to different CPUs.
First, the origin point is tracked by all the processors. If
the particle in the origin survives from tracking, then the
next nc grid points close to the origin will be distributed
to each CPU, where nc is the total number of CPUs. This
procedure will continue until a particle is lost for a grid
point, or the boundary of the searching area is reached on
a CPU. The last surviving grid point on each CPU will be
returned to the master CPU. Finally, Pelegant finds the
closest point to the origin from all the returned points, then
searches the dynamic aperture boundary point for the next
line.

The implementation mentioned above will not reach op-
timal performance as one processor has no knowledge of
whether the other processors have reached the boundary of
the aperture. But it still achieved very good efficiency when
the number of grid points in each line is a multiple of the
number of CPUs. Figure 3 shows an example the APS stor-
age ring 400-turn dynamic apertures for 20 error ensembles
using Pelegant. This took under 70 minutes on an 8-core
desktop.

CONCLUSION

The capability of Pelegant running large-scale simu-
lation has been significantly enhanced after successful in-
tegration with parallel SDDS, which eliminates the bot-
tleneck caused by serial I/O. The program shows good
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Figure 3: Dynamic aperture for 20 error ensembles for the
APS storage ring.

scalability with a very large number of CPU cores on the
Franklin supercomputer at NERSC. Simulation with hun-
dreds of millions of particles can be done efficiently within
reasonable time. Several important operations in elegant,
such as frequency map analysis, dynamic aperture search
and momentum aperture determination, can now be run on
a multi-processor desktop or cluster with Pelegant.
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BEAM FIELDS IN AN INTEGRATED CAVITY, COUPLER AND WINDOW
CONFIGURATION ∗

Stephen Weathersby, Alexander Novokhatski
(SLAC National Accelerator Laboratory, Menlo Park, California)

Abstract

In a multi-bunch high current storage ring, beam gener-
ated fields couple strongly into the RF cavity coupler struc-
ture when beam arrival times are in resonance with cav-
ity fields. In this study the integrated effect of beam fields
over several thousand RF periods is simulated for the com-
plete cavity, coupler, window and waveguide system of the
PEP-II B-factory storage ring collider. We show that the
beam generated fields at frequencies corresponding to sev-
eral bunch spacings for this case gives rise to high field
strength near the ceramic window which could limit the
performance of future high current storage rings such as
PEP-X or Super B-factories.

INTRODUCTION

The SLAC PEP-II asymmetric B-factory storage ring
collider nominally collides 1700 bunches of 3.0 A of 3 GeV
positrons on 2.0 A of 9 GeV electrons consisting of a low
energy positron storage ring (LER) situated above a high
energy electron storage ring (HER). The rings intersect at
an interaction point (IP) within the BaBar detector sustain-
ing a luminosity of 1.2× 1034cm−2s−1at the ϒ(4S) reso-
nance.

Energy lost from synchrotron radiation and wake fields
is replenished to the beam with high power RF supplied
to cavities. Klystrons generate the 1 MW high power
476 MHz CW RF which is transported through WR2100
waveguides into the cavities through a 1.8 cm thick 24.8
cm diameter ceramic window. The window holds the ultra-
high vacuum pressure required in the cavity from the near
atmosphere pressure of the waveguide while transmitting
500 kW of RF power[1, 2]. The coupler geometry places
the window at a half wavelength away from a detuned short
position of the cavity field to minimize reflected power at
the window position[1, 2]. This works well for reflected
energy at harmonics of the main generator RF frequency.
For high current storage ring B-factories and light sources,
higher order modes (HOMs) excited by the beam constitute
a significant portion of the cavity fields. The effect of such
fields on the complete cavity/coupler/window/waveguide
system is examined in this study. Fields produced by the
beam in the cavity enter the waveguide through the cavity
coupler and excite modes with fields near the window.

∗ Work supported by Department of Energy Contract DE-AC02-
76SF00515

Figure 1: Model of PEP-II cav-
ity/coupler/window/waveguide system.

RF SYSTEM MODEL

Figure 1 shows a cut plane through the full 3d model
of the PEP-II cavity/coupler/window/waveguide RF sys-
tem. A section of 1.5 meter long beam pipe is surrounded
by a cavity which is connected through a small coupling
iris into a rectangular volume which acts as a quater-wave
transformer. This volume intercepts a second rectangu-
lar volume, which functions as a filter, in which there ex-
ists a dielectric ceramic window (red) of relative permit-
tivity εr=9 and HOM absorbing ceramic tiles (blue) [6]
with a relative permittivity of εr=30 and conductivity σ =
0.918 ohm−1m−1. The model does not include the higher
order mode dampers and detuning structures attached to the
cavity. The WR2100 waveguide cuttoff frequency for the
TE10 mode is 280 MHz. The beam pipe diameter is 9.5 cm
with a cuttoff frequency of 1.8 GHz.

RF SYSTEM EIGENMODES

The resonant modes in the cav-
ity/coupler/window/waveguide RF system are identified
in two ways. One is by performing an eigenmode deter-
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Figure 2: Eigenmode electric field distributions for the complete cavity-coupler-window-waveguide system from a
MAFIA[4] calculation. Note the window is blue while the HOM absorbing tile is red in this figure.

mination with waveguide and beam ports shorted. The
second is a scattering parameter simulation in which the
waveguide port is excited with a matched broadband TE10
waveguide mode to determine a reflected and transmitted
power spectrum. The cavity resonant frequency found
from these calculations is used to set the bunch spacing in
resonance with the cavity for a time domain simulation.

Frequency domain solvers GdfidL[3] and MAFIA[4]
both find the three eigenmodes shown in figure 2. The
mode at 470 MHz exhibits substantial field near the win-
dow and in the cavity. The 464 MHz mode is the cavity
accelerating mode.

Figure 3: Reflection coefficient of the cav-
ity/coupler/window/waveguide system at the waveguide
port for a TE10 waveguide mode showing resonances
indicated near 400 MHz and 470 MHz.

Figures 3 and 4 show the reflection coefficient s11 and
phase of the system from a Gaussian frequency domain
WR2100 TE10 waveguide excitation applied at the waveg-
uide port as computed with GdfidL. This response is con-
sistent with MAFIA results for the same geometry. The re-
flection coefficient indicates resonances near 400 and 470

Figure 4: Reflection phase of the cav-
ity/coupler/window/waveguide system at the waveguide
port for a TE10 waveguide mode showing resonances
indicated near 400 MHz and 470 MHz.

MHz. They correspond to eigenmodes of the system found
from GdfidL and MAFIA and indicate that these modes
are not an artifact of boundary conditions imposed in the
eigenmode determination.

TIME DOMAIN SIMULATIONS

To simulate nominal operating conditions, one thousand
bunches are introduced into the beam pipe at a time in-
terval resonant with the 464 MHz cavity resonance us-
ing the GdfidL time domain solver, with bunch spacing at
every two 464 MHz RF buckets. Unlike normal operat-
ing conditions, no generator RF is applied at the waveg-
uide port, which is simulated with perfectly matched lay-
ers (PML)[5] to absorb with negligible reflection any out-
going fields. The beam pipe boundaries are similarly
treated with PMLs. The beam is the only source of fields
in this simulation. Fields are solved for the entire cav-
ity/coupler/window/waveguide system.

As shown in figure 5, the integrated electric field dis-
tribution after 1000 bunches shows a superposition of the
main cavity mode and another mode with a similar field
distribution to the 470 MHz mode with fields near the win-
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Figure 5: Electric fields after 1000 bunches determined
from GdfidL. Left figure exhibits buildup of cavity fields in
relation to coupler and waveguide. Right figure is same dis-
tribution auto-scaled to coupler and waveguide fields. The
coupler waveguide field distribution has geometry similar
to the 470 MHz mode of figure 2.

dow. Fields naturally build up in the cavity, but also in
the coupler, waveguide and window areas. The waveguide
and window fields exihibit the geometry of the 470 MHz
mode of figure 2 which has substantial field near the win-
dow. Figure 6 plots the maximum electric field strength at

Figure 6: Maximum electric field as a function of time near
the window after 1000 14 nC 9 mm and 13 mm bunches as
calculated by GdfidL.

the location of the window as a function of time after pas-
sage of 1000 bunches of 14 nC bunch charge with bunch
lengths 9 and 13 mm. The average field is higher for the
shorter 9 mm bunch. A maximum electric field strength of
1.4 MV/m is generated by the beam near the window for
both cases, which corresponds to nearly half of the copper
breakdown voltage taken to be 30 kV/cm. The field dis-
tribution near the window is shown in figure 7 indicating
large fields at both the center of the ceramic window and

locations near the window/waveguide interface.

Figure 7: Snapshot of electric field distribution near the
window after 1000 bunches looking from the waveguide
vacuum side.

CONCLUSIONS

For high current storage ring B-factories and light
sources, beam generated fields can compromise the perfor-
mance of an RF system. Characterizing this effect requires
modeling a complete cavity/coupler/window/waveguide
RF system. In addition to the accelerating 464
MHz cavity mode, eigenmode and scattering parame-
ter analysis performed on a model of the PEP-II cav-
ity/coupler/window/waveguide RF system has found a 470
MHz mode with significant electric fields near the window.
This mode is excited by the beam and produces a maxi-
mum electric field strength of 1.4 MV/m near the window
after 1000 14 nC bunches at a two RF bucket spacing of the
cavity resonance frequency. The average maximum elec-
tric field strength near the window increases with a shorter
bunch.
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BPM BREAKDOWN POTENTIAL IN THE PEP-II B-FACTORY
 STORAGE RING COLLIDER 

∗

Stephen Weathersby, Alexander Novokhatski
(SLAC National Accelerator Laboratory, Menlo Park, California)

Abstract

High current B-Factory BPM designs incorporate a but-
ton type electrode which introduces a small gap between
the button and the beam chamber. For achievable currents
and bunch lengths, simulations indicate that electric poten-
tials can be induced in this gap which are comparable to
the breakdown voltage. This study characterizes beam in-
duced voltages in the existing PEP-II storage ring collider
BPM as a function of bunch length and beam current.

INTRODUCTION

The SLAC PEP-II asymmetric B-factory storage ring
collider nominally collides 1700 bunches of 3.0 A of 3.1
GeV positrons on 2.0 A of 8.0-10.1 GeV electrons. It con-
sists of a low energy positron storage ring (LER) situated
above a high energy electron storage ring (HER). The rings
intersect at an interaction point (IP) within the BaBar de-
tector sustaining a luminosity of 1.2× 1034cm−2s−1at the
ϒ(4S) resonance. To monitor the beam position, hundreds
of beam position monitors (BPMs) line the beam vacuum
chamber. Each BPM consists of a round button electrode
15 mm in diameter which is mechanically press fitted to the
50 Ohm feed-through connector as shown in figure 1.

Figure 1: One quarter of the BPM geometry with and with-
out a button. Chamber length is 9 cm. Button diameter is
15 mm.

While running at shortened bunch length (9 mm) some
of the upper button electrodes heated up enough to fall off
their mounts. The upper electrode fell onto the lower elec-
trode as shown in Fig. 2 which not only shorted the un-
derlying electrode but also became a large obstacle for the
beam fields, increasing the current though the lower elec-

∗ Work supported by Department of Energy Contract DE-AC02-
76SF00515

trode. This then melted the feed-through (Fig.3) causing a
vacuum breach.

Figure 2: A button of an upper BPM fell off onto a lower
button.

Figure 3: Melted feed-through of a lower button and the
fallen upper button.

The origin of the heating is the wake field generated by
an intense short bunch passing by the vacuum chamber dis-
continuity due to a BPM button. The effect of beam fields
on a PEP-II BPM are examined[1]. Scattering parameter
analysis reveals resonant behavior near the frequency of 7
GHz. Time domain simulations show that maximum elec-
tric fields in the BPM are located at the upbeam and down-
beam extremes of the BPM button corresponding to an ex-
cited dipole resonant mode in the BPM environment. PEP-
II has had a history of arcing and vacuum bursts caused by
small geometric gaps in RF seals[3, 2]. It is natural to sus-
pect that such small gap structures in the BPM design may
cause the same problems. At a resonant condition when a

Proceedings of ICAP09, San Francisco, CA THPSC057

Lepton Accelerators and Colliders

363



BPM mode is a harmonic of a bunch spacing frequency the
fields of many bunches will be summed. Shorter bunches
and higher currents will also raise the maximum electric
field at the BPM, which can approach the breakdown volt-
age taken to be roughly 30 kV/cm in copper.

SCATTERING PARAMETER STUDIES

At LER currents of 2.4 Amperes with a bunch length
of 0.8 cm, BPM buttons became hot enough to fall off their
mounts near the IP region due to higher order mode (HOM)
heating. In order to continue uninterupted running, investi-
gations were undertaken into the impact of missing buttons
on machine performance. As shown in figure 1, the miss-
ing button leaves behind a stem onto which the button was
mounted and the cavity which housed it. In order to quan-
tify impedance presented to the beam by such a structure,
a scattering parameter analysis is performed. Using elec-
tromagnetic solver MAFIA[4], a simulated wave of known
power in the form of a lowest propagating vacuum cham-
ber mode with a Gaussian frequency distribution is intro-
duced into the geometries of figure 1. The vacuum chamber
boundaries are matched to allow transmission of this mode
in a smooth vacuum chamber without reflection. This mode
with its radial electric field has similar physical character-
istics to beam fields. Results indicate an impedance at 7
GHz for the intact button case as shown in in figure 4.

Figure 4: Fractional mode power transmitted s21, reflected
s11 and absorbed 1− s2

11− s2
21 for the IP BPM geometry of

figure 1 with button. Inset shows mode electric fields.

The missing button scenario presents essentially no
impedance in this frequency range, and machine running
in this configuration presented no heating issues. The loss
factor as computed with GdfidL[5] is lower with the miss-
ing button as shown in figure 5. With the missing button
the BPM was still functional despite an attenuated signal.

Figure 5: Wake potentials and loss factors for BPM with
and without button for a 1 C 9mm bunch. Loss factor is
lower without the button.

SINGLE BUNCH SIMULATIONS

A single 1 C 6 mm long Gaussian bunch propagating on
axis through the 0.09 m long vacuum chamber of figure 1
with the intact button excites fields in the vicinity of the
BPM. A simulation performed with the Gdfidl[5] time do-
main solver yields the electric field strength shown in figure
6 at a particular time after the passage of the bunch (0.4 ns).
The maximum fields occur in the gap between the button
and the vacuum chamber along the direction of the beam.
For this case an electric field strength of 4.59×1013 V/m is
generated. Normalized to a typical 14 nC PEP-II bunch
charge this yields a maximum 6 kV/cm. As a function
of time the maximum electric field peaks shortly after the
bunch passes as shown in figure 7, reaching 9× 1013V/m
for a 1C charge. This equates to 12.6 kV/cm for a 6 mm 14
nC PEP-II bunch.

The location of the maximum field changes with time.
Figure 8 shows the position coordinates of the maximum
field near the BPM as a function of time for a 6 mm Gaus-
sian 1 C bunch. The largest coordinate variation is in z
is which is along the beam direction. The origin z=0 cor-
responds to the BPM z position. The z variation reflects
the movement of charge back and forth between the front
and rear of the BPM with a frequency of 7 GHz. Smaller
variations are present for the x and y coordinates. The max-
imum field location correlates with the smallest part of the
gap between the button and the vacuum chamber. Figure
9 is a cross section view of the geometry which shows the
smallest gap is interior to the BPM cavity.

MULTI-BUNCH SIMULATIONS

To properly simulate B-factory operating conditions
multiple bunches are required to traverse the vacuum cham-
ber at the nominal bunch spacing of 4.2 ns, corresponding
to two 476 MHz RF buckets. Initially a simulated Gaussian
line charge of 1 C traverses the BPM vacuum chamber in
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Figure 6: Electric field strength at the button as a function
of time just after the arrival of one 9 mm 1 C bunch as com-
puted with Gdfidl. Maximum field strength is 4.59×1013

V/m near the gap between the button and vacuum chamber
interior to the button housing. Beam direction is along the
z-axis.

Figure 7: Maximum electric field strength at the BPM as a
function of time for one 6 mm Gaussian 1 C bunch. The
14 GHz oscillation correlates with a 7 GHz half cycle of
electric field maximum at two ends of the button. At t = 0
the head of the bunch arrives at the upbeam end of the BPM
chamber.

a time domain simulation. The resulting electric and mag-
netic fields are computed and saved at a time when a sub-
sequent bunch is about to enter the computational domain.
This saved field distribution forms the intial conditions for
the next bunch simulation.

Figure 10 shows the maximum field strength at two par-
ticular times as a function of the number of 9 mm bunches.
After four bunches have past, the field strengths appear to
approach an equilibrium.

The maximum field at the BPM depends on the bunch
frequency and bunch length. The PEP-II RF frequency is

Figure 8: Coordinates of the maximum electric field
strength in the vicinity of the BPM. z = 0 is the position of
the BPM along the z-axis beam direction. The maximum
field position oscillates between the upbeam and down-
beam parts of the button.

Figure 9: BPM cross sectional view. Maximum electric
field strength at the BPM correlates with minimum gap
spacing (~1 mm) between BPM button and vacuum cham-
ber.

nominally 476 MHz and the nominal bunch spacing was
2 RF buckets or 4.2 ns. Changes in the RF frequency can
move the bunch spacing closer to a BPM resonance. Figure
11 shows the maximum BPM electric field strength vs time
for various RF frequencies and bunch lengths. The average
field generated by four 9 mm bunches at various RF fre-
quencies near the nominal 476 MHz is shown in figure 12.

A peak field of 1.2× 1014 V/m for the shortest 4 mm
1C bunch at 1904 MHz translates to about 16.8 kV/cm at
the nominal 14 nC bunch. Shorter bunches produce higher
maximum electric fields as shown in figure 13 for the case
of fixed 1904 MHz RF frequency.
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Figure 10: Maximum electric field at the button as a func-
tion of bunch number at two particular times for 1 C, 9 mm
long Gaussian bunches. Solid trace is 2.1 ns, dashed trace
is 4.2 ns. Fields have equilibrated after about 4 bunches.

Figure 11: Maximum electric field at the button as a func-
tion of time during the passing of the fourth consecutive
1 C, at various RF frequencies and bunch lengths. Peak
fields of 1.2×1014 V/m are achieved at 1904 MHz for the
shortest bunch length of 4 mm.

CONCLUSION

Fields from short bunches can approach the breakdown
voltage for the PEP-II B-factory button style BPM at a cer-
tain bunch spacing and bunch current. The position of the
maximum electric field is internal to the BPM at the small-
est gap along the beam direction and oscillates at 7 GHz
between the upbeam and downbeam surfaces. The nominal
PEP-II 14 nC, 9 mm bunch length at 4.2 ns bunch spacing
will generate up to 6 kV/cm after about 4 bunches which is
a factor of 5 below the 30 kV/cm copper breakdown volt-
age.
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RECYCLER LATTICE FOR PROJECT X AT FERMILAB * 

Meiqin Xiao, David E. Johnson, FNAL, Batavia, IL 60510, USA 
Abstract 

Projext X is an intense proton source that provides 
beam for various physics programs. The source consists 
of an 8 GeV H- superconducting linac that injects into the 
Fermilab Recycler where H- are converted to protons. 
Protons are provided to the Main Injector and accelerated 
to desired energy (in the range 60 - 120 GeV) or extracted 
from the Recycler for the 8 GeV program. A long drift 
space is needed to accommodate the injection chicane 
with stripping foils. The Recycler is a fixed 8 GeV kinetic 
energy storage ring using permanent gradient magnets. A 
phase trombone straight section is used to control the 
tunes. In this paper, the existing FODO lattice in the 
RR10 straight section being converted into doublet will be 
described. Due to this change, the phase trombone straight 
section has to be modified to bring the tunes to the 
nominal working point. A toy lattice of recycler ring is 
designed to simulate the end-shim effects of each 
permanent gradient magnet to add the flexibility to handle 
the tune shift to the lattice during the operation of 1.6E14 
with KV distribution of the proton beam to give ~0.05 of 
space charge tune shift. The comparison or the 
combinations of the two modification ways for the 
Recycler ring lattice will be presented also in this paper. 

INTRODUCTION 
Project X [1] is an intense proton source that provides 

beam for various physics programs. The source consists 
of an 8 GeV H- superconducting linac that injects into the 
Recycler where H- are converted to protons. Protons are 
provided to the Main Injector and accelerated to desired 
energy or extracted from the Recycler for the 8 GeV 
program.  The Recycler ring (shown in Fig. 1) is a fixed 8 
GeV kinetic energy storage ring using permanent gradient 
magnets. RR10 is the straight section for placing the 
injection system and RR60 is a phase trombone straight 
section used to control the tunes. 

 

 
            
                Fig. 1: Outline of the Recycler ring 

 
Currently, In the recycler lattice for Project Run II, 

RR30 contains the symmetric electron cooling insert 
between 305 and 307 with remainder of the Recycler 
straight section is roughly a FODO section, but not 
periodic, shown in Fig. 2. This section will be replaced by 
a FODO lattice for Project NOvA [2], shown in Fig. 3. 
Notice that there are 3 quads in each D-D half-cell in 
RR30 due to permanent magnet quad strength limitations. 
To match the FODO straight section into the ring and 
keep the current tunes (25.425,24.415) , the lattice 
functions reach a peak value of 80 m. 

 

 
Fig.2: RR30 in the Recycler lattice for Project Run II 

 

 
Fig.3: RR30 in the Recycler lattice for Project NOvA 
 
The Recycler lattice for Project X will be based on The 

lattice for NOvA. Keep RR30 straight section as FODO 
cell but would lower the beta functions as the rest of the 
ring. We will also keep using extraction line from the 
Recycler to the Main Injector. 

___________________________________________  

*Operated by Fermilab Research Alliance, LLC under contract No. DE-
AC02-07CH11359 with the United States Department of Energy. 
#meiqin@fnal.gov 
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RR10 STRAIGHT SECTION OF THE  
RECYCELER LATTICE FOR PROJECT X 

The inject system for convert H- to proton in Recycler is 
a multi turn stripping system which will be placed in 
RR10 straight section. Fig. 4 illustrates the injection 
Chicane with stripping foils    

 

 
 
Fig.5: Injection system in RR10 straight section 
 
To accommodate this, a 21.5 m long drift space is 
designed by converting the existing FODO lattice in 
RR10 straight section into a doublet, shown in Fig. 6.1 
Meanwhile, constrain the βx ,βy< 55 m in RR30,  the 
Recycler lattice become as shown in Fig.6.2. The tunes 
now become (25.445, 24.134). 

 
Fig. 6.1: Doublet in RR10 section 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.2: Recycler lattice with a doublet in RR10 and 

RR30 constrained the βx ,βy< 55 m 

SOLUTIONS TO THE NOMINAL TUNES 
RR 60 straight section is a phase trombone for Recycler 

tune control. It contains 32 permanent quads in 4 D-D 
FODO cells, and 36 trim quads in 9 families which are 
installed in the drift space of FODO cells, the basic 
settings of their currents are 0. Fig. 7 illustrates the two 
types of the quads. 

 

 
 
Fig. 7: Permanent quads and trim quads in RR60 phase 

trombone section 

The First Solution 
We kept the rest of the Recycler ring unchanged, but 

only varied the strengths of permanent quads in RR60 
phase trombone straight section with the constrains: 

 Keep αx,y, βx,y at two ends of the phase trombone 
RR60 unchange  

 βx,βy<55 m 
 Phase advance set to compensate the tune 

difference from the nominal tunes 
We obtained (from MAD fitting): 

 
 
 

when 
 
 
 

Then we used trim quads to re-adjust base tunes. We 
obtained the tunes Qx=25.425,Qy=24.415 when  
 

 
 
 
 
 
 
 
 
 

 
 
by a Mathematica program[3], which will be used in an 
application program for on-line tuning.  
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Fig. 8: Recycler lattice for Project X. Only the trombone section was modified. 

 

 
 
 

Fig. 9: Toy Recycler lattice. End-shim of each permanent gradient magnet in arc cell was tweaked so that the arc cell 
phase advance was slightly changed. 
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Notice that the currents of QT604 and QT606 are around 
3 Amps. Actually the trim quads current could be changed 
up to 5 Amps. But the larger the currents, the larger the 
non-linear contribution to the operation program. With 
this solution, the recycler lattice for Project X shown in 
Fig. 8.  

The Second Solution 
To add the flexibility to handle the space charge tune 

shift (~0.05) due to the beam of 1.6e14 with KV 
distribution,  a toy lattice of the Recycler ring was built to 
simulate the end-shim effects of each permanent gradient 
magnet.  It was found that the amount of the end-shim 
field tweaked is limited in order to eliminate the large 
beta-wave in the lattice. We then varied the permanent 
quads in RR60 again to obtain the nominal tunes (25.425, 
24.415) with zero the trim quads current. 

In the toy lattice: 
 The phase advances of the arc cell were slightly 

changed from μx =85.39o, μy =79.22o to  μx 

=84.45o, μy =79.95o  
 The phase advances of the normal straight 

section cell keep the same μx =86.51o, μy =80.34o  
 The phase advances of the dispersion cell were 

changed slightly to μx =87.85o, μy =89.83o to fit 
from arc cell to straight section cell.   

 The phase advances of the RR60 trombone 
section straight section now are : μx =97.53o, μy 

=115.29o 
This means: 

 The amount of the end-shim tweaked is about 
1% of the body quads field in horizontal and 
0.5% in vertical planes. 

 The amount of the strength of the permanent 
quads in RR60 is increased about 4% in 
horizontal and 13% in vertical planes. 

 The currents of the trim quads in RR60 are 0 . 
 

The toy lattice of the Recycler ring for Project X is shown 
in Fig. 9.  
 
Apparently the second solution is more flexible to handle 
the space charge tune shift, but it needs a lot of work to 
adjust end-shim contributions. Technically it is doable.  

CONCLUSION 
Several considerations have been taken in modifying 

Recycler lattice for Project X. The Recycler lattice is 
manageable for Project X with some uncertainties on a. 
Beta functions on injection point(stripping foils) b. 
Nominal tunes considering the tune shift due to space 
charge effect. Toy lattice will be used do beam dynamics 
studies with space charge effects for looking for best 
nominal tunes. 
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ARRAY BASED TRUNCATED POWER SERIES PACKAGE* 

Lingyun Yang† , NSLS-II, BNL, Upton, NY 11973, USA

Abstract

Truncated Power Series Algebra (TPSA) or Differential
Algebra (DA) package has been a fundamental component
for many accelerator physics simulation code, including
FPP/PTC, MAD-X, BMAD and Tracy. We have developed
a new algorithm to extend the ability of TPAS to handle
problems with both large number of variables and high or-
der. This package is implemented in C++ language with
operator overloading, and has been integrated into PTC and
MAD-X.

INTRODUCTION

Truncated Power Series Algebra (TPSA) or Differential
Algebra (DA) package is a tool for Taylor series manipula-
tion [1, 2]. It follows certain mathematical rules to do arith-
matics among the Taylor series and can be used for map
generating, sensitivity study, automatic differentiation and
many other applications. Since it was implemented by Dr.
Berz, it has been a fundamental component for many ac-
celerator physics simulation codes, including FPP/PTC [4],
MAD-X [3], BMAD and Tracy.

The package in Ref. [1] has two limitations:

• Limited index space at hign v, e.g. 39 variables can
only handle up to first order1.

• Without operator overloading, Applying DA to an ex-
isting code will need many careful translation, and
introduce temporary variable. (think about translate
x = (a + b) ∗ c/d).

We have developed a new TPSA package in C++ re-
cently, with a new algorithm which can expand the ability
to both high number of variables and high orders. It is also
more user friendly and the speed are better than the FOR-
TRAN 77 implementation.

ALGORITHM

The Taylor series of an given function f(x1, · · · , xd) is
given as:

∗Work supported by the Director, Office of Science, U. S. Department
of Energy under Contract No. DE-AC02-05CH11231.

† lyyang@bnl.gov
1We can use more index function again, 3 instead of 2, to relax the

limit from (n + 1)v/2 to (n + 1)v/3 , but the performance will be lower.

f(x1, · · · , xd) =
∞∑

n1=0

· · ·
∞∑

nd=0

(x1 − a1)n1 · · · (xd − ad)nd

n1! · · ·nd!(
∂n1+···+ndf

∂xn1
1 · · · ∂xnd

d

)

(1)

Given the analytic form of f(x1, · · · , xd), we can cal-
culate the coefficient of Taylor series expansion, fx1 , fx2 ,
fx1x2 , up to any order precisely. This can be done with fi-
nite difference method, but when going to high order, the
truncation error and linear approximation may be a main
obstacle. TPSA package uses a set of rule, which is com-
plete for a field of real number and basic arithmetics. The
rules can be found in Ref. [2], and we summerize here:

• Addition/Substraction. It is done between only corre-
sponding terms (coefficients with same order or pat-
tern of differentiation).

• Multiplication with constant. It scales all the coeffi-
cients.

• Multiplication with another series. The order of dif-
ferentiation are added up for each variable. The new
coefficient are added up to the new location with new
pattern of order.

• Reciprocal. The coefficient is gained from the pattern
of Taylor expansion of 1/x.

• Basic functions. Such as sin(x),cos(x),
√

x are just
deduced from their coefficients of Taylor series expan-
sion together with the multiplication of two series.

As we can see that +/- are trivial, and every other calcu-
lation is depending on multiplication of two TPAS series.
While for multiplication the key part is how to arrange the
storage of each coefficients and locate them quickly.

IMPLEMENTATION

A TPSA vector with v independent variables, each up to
d degrees, will have C(v + d, d) or C(v + d, v) elements,
where C(n + v, v) are binomial coefficients defined as

C(v + d, v) ≡
(

v + d

v

)
=

(
v + d

d

)
=

(v + d)!
v!d!

From this we can see that, for the length of a TPSA vector,
the order and number of variables are symmetric. A code
can do high order with low number of variables should be
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Table 1: (v, d) Limited by Certain Number of Monomials
N , e.g. 1k, 1M , 1G, 1T .

d

v < 210 < 220 < 230 < 240 < 250

(k) (M) (G) (T) (P)

4 10 68 398 ≈ 240/4 ∗ 4! ≈ 250/4 ∗ 4!
6 6 26 92 300 962
8 4 16 46 115 282

10 4 12 30 67 139
12 3 10 23 46 88
14 3 9 19 36 64
16 3 8 16 30 51
18 2 7 15 26 42
20 2 7 13 23 36
30 2 5 10 16 23
40 2 4 8 13 18
50 1 4 7 11 16
60 1 4 7 10 14
70 1 3 6 9 13
80 1 3 6 9 12
90 1 3 6 8 11

100 1 3 5 8 11

able to do low order with high number of variables. Some
examples are shown in Table 1. Where given the maximal
number of terms in Taylor series, the table tells how many
variables and upto which order the code can store.

The Taylor series expansion of a multi-variable function
up to certain order has a polynomial structure, we write as
(v, d), where v is the number of variables, and d is the high-
est order considered. It is stored as a vector, where each
element represents one term in Taylor Series Expansion.

In order to speed up the multiplication, we build up a
look up table P . The element P [i, j] is the location to save
v[i] × v[j]. A look up table for the above multiplication, 2
variables, order up to 3rd order looks like Table. 2

Table 2: Hash table for TPSA multiplication (2, 3)

0 1 2 3 4 5 6 7 8 9

1 0 0 1 2 3 4 5 6 7 8 9

∂
∂x 1 1 3 4 6 7 8

∂
∂y 2 2 4 5 7 8 9

∂2

∂x∂x 3 3 6 7

∂2

∂x∂y 4 4 7 8

∂2

∂y∂y 5 5 8 9

∂3

∂x∂x∂x 6 6

∂3

∂x∂x∂y 7 7

∂3

∂x∂y∂y 8 8

∂3

∂y∂y∂y 9 9

We should first notice that Table. 2 is symmetric, i.e.
P [i, j] = P [j, i], therefore only half of the storage is
needed. Secondly, since we are truncating at certain or-
der, the table is not squared but a step-like. The real size of

this matrix T (v, d) is

T (v, d) =
d∑

k=0

(
v + k − 1

k

)
N(v, d − k)

≡
d∑

k=0

(
v + k − 1

k

)(
v + d − k

d − k

)

=
d∑

k=0

(
v − 1 + k

v − 1

)(
v + d − k

v

)

=
(

2v + d

d

)

(2)

where N(v, d) is the length of TPSA vector (v, d). From
Table. 1 we can easily find the limit on (v, d) when using
this hash table.

The above hash table can solve problems both low order
but high number of variables and high order but small num-
ber of variables, but for both high order and large number
of variables, the hash table becomes too large to store.

We can arrange the Taylor series in a way such that, the
new location of multiplication of two TPSA coefficients
can be identified recursively. The number of recursion is
only linear with number of variables in this TPSA. There-
fore we used a small hash table H which has a size of v×v.
This is not a constraint at all when comparing with the size
of TPSA vectors. The location of derivative pattern bk is

C(bk) =
v∑

i=1

H(i,
i∑

j=v

bk,j)

where H(v, d) is the hash function. One example is shown
in Table 3. The derivative pattern bk is a vector represents
the order of derivative to each variable. For example, the
index of (1 2 1 0) is 46 from Table 3:

C[ (0 0 1 0) ∗ (1 2 0 0) ] = C(1 2 1 0)
=H(1, 0) + H(2, (0 + 1))+

H(3, (0 + 1 + 2)) + H(4, (0 + 1 + 2 + 1))
=H(1, 0) + H(2, 1) + H(3, 3) + H(4, 4)
=0 + 1 + 10 + 35
=46

(3)

The overall complexity is O(v) when v ≈ d and
(

d
v+d

)
is too large to fit in memory.

Once the multiplication is well implemented, the rest is
just a trivial application of it to Taylor series expansion.
More detailed formula can be found in Ref. [2, 1].

BENCHMARK

This new package is compared with F77 implementation
of TPSA (DA), and shown in Fig. 1. This speed test is
very coarse, and only used system tools of Linux platform.
Our conclusion here is that the new TPSA in C++ is faster
than the F77 implementation, and with more features and
abilities.
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Table 3: Hash Table H(i, j)

j
i 0 1 2 3 4 5

1 0 1 2 3 4 5
2 0 1 3 6 10 15
3 0 1 4 10 20 35
4 0 1 5 15 35 70

1 2 3 4 5 6 7 8 9 10
(v,d)

10-3

10-2

10-1

100

101

102

T
im

e
 [

se
c]

F77(4,d)
F77(v,3)
C++(4,d)
C++(v,3)
C++(4,d)*15
C++(v,3)*15

Figure 1: Performance comparison of F77 and C++ ver-
sion.

CODE EXAMPLE

The following code shows a simple example calculating
Taylor series of f(x1, x2) = 1/(x1 + x2). With operator
overloading the code is very straight forward. The package
introduces a new type called TPSA, and trys to mimic the
native C++ types, such as double, string. I am trying to
make it transparent to users.

# i n c l u d e <i o s t r e a m>
2 # i n c l u d e <ct ime>

# i n c l u d e ” t p s a . hh ”
4

us ing namespace s t d ;
6

i n t main ( )
8 {

/ / number o f v a r i a b l e , degr ee
10 c o n s t uns igned char cnv = 3 , cnd = 1 0 ;

12 / / f i r s t i n d e p e n d e n t v a r i a b l e , w i t h i n d e x 0
/ / i n i t i a l i z e d as 1 . 0

14 TPSA<double , cnv , cnd> a ( 1 . 0 L , 0 ) ;
/ / 2nd , as 2 . 0

16 TPSA<double , cnv , cnd> b ( 2 . 0 L , 1 ) ;
/ / 3 rd , as 3 . 0 , n o t us ed

18 / / TPSA<double , cnv , cnd> c ( 3 . 0 L , 2 ) ;

20 TPSA<double , cnv , cnd> aa ; / / normal v a r i a b l e

22 aa = 1 . 0 / ( a+b ) ;

24 c o u t << aa << e n d l ; / / p r i n t o u t t h e r e s u l t .

26 / / more example :
/ / s i n ( aa ) , cos ( aa ) , s q r t ( aa ) , t a n ( aa ) .

28

re turn 0 ;
30 }

The output of FORTRAN version TPSALib.f and C++
version is in Table. 4.

Table 4: Output of FORTRAN and C++ version

FORTRAN C++
I COEFFICIENT ORDER EXPONENTS

1 0.33333333333333E+00 0 0 0 0
2 -0.11111111111111E+00 1 1 0 0
3 -0.11111111111111E+00 1 0 1 0
4 0.37037037037037E-01 2 2 0 0
5 0.74074074074074E-01 2 1 1 0
6 0.37037037037037E-01 2 0 2 0
7 -0.12345679012346E-01 3 3 0 0
8 -0.37037037037037E-01 3 2 1 0
9 -0.37037037037037E-01 3 1 2 0
10 -0.12345679012346E-01 3 0 3 0
11 0.41152263374486E-02 4 4 0 0
12 0.16460905349794E-01 4 3 1 0
13 0.24691358024691E-01 4 2 2 0
14 0.16460905349794E-01 4 1 3 0
15 0.41152263374486E-02 4 0 4 0

V Base
------------------------
3.3333333333e-01 0 0 0

-1.1111111111e-01 1 0 0
-1.1111111111e-01 0 1 0
3.7037037037e-02 2 0 0
7.4074074074e-02 1 1 0
3.7037037037e-02 0 2 0

-1.2345679012e-02 3 0 0
-3.7037037037e-02 2 1 0
-3.7037037037e-02 1 2 0
-1.2345679012e-02 0 3 0
4.1152263374e-03 4 0 0
1.6460905350e-02 3 1 0
2.4691358025e-02 2 2 0
1.6460905350e-02 1 3 0
4.1152263374e-03 0 4 0

...
...

56 0.56450292694768E-05 10 10 0 0
57 0.56450292694768E-04 10 9 1 0
58 0.25402631712645E-03 10 8 2 0
59 0.67740351233721E-03 10 7 3 0
60 0.11854561465901E-02 10 6 4 0
61 0.14225473759081E-02 10 5 5 0
62 0.11854561465901E-02 10 4 6 0
63 0.67740351233721E-03 10 3 7 0
64 0.25402631712645E-03 10 2 8 0
65 0.56450292694768E-04 10 1 9 0
66 0.56450292694768E-05 10 010 0

5.6450292695e-06 10 0 0
5.6450292695e-05 9 1 0
2.5402631713e-04 8 2 0
6.7740351234e-04 7 3 0
1.1854561466e-03 6 4 0
1.4225473759e-03 5 5 0
1.1854561466e-03 4 6 0
6.7740351234e-04 3 7 0
2.5402631713e-04 2 8 0
5.6450292695e-05 1 9 0
5.6450292695e-06 010 0
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Abstract 
It is well-known that a charged-particle beam is 

Coulomb crystallized in the low-temperature limit. The 
feasibility of beam crystallization in a storage ring has 
been raised by the recent progress in beam cooling 
techniques and in understanding of the behavior of 
crystalline beams. To go a step further, we here 
investigate the extraction and transport process of 
crystalline ion beams, employing the molecular dynamics 
simulation technique. The dependence of the stability on 
the lattice of the extraction beam line is explored to show 
whether various crystalline beams can be transported 
stably without collapse of the ordered structure. 

INTRODUCTION 
Applying a dissipative force to a charged-particle beam 

circulating in a storage ring, we can reduce the emittance 
of the beam and even expect the occurrence of a type of 
phase transition. In fact, the beam finally exhibits an 
ordered structure at the low-temperature limit if some 
physical conditions are fulfilled. Such an ultimate state of 
the beam is known as a crystalline beam [1-3] whose 
spatial structure is determined by the line density [4]. 
When the line density is sufficiently low, a one-
dimensional (1D) string is formed. By increasing the line 
density, we can transform the string into a two-
dimensional (2D) zigzag crystal and, then, eventually into 
a three-dimensional (3D) shell crystal. In theory, the 
emittance of a crystalline beam is zero (except for 
quantum noise) at the low-temperature limit [5, 6].  

In order to form and maintain various kinds of 
crystalline beams, the following two conditions must be 
satisfied [7, 8]; the storage ring must be operated below 
the transition energy for crystal formation, and the 
average betatron phase advance must be less than 127 
degrees per lattice period for crystal maintenance. In an 
ideal crystalline state, the Coulomb repulsive force 
perfectly balances with the periodic external focusing 
force of the ring and random interparticle collisions 
disappear. The crystalline state is stable and thus lasts 
long even after the cooling force is removed [9]. As 
reviewed in Ref. [10], according to many advanced 
theoretical and numerical works, it is now considered that 
crystalline beams can exist in a storage ring, at least, in 
theory. 

Here, consider the extraction of a crystalline beam from 
a storage ring. The crystalline beam is additionally kicked 
by an extraction device such as an electrostatic deflector 
or a septum magnet and then transported along the 
(usually, nonperiodic) beam line. The periodicity of the 

focusing force is lost, and thus the above-mentioned 
maintenance condition of crystals is not fulfilled any 
more. We expect that the emittance of the crystalline 
beam is increased, or even the crystalline structure of the 
beam can be destroyed by the extraction process. In order 
to verify this expectation, molecular dynamics (MD) 
simulations were carried out. The present MD simulation 
results show the stability of extracted crystals is 
consistent with that defined by the maintenance condition 
of crystals in a ring. 

SIMULATION PARAMETERS 
For the present simulation study, the MD code 

“CRYSTAL” is employed [11]. As an extraction device, 
an electrostatic field can be assumed as well as a normal 
dipole magnetic field. The equation of motion is 
integrated by the code in a symplectic manner. In the 
present MD study, the beam is assumed to be bunched by 
a longitudinal radio-frequency field in the ring. The 
Coulomb forces among particles in a bunch are directly 
calculated. For more detail information on the MD code, 
see Ref. [10]. 

As a storage ring lattice, the parameters of S-LSR [12] 
have been adopted. The operating point of the ring 
assumed here satisfies the above two conditions. We have 
also considered several different test extraction lines that 
have different transverse phase advances from the 
extraction device to an ideal target position (length: 7.8 
m) in order to see how the stability of the extracted beam 
depends on the lattice design. The main simulation 
parameters are summarized in Table 1. Here, we show 
only two cases of high and low phase advances. 

MOLECULAR DYNAMICS RESULTS 

High-phase-advance lattice 
For extraction, a dipole magnetic magnet or 

Table 1: Main simulation parameters. 
Ring lattice S-LSR 
Ion species 40 keV 24Mg+ 
Superperiodicity 6 
Circumference 22.56 m 
Ring tunes (x, y, z) (1.44, 1.44, 0.15) 

Extraction device 
Electrostatic or 

dipole magnetic field 
Beam line length 7.8 m 

Phase advances of 
the beam line [deg] 

(110, 81), (161, 85),  
(174, 101), (310, 167), 

and, (363, 181) 
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Figure 1: Beta and dispersion functions of the 
extraction beam line with a high phase advance. The 
ring betatron tunes have been set at 1.44 in both 
transverse directions. The horizontal and vertical 
phase advances from the extraction magnet to the 
target are, respectively, 363x  degrees and 181y 

degrees. 

 

 
Figure 2: Side views of the bunched beam (a) in the 
ring before extraction, and (b) at the end of the 
extraction beam line (s = 7.8 m). The lattice of the 
beam line in Fig. 1 has been assumed. Each circle
corresponds to a single 24Mg+ ion with the kinetic 
energy of 40 keV. The number of ions in a bunch is 
1000. The crystalline structure in the upper panel is a 
two-shell in the middle of the bunch. 

 
Figure 3: Transverse single-particle orbits of four 
ions in the beam in Fig. 2. The solid and dashed lines 
represent the horizontal and vertical orbits, 
respectively. The origin of the path length s has been 
set at the entrance of the extraction device. The 
negative value of s means the path in the ring.  

electrostatic deflector with an extraction angle of 30 
degrees and a bending radius of 0.57 m has been assumed 
in the middle of the straight section in S-LSR. The beta 
and dispersion functions are shown in Fig. 1. The ring 
tune has been set at 1.44 in both transverse directions in 
the present case. The horizontal and vertical phase 
advances, 

x  and 
y , from the extraction position to the 

target are, respectively, 363 degrees and 181 degrees in 
the case of magnetic extraction. The transverse average 

phase advance  2 2 2x y      is 287 degrees. 

Figure 2 shows the spatial distributions of a bunched 
beam composed of 1000 24Mg+ ions before extraction (i.e., 
in the ring) and after extraction. The whole of the bunch 
has been extracted in a single turn. As is clearly seen in 
Fig. 2, the ordered configuration has been completely lost 
at the end of the beam line. The final transverse 
normalized rms emittance is 114 10  m.rad, which is two 
orders of magnitude higher than that in the ring.  

The single-particle orbits of four ions arbitrarily picked 
up from the beam in Fig. 2 are shown in Fig.3. Because of 
the strong focusing of the extraction dipole magnet sitting 
at s = 0 m, the horizontal orbit of each particle crosses the 
design orbit. This behaviour is different from the fact that 
single-particle orbits of the crystalline beam in the ring 
are proportional to each other and oscillate not around the 
design orbit but around a certain position [5]. We have 
also confirmed that the emittance abruptly blows up at 
this position. 

At sufficiently low line densities where the 
corresponding crystalline structure is a 1D string or a 2D 
zigzag in the ring, the situation has changed; the 
crystalline structure of a string or a zigzag can be 
maintained at the end of the beam line after extraction, 
while an emittance increase is observed. Figure 4 depicts 
the final spatial distribution of the very-low-intensity 1D 
string crystalline beam. The final normalized rms 
emittance of the beam is still very low ( 193 10  m.rad). 

The bunch length of the string becomes larger by about 
20% because of no rf focusing in the beam line. The beam 
exhibits the horizontal head-tail oscillation induced by the 
momentum dispersion in the beam line [13]. 

We have replaced the extraction dipole magnet by an 
electrostatic deflector, and found that the stability of 
crystals is unchanged.  

Proceedings of ICAP09, San Francisco, CA THPSC061

Beam Cooling

375



 
Figure 7: Transverse single-particle orbits of four 
ions in the beam in Fig. 6. The solid and dashed lines 
represent the horizontal and vertical orbits, 
respectively. The orbits of the same four ions as Fig. 
3 are plotted. (The orbits of each particle for s < 0 are 
the same as those in Fig. 3.) 

 
Figure 6: Real-space distribution of the bunched 
beam at the end of the beam line in the case of low 
phase advance. The initial distribution in the ring is 
the same as that in Fig. 2. 

 
Figure 5: Beta and dispersion functions of the 
extraction beam line with a low-phase advance. The 
ring tunes have been set again at 1.44 in both 
directions. The horizontal and vertical phase 
advances from the extraction magnet to the target are, 
respectively, 110x  degrees and 81y   degrees. 

 
Figure 4: Real-space distribution of a bunched string 
crystal at the end of the beam line after the
extraction. The number of ions in a bunch is six. 

Low-phase-advance lattice 
The lattice functions of the low-phase-advance case are 

shown in Fig. 5. In this example, an extraction angle from 
the ring has been reduced from 30 deg to 7.5 deg to 
weaken the focusing effect seen in the previous case. In 
addition, the beam is not tightly focused to keep the phase 
advance reasonably low. The transverse average phase 
advance   is 96 degrees in this case. 

The final spatial distribution of the beam after 
extraction is shown in Fig.6. Unlike the previous case of 
the high-phase-advance lattice (Fig. 2), the ordered 
structure of the 3D crystal can be still seen after the 
extraction. The final emittance of the beam is 123 10  
m.rad. As shown in Fig. 7, the single-particle orbits of the 

beam do not cross the design orbit (although they are not 
exactly proportional to each other).  

At low line densities, it is also possible to extract 1D 
strings and 2D zigzag crystals stably. 

DISCUSSION AND SUMMARY 
We have investigated the extraction and transport of 

various bunched crystalline beams using the MD 
simulation technique. Once a crystalline beam is extracted 
from a storage ring, an increase of the emittance is 
inevitable. This is due to the non-periodic focusing 
provided by the extraction device and the beam line. 
However, the crystalline structures of a string or a zigzag 
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Figure 8: Final transverse rms emittance of the 
extracted 3D crystalline beam vs. the transverse 
phase advance of the beam line  . The number of 
ions in a bunch are 1000 and 10000, respectively. In 
the lowest-phase-advance case ( 96   deg), the
ordered structure of the beams has been maintained 
at the end of the beam line.  

can be maintained after the extraction in spite of the 
emittance increase. The ordered configuration of 3D 
crystals easily melts away when the phase advance of the 
beam line is large. A reduction of the betatron phase 
advance of the extraction beam line can suppress the 
undesirable emittance increase, as shown in Fig. 8. 
According to the present MD simulation results, it is 
possible to maintain the 3D ordered configuration when 
the average phase advance of the beam line is less than 
127 degrees, similarly to the maintenance condition in the 

ring. For long-distance transport of crystalline beams, it 
may be necessary to make the lattice of the transport line 
periodic including the matching of dispersion.  

REFERENCES 
[1] J. P. Schiffer and P. Kienle, Z. Phys. A 321, 181 

(1985). 
[2] A. Rahman and J. P. Schiffer, Phys. Rev. Lett. 57, 

1133 (1986). 
[3] J. Wei, X.-P. Li, and A. M. Sessler, Phys. Rev. Lett. 

73, 3089 (1994). 
[4] R. W. Hasse and J. P. Shiffer, Ann. Phys. (N.Y.) 203, 

419 (1990). 
[5] H. Okamoto, Phys. Plasmas 9, 322 (2002). 
[6] H. Okamoto, H. Sugimoto, and Y. Yuri, to be 

published in Journal of Plasma and Fusion Research 
[7] J. Wei, H. Okamoto, and A. M. Sessler, Phys. Rev. 

Lett. 80, 2606 (1998). 
[8] X.-P. Li, H. Enokizono, H. Okamoto, Y. Yuri, A. M. 

Sessler, and J. Wei, Phys. Rev. ST Accel. Beams 9, 
034201 (2006). 

[9] J. Wei and A. M. Sessler, in Proceedings of 5th 
European Particle Accelerator Conference EPAC’96, 
1996, p.1179. 

[10] H. Okamoto, H. Sugimoto, Y. Yuri, M. Ikegami, and 
J. Wei, in these proceedings. 

[11] Y. Yuri and H. Okamoto, Phys. Rev. Lett. 93, 
204801 (2004). 

[12] A. Noda, M. Ikegami, and T. Shirai, New J. Phys. 8, 
288 (2006). 

[13] H. Okamoto, Y. Yuri, and K. Okabe, Phys. Rev. E 67 
046501 (2003). 

 

Proceedings of ICAP09, San Francisco, CA THPSC061

Beam Cooling

377



THPSC061 Proceedings of ICAP09, San Francisco, CA

Beam Cooling

378



Proceedings ICAP09 – San Francisco, CA

List of Authors
Italic papercodes indicate primary authors

— A —

Ackermann, W. TH1IODN01
Adams, D.J. TH3IODN02, THPSC041
Adelmann, A. WE3IOPK01, THPSC037
Ahrens, L. A. WE3IODN03, THPSC010
Allen, C.K. WE3IODN01
Ames, F. THPSC012
Andonian, G. THPSC003, THPSC003
Asova, G. THPSC004

— B —

Baartman, R.A. TH3IOPK04, THPSC012
Bandura, L.L. THPSC019
Barnard, J.J. TH1IOPK04
Barth, W.A. TU1IOPK02, TH4IOPK02
Bartolini, R. TU3IOPK03, TU3IOPK03
Bassi, G. TH2IOPK01
Batygin, Y.K. THPSC006
Bayer, W.B. TU1IOPK02
Beebe-Wang, J. WE3IODN03
Bengtsson, J. TU3IOPK04
Berz, M. MO4IODN05
Bi, Y.J. WE3IOPK01
Boine-Frankenheim, O. TU2IOPK02
Bollen, G. THPSC006
Borland, M. WE3IOPK02, TH2IOPK04,

FR1IOPK09, THPSC050,
THPSC054

Brown, K.A. WE3IODN03, THPSC010
Bruhwiler, D.L. THPSC013
Bylinskii, I.V. THPSC012

— C —

Cai, Y. MO3IOPK04
Campbell, C. THPSC006
Candel, A.E. WE4IOPK02
Cary, J.R. WE2IOPK05
Chao, Y.-C. THPSC012
Cheng, G. TU1IOPK04
Chu, P. WE3IODN01
Clemente, G. TU1IOPK02, TH4IOPK02
Cohen, R.H. TH1IOPK04
Corbett, W.J. THPSC023
Cormier-Michel, E. TU4IOPK02, THPSC013
Cousineau, S.M. TU1IOPK01
Cowan, B.M. THPSC013

— D —

Dahl, L.A. TU1IOPK02
Danilov, V.V. TU1IOPK01
Davidson, R.C. TH1IOPK04

De Gersem, H. TU3IODN05, TH4IOPK03
Dechoudhury, S. THPSC012
Decyk, V.K. WE2IOPK03
Dehler, M.M. WE4IOPK04, THPSC017
Dong, X.W. TH2IOPK04
Dorf, M. TH1IOPK04
Dragt, A. MO3IOPK03
Durant, M.A. WE2IOPK05

— E —

Ellison, J.A. MO3IOPK04, TH2IOPK01
Emery, L. FR1IOPK09, THPSC050
Erdelyi, B. TH4IODN02, THPSC018,

THPSC019, THPSC036
Esarey, E. THPSC013
Evtushenko, P. THPSC020

— F —

Faltens, A. TH1IOPK04
Fang, S.X. TH4IODN04
Fawley, W.M. TU4IOPK02
Ferracin, P. TU3IODN03
Fitterer, M. THPSC030
Flisgen, T. THPSC011
Forck, P. TU1IOPK02
Franke, S. TH1IODN01
Friedman, A. TH1IOPK04
Friedman, S.A. WE2IOPK03
Fujita, Y. MO4IODN03
Furman, M.A. TU4IOPK02

— G —

Galambos, J. WE3IODN01
Geddes, C.G.R. TU4IOPK02, THPSC013
Gerhard, P. TU1IOPK02
Gjonaj, E. MO4IODN02
Goh, G. THPSC012
Gonin, I.G. THPSC026
Gorlov, T.V. TH3IOPK03, THPSC052
Groening, L. TU1IOPK02, TH4IOPK02
Grote, D.P. TU4IOPK02, TH1IOPK04
Guo, W. WE3IOPK02, FR1IOPK09

— H —

Heinemann, K.A. TH2IOPK01
Henestroza, E. TH1IOPK04
Hillenbrand, S. THPSC030
Hiller, N. THPSC030
Hofler, A.S. THPSC020
Hofmann, A. THPSC030
Hofmann, I. TU1IOPK02

List of Authors 379



Proceedings ICAP09 – San Francisco, CA

Holmes, J.A. TU1IOPK01, THPSC052
Huttel, E. THPSC030

— I —

Ikegami, M. TH1IOPK02, TH2IODN01
Ineichen, Y. WE3IOPK01
Ivanov, V. THPSC021

— J —

Jameson, R.A. THPSC031
Jeon, D. TU1IOPK02
Johnson, D.E. THPSC058
Jones, B. TH3IODN02
Jones, F.W. TH3IOPK04
Judin, V. THPSC030
Jung, J.-Y. TH1IOPK04

— K —

Kabel, A.C. WE4IOPK02
Kaganovich, I. TH1IOPK04
Kaiser, M. TU1IOPK02
Kawaguchi, H. MO4IODN03
Khodyachykh, S. THPSC004
Kim, H.J. THPSC022
Klein, M. THPSC030
Ko, K. WE4IOPK02
Koch, S. TU3IODN05, TH4IOPK03
Kolomiets, A. TH4IOPK02
Kornilov, V. TU2IOPK02
Koscielniak, S.R. THPSC012
Krasilnikov, M. THPSC004
Kraus, C. WE3IOPK01
Kruger, S.E. WE2IOPK05
Kwan, J.W. TH1IOPK04

— L —

Latina, A. THPSC026
Laxdal, R.E. THPSC012
Lee, E. P. TH1IOPK04
Lee, L. WE4IOPK02
Lee, M.J. THPSC023
Leemans, W. THPSC013
Leitner, M. TH1IOPK04
Li, X.S. TU4IODN01
Li, Z. WE4IOPK02
Lin, F. MO4IOPK04
Liu, Y.D. TH3IOPK01
Liu, Z. TU1IOPK01
Luccio, A.U. MO4IOPK04, THPSC010
Lund, S.M. TH1IOPK04
Lunin, A. THPSC026, THPSC047

— M —

MacKay, W.W. THPSC010

Maier, M.T. TU1IOPK02
Makino, K. MO4IODN05
Malitsky, N. MO4IOPK04
Manikonda, S.L. MO4IODN05, THPSC018
Marchetto, M. THPSC012
Marhauser, F. TU1IOPK04, THPSC020
Markovik, A. THPSC028
Marsching, S. THPSC030
Marti, F. THPSC006
Maus, J.M. THPSC031
Merminga, L. THPSC012
Mickat, S. TU1IOPK02
Milosic, T. TU1IOPK02
Minaev, S. TH4IOPK02
Mitchell, C.E. MO3IOPK03
Morishita, T. TH2IODN01
Morris, J. WE3IODN03
Morrissey, D.J. THPSC006
Morse, W. MO4IOPK04
Müller, A.-S. THPSC030
Mustapha, B. MO4IOPK02, FR1IOPK01

— N —
Naik, V. THPSC012
Nemesure, S. WE3IODN03
Ng, C.-K. WE4IOPK02
Ng, E.G. TU4IODN01
Nishimura, H. THPSC035
Nissen, E.W. THPSC036
Nolen, J.A. MO4IOPK02
Novokhatski, A. THPSC056, THPSC057

— O —
Ohmi, K. WE4IODN01, TH2IOPK02
Oide, K. TH2IOPK02
Okamoto, H. TH1IOPK02
Okuda, N. MO3IODN01
Okuno, H. THPSC037
Onderwater, C.J. MO4IOPK04
Orlov, Y.F. MO4IOPK04
Orzhekhovskaya, A. TH4IOPK02
Ostroumov, P.N. MO4IOPK02, FR1IOPK01

— P —
Pang, G.K. THPSC006
Paul, K. THPSC013
Pelaia, T.A. WE3IODN01
Pine, B.G. TH3IODN02, THPSC041
Pöplau, G. MO4IOPK05, THPSC011,

THPSC028

— R —
Rao, Y.-N. TH3IOPK04
Ratzinger, U. TH4IOPK02
Reiche, S. THPSC003

380 List of Authors



Proceedings ICAP09 – San Francisco, CA

Riehl, G.A. TU1IOPK02
Robert-Demolaize, G. WE3IODN03
Robin, D. FR1IOPK02
Romanov, G.V. THPSC047
Roser, T. THPSC010
Ruelas, M. THPSC003
Russell, S.J. WE3IOPK01

— S —
Sajaev, V. WE3IOPK02, FR1IOPK09
Sako, H. TH2IODN01
Sannibale, F. FR1IOPK02
Satogata, T. WE3IODN03
Schauer, M. WE2IOPK01
Schempp, A. THPSC031
Schietinger, T. THPSC049
Schmidt, F. WE3IOPK04
Schnepp, S. MO4IODN02
Schoefer, V. WE3IODN03, THPSC010
Schroeder, C.B. THPSC013
Schussman, G.L. WE4IOPK02
Schwarz, S. THPSC006
Semertzidis, Y. MO4IOPK04
Sen, T. THPSC022
Shang, H. WE3IOPK02, THPSC050,

THPSC054
Sharp, W. M. TH1IOPK04
Shasharina, S.G. WE2IOPK05
Shen, G.B. TH2IODN01
Shibata, K. TH2IOPK02
Shishlo, A.P. WE3IODN01, TH3IOPK03,

THPSC052
Singh, T.V. WE2IOPK03
Smale, N.J. THPSC030
Soliday, R. WE3IOPK02, THPSC050,

THPSC054
Solyak, N. THPSC026
Sonnad, K.G. THPSC030
Steier, C. FR1IOPK02
Stephan, F. THPSC004
Stowell, M.L. TH1IODN04
Suetsugu, Y. TH2IOPK02
Sugimoto, H. TH1IOPK02

— T —
Talman, R.M. MO4IOPK04
Tepikian, S. WE3IODN03
Thoma, P. WE2IOPK01
Tian, K. TU1IOPK04
Tiede, R. TU1IOPK02, TH4IOPK02
Tsakov, I.I. THPSC004

— U —
Uriot, D. TU1IOPK02

— V —
van Rienen, U. MO4IOPK05, THPSC011,

THPSC028
Vay, J.-L. TU4IOPK02, TH1IOPK04
Veitzer, S.A. WE2IOPK05
Verzilov, V.A. THPSC012
Vormann, H. TU1IOPK02

— W —
Waldron, W.L. TH1IOPK04
Wan, W. FR1IOPK02
Wang, H. TU1IOPK04
Wang, N. TH3IOPK01
Wang, S. TH4IODN04
Wang, Y. WE3IOPK02, THPSC050,

THPSC054
Warnock, R.L. MO3IOPK04
Warsop, C.M. TH3IODN02, THPSC041
Weathersby, S.P. THPSC056, THPSC057
Wei, J. TH1IOPK02
Weiland, T. MO4IODN02, TU3IODN05,

TH4IOPK03, TH1IODN01
White, D.A. TH1IODN04
Williamson, R.E. TH3IODN02, THPSC041
Wipf, S.G. WE4IOPK04
Wu, J. THPSC023

— X —
Xiao, A. WE3IOPK02, TH2IOPK04,

FR1IOPK09, THPSC054
Xiao, M. THPSC058
Xu, J. MO4IOPK02
Xu, S.Y. TH4IODN04

— Y —
Yakovlev, V.P. THPSC026
Yamazaki, I. TU4IODN01
Yan, F. THPSC012
Yang, J.J. WE3IOPK01, TH2IODN04,

THPSC037, TH2IODN04
Yang, L. FR1IOPK02, THPSC059
Yao, H.J. TH2IODN04
Yaramyshev, S.G. TU1IOPK02, TH4IOPK02
Yokoya, K. MO3IODN01
Yuri, Y. TH1IOPK02, THPSC061

— Z —
Zhang, T.J. TH2IODN04
Zhang, Y. WE4IODN03
Zhou, D.M. TH2IOPK02
Zvyagintsev, V. THPSC012

List of Authors 381



Proceedings ICAP09 – San Francisco, CA

382 List of Authors



Proceedings ICAP09 – San Francisco, CA

Institutes List

ANL
Argonne
∙ Bandura, L.L.
∙ Borland, M.
∙ Dong, X.W.
∙ Emery, L.
∙ Manikonda, S.L.
∙ Mustapha, B.
∙ Nolen, J.A.
∙ Ostroumov, P.N.
∙ Sajaev, V.
∙ Shang, H.
∙ Soliday, R.
∙Wang, Y.
∙ Xiao, A.
∙ Xu, J.

BNL
Upton, Long Island, New York
∙ Ahrens, L. A.
∙ Beebe-Wang, J.
∙ Bengtsson, J.
∙ Brown, K.A.
∙ Guo, W.
∙ Lin, F.
∙ Luccio, A.U.
∙ MacKay, W.W.
∙ Malitsky, N.
∙ Morris, J.
∙ Morse, W.
∙ Nemesure, S.
∙ Robert-Demolaize, G.
∙ Roser, T.
∙ Satogata, T.
∙ Schoefer, V.
∙ Semertzidis, Y.
∙ Shen, G.B.
∙ Tepikian, S.
∙ Yang, L.

CEA
Gif-sur-Yvette
∙ Uriot, D.

CERN
Geneva
∙ Schmidt, F.

CIAE
Beijing
∙ Bi, Y.J.
∙ Yang, J.J.
∙ Yao, H.J.
∙ Zhang, T.J.

CLASSE
Ithaca, New York
∙ Orlov, Y.F.
∙ Talman, R.M.

CST
Darmstadt
∙ Schauer, M.
∙ Thoma, P.

DAE/VECC
Calcutta
∙ Dechoudhury, S.
∙ Naik, V.

DESY Zeuthen
Zeuthen
∙ Asova, G.
∙ Khodyachykh, S.
∙ Krasilnikov, M.
∙ Stephan, F.

Diamond
Oxfordshire
∙ Bartolini, R.

FZK
Eggenstein
∙ Smale, N.J.
∙ Huttel, E.

Fermilab
Batavia
∙ Gonin, I.G.
∙ Johnson, D.E.
∙ Kim, H.J.
∙ Latina, A.
∙ Lunin, A.
∙ Romanov, G.V.
∙ Sen, T.
∙ Solyak, N.
∙ Xiao, M.
∙ Yakovlev, V.P.

GSI
Darmstadt
∙ Barth, W.A.
∙ Bayer, W.B.
∙ Boine-Frankenheim, O.
∙ Clemente, G.
∙ Dahl, L.A.
∙ Forck, P.
∙ Gerhard, P.
∙ Groening, L.
∙ Hofmann, I.

Institutes List 383



Proceedings ICAP09 – San Francisco, CA

∙ Kaiser, M.
∙ Kornilov, V.
∙ Maier, M.T.
∙ Mickat, S.
∙ Milosic, T.
∙ Orzhekhovskaya, A.
∙ Riehl, G.A.
∙ Vormann, H.
∙ Yaramyshev, S.G.

HU/AdSM
Higashi-Hiroshima
∙ Okamoto, H.
∙ Sugimoto, H.

IAP
Frankfurt am Main
∙ Jameson, R.A.
∙ Maus, J.M.
∙ Ratzinger, U.
∙ Schempp, A.
∙ Tiede, R.

IHEP Beijing
Beijing
∙ Fang, S.X.
∙ Liu, Y.D.
∙Wang, N.
∙Wang, S.
∙ Xu, S.Y.
∙ Zhang, Y.

INRNE
Sofia
∙ Tsakov, I.I.

ITEP
Moscow
∙ Kolomiets, A.
∙ Minaev, S.

IUCF
Bloomington, Indiana
∙ Liu, Z.

JAEA/J-PARC
Tokai-Mura, Naka-Gun, Ibaraki-Ken
∙ Morishita, T.
∙ Sako, H.

JAEA/Kansai
Kyoto
∙ Ikegami, M.

JAEA/TARRI
Gunma-ken
∙ Yuri, Y.

JAI
Oxford
∙ Bartolini, R.

JLAB
Newport News, Virginia
∙ Cheng, G.
∙ Evtushenko, P.
∙ Hofler, A.S.
∙ Marhauser, F.
∙ Tian, K.
∙Wang, H.

KEK
Ibaraki
∙ Ikegami, M.
∙ Ohmi, K.
∙ Oide, K.
∙ Shibata, K.
∙ Suetsugu, Y.
∙ Yokoya, K.
∙ Zhou, D.M.

KIT
Karlsruhe
∙ Fitterer, M.
∙ Hillenbrand, S.
∙ Hiller, N.
∙ Hofmann, A.
∙ Judin, V.
∙ Klein, M.
∙ Marsching, S.
∙ Müller, A.-S.
∙ Sonnad, K.G.

KU Leuven
Kortrijk
∙ De Gersem, H.

KVI
Groningen
∙ Onderwater, C.J.

LANL
Los Alamos, New Mexico
∙ Russell, S.J.

LBNL
Berkeley, California
∙ Cormier-Michel, E.
∙ Esarey, E.
∙ Faltens, A.
∙ Fawley, W.M.

384 Institutes List



Proceedings ICAP09 – San Francisco, CA

∙ Ferracin, P.
∙ Furman, M.A.
∙ Geddes, C.G.R.
∙ Henestroza, E.
∙ Jung, J.-Y.
∙ Kwan, J.W.
∙ Lee, E. P.
∙ Leemans, W.
∙ Leitner, M.
∙ Li, X.S.
∙ Ng, E.G.
∙ Nishimura, H.
∙ Robin, D.
∙ Sannibale, F.
∙ Schroeder, C.B.
∙ Steier, C.
∙ Vay, J.-L.
∙Waldron, W.L.
∙Wan, W.
∙ Yamazaki, I.
∙ Yang, L.

LLNL
Livermore, California
∙ Barnard, J.J.
∙ Cohen, R.H.
∙ Friedman, A.
∙ Grote, D.P.
∙ Lund, S.M.
∙ Sharp, W. M.
∙ Stowell, M.L.
∙White, D.A.

MSU
East Lansing, Michigan
∙ Berz, M.
∙ Makino, K.

Muons, Inc
Batavia
∙ Ivanov, V.

Muroran Institute of Technology, Department of Electrical
and Electronic Engineering
Muroran
∙ Fujita, Y.
∙ Kawaguchi, H.

NSCL
East Lansing, Michigan
∙ Batygin, Y.K.
∙ Bollen, G.
∙ Campbell, C.
∙ Marti, F.
∙ Morrissey, D.J.
∙ Pang, G.K.
∙ Schwarz, S.

Northern Illinois University
DeKalb, Illinois
∙ Erdelyi, B.
∙ Nissen, E.W.

ORNL
Oak Ridge, Tennessee
∙ Allen, C.K.
∙ Cousineau, S.M.
∙ Danilov, V.V.
∙ Galambos, J.
∙ Gorlov, T.V.
∙ Holmes, J.A.
∙ Jeon, D.
∙ Pelaia, T.A.
∙ Shishlo, A.P.

PPPL
Princeton, New Jersey
∙ Davidson, R.C.
∙ Dorf, M.
∙ Kaganovich, I.

PSI
Villigen
∙ Adelmann, A.
∙ Dehler, M.M.
∙ Ineichen, Y.
∙ Kraus, C.
∙ Reiche, S.
∙ Schietinger, T.
∙Wipf, S.G.

RIKEN Nishina Center
Wako
∙ Okuno, H.

RadiaBeam
Marina del Rey
∙ Andonian, G.
∙ Ruelas, M.

Rostock University, Faculty of Computer Science and
Electrical Engineering
Rostock
∙ Flisgen, T.
∙ Markovik, A.
∙ Pöplau, G.
∙ van Rienen, U.

SFU
Burnaby, BC
∙ Goh, G.

Institutes List 385



Proceedings ICAP09 – San Francisco, CA

SLAC
Menlo Park, California
∙ Cai, Y.
∙ Candel, A.E.
∙ Chu, P.
∙ Corbett, W.J.
∙ Kabel, A.C.
∙ Ko, K.
∙ Lee, L.
∙ Lee, M.J.
∙ Li, Z.
∙ Ng, C.-K.
∙ Novokhatski, A.
∙ Schussman, G.L.
∙Warnock, R.L.
∙Weathersby, S.P.
∙Wu, J.

STFC/RAL/ISIS
Chilton, Didcot, Oxon
∙ Adams, D.J.
∙ Jones, B.
∙ Pine, B.G.
∙Warsop, C.M.
∙Williamson, R.E.

TEMF, TU Darmstadt
Darmstadt
∙ Ackermann, W.
∙ Franke, S.
∙ Gjonaj, E.
∙ Koch, S.
∙Weiland, T.

TRIUMF
Vancouver
∙ Ames, F.
∙ Baartman, R.A.
∙ Bylinskii, I.V.
∙ Chao, Y.-C.
∙ Jones, F.W.
∙ Koscielniak, S.R.
∙ Laxdal, R.E.
∙ Marchetto, M.
∙ Merminga, L.
∙ Rao, Y.-N.
∙ Verzilov, V.A.
∙ Yan, F.
∙ Zvyagintsev, V.

TU Darmstadt
Darmstadt
∙ Schnepp, S.

TUB
Beijing
∙Wei, J.
∙ Yang, J.J.

Tech-X
Boulder, Colorado
∙ Bruhwiler, D.L.
∙ Cary, J.R.
∙ Cowan, B.M.
∙ Durant, M.A.
∙ Kruger, S.E.
∙ Paul, K.
∙ Shasharina, S.G.
∙ Veitzer, S.A.

The University of Liverpool
Liverpool
∙ Bassi, G.

UCLA
Los Angeles, California
∙ Andonian, G.
∙ Decyk, V.K.
∙ Friedman, S.A.
∙ Singh, T.V.

UMD
College Park, Maryland
∙ Dragt, A.
∙ Mitchell, C.E.

UNM
Albuquerque, New Mexico
∙ Ellison, J.A.
∙ Heinemann, K.A.

University of Tokyo
Tokyo
∙ Okuda, N.

386 Institutes List



REGISTRATIONS AS OF AUGUST 25, 2009 
 
Abell Dan Tech-X Corp. 
Ackermann Wolfgang Technische Universitaet Darmstadt 
Adelmann Andreas PSI 
Alexahin Yuri Fermilab 
Amundson James Fermilab 
Asova Galina DESY 
Austin Travis Tech-X Corporation 
Bartolini Riccardo Diamond Light Source 
Bassi Gabriele University of Liverpool 
Batygin Yuri NSCL 
Bauer Carl University of Colorado, Boulder 
Bell George Tech-X Corp. 
Bengtsson Johan Brookhaven National Laboratory 
Berz Martin Michigan State University 
Bethel Wes LBNL 
Boehnlein Amber DOE/OHEP 
Boman Erik Sandia National Labs 
Borland Michael Argonne National Laboratory 
Brown Kevin Brookhaven National Laboratory 
Cai Yunhai SLAC 

Campos Pinto 
Martin CNRS and IRMA (University of Strasbourg) 

Candel Arno SLAC National Accelerator Laboratory 
Canon Shane NERSC/LBL 
Chao Yu-Chiu TRIUMF 
Clemens Markus Helmut-Schmidt-University 
Clemente Gianluigi GSI 
Cowan Benjamin Tech-X Corporation 
D'Angelo John USAF/AFRL 
De Gersem Herbert Katholieke Universiteit Leuven 
Decyk Viktor UCLA 
DeFord John STAAR/AWR Corporation 
Dehler Micha Paul Scherrer Institut 
Di Mitri Simone Sincrotrone Trieste 

Proceedings of   ICAP09 – San Francisco, CA

Participants List 387



Dimitrov Dimitre Tech-X Corp. 
Ding Yuantao SLAC 
Dohlus Martin DESY 
Dragt Alex Physics Department 
Ellison James UNM 
Erdelyi Bela NIU/ANL 
Ferracin Paolo Lawrence Berkeley National Lab 
Fiuza Karen UMER - UMD 
Franke Sylvain Technische Universitaet Darmstadt 
Friedman Alex LLNL & LBNL 
Fulginiti Aurelia CST of America 
   
Ge Lixin SLAC 
Geddes Cameron LBNL 
Geng Huiping SLAC 
Gorlov Timofey ORNL 
Groening Lars GSI Darmstadt 
Grote Dave LLNL 
Haenichen Lukas Technische Universitaet Darmstadt 
Heinemann Klaus Dept. Mathematics and Statistics 
Henshaw William Lawrence Livermore National Lab 
Hess Mar Indiana University Cyclotron Facility 
Hofler Alicia Jefferson Lab 
Holmes Jeffrey Oak Ridge National Laboratory 
Huang Chengkun UCLA/LANL 
Ikegami Masanori KEK 
Ineichen Yves ETH/PSI 
Ivanov Valentin Muons, Inc. 
Johnstone Carol Fermilab 
Jones Frederick TRIUMF 
Kabel Andreas SLAC National Accelerator Laboratory 
Kase Edwin Tech-X Corporation 
   
Kawaguchi Hideki Muroran Institute of Technology 
Kim Hyung Fermilab 
Koch Stephan Technische Universitaet Darmstadt 

Proceedings of   ICAP09 – San Francisco, CA

388 Participants List



Kornilov Vladimir GSI Darmstadt 
Krawczyk Frank Los Alamos National Laboratory 
Lau Thomas Technische Universitaet Darmstadt 
Limberg Torsten DESY 
Lin Fanglei Brookhaven National Lab 

Lin Ming-
Chieh Tech-X Corporation 

Liu Yu Dong Institute of High Energy Physics, P. R. China 
Lunin Andrei Fermilab 
Ma Kwan-Liu University of California at Davis 
Makino Kyoko Michigan State University 
Manikonda Shashikant Argonne National Laboratory 
Markovik Aleksandar Rostock University 
Marsching Sebastian Forschungszentrum Karlsruhe 
Maus Johannes IAP Uni Frankfurt 
Mayes Christopher Cornell University 
Messmer Peter Tech-X Corp 
Michel Estelle LBNL 
Min Misun Argonne National Laboratory 
Mustapha Brahim Argonne National Laboratory 
Ng Cho-Kuen SLAC National Accelerator Laboratory 
Nieter Chet Tech-X Corporation 
Nishimura Hiroshi LBNL 
Ohmi Kazuhito KEK 
Okamoto Hiromi Hiroshima University 
Okuda Natsuki University of Tokyo 
Park Chong Shik Indiana University 
Paul Kevin Tech-X Corporation 
Pieloni Tatiana Ecole Polytechnique Federale de Lausanne 
Pine Ben STFC 
Poeplau Gisela Rostock University 
Prior Christopher STFC/RAL 
Qiang Ji LBNL 
Rawat Vineet SLAC National Accelerator Laboratory 
Reiche Sven Paul Scherrer Institut 
Roberts Tom Muons, Inc. 

Proceedings of   ICAP09 – San Francisco, CA

Participants List 389



Rowland James Diamond Light Source 
Ruelas Marcos RadiaBeam Technologies 
Rumolo Giovanni CERN 
Russenschuck Stephan CERN 
Ryne Robert LBNL 
Samuel F. Martins GoLP/IPFN - Inst. Sup. Tecnico 
Schauer Martin CST of America 
Schietinger Thomas Paul Scherrer Institut 
Schmidt Frank CERN 
Schnepp Sascha Graduate School CE, TU Darmstadt 
Schoefer Vincent Brookhaven National Laboratory 
Schussman Greg SLAC 
Shalf John LBNL/NERSC 
Shang Hairong Argonne National Lab 
Shasharina Svetlana Tech-X Corporation 
Shishlo Andrei ORNL 
Smithe David Tech-X Corporation 
Solyak Nikolay Fermi National Accelerator Laboratory 
Stern Eric Fermi National Accelerator Laboratory 
Takeda Hiroyuki RIKEN Nishina Center 
Tian Kai Jefferson lab 
Tse Eric SLAC NAL 
Valishev Alexander Fermilab 
Vay Jean-Luc Lawrence Berkeley National Laboratory 
Vorobiev Leonid Fermi National Accelerator Laboratory 
Walstrom Peter Defense Threat Reduction Agency 
Wang Haipeng Jefferson Lab 
Wang Nanbor Tech-X Corporation 
Wang Yusong Argonne National Laboratory 
Warnock Robert SLAC National Accelerator Laboratory 
Weathersby Stephen SLAC 
Weiland Thomas Technische Universitaet Darmstadt 
Werner Gregory University of Colorado 
White Daniel LLNL 
Wittberger Marcus Paul Scherrer Institute / ETH Zurich 
Xiao Aimin APS 

Proceedings of   ICAP09 – San Francisco, CA

390 Participants List



Xiao Liling SLAC 
Xiao Meiqin Fermilab 
Xu Jin ANL 
Xu Shouyan IHEP 
Yamazaki Ichitaro LBNL 
Yang Jianjun THU / CIAE 
Yang Lingyun LBNL 
Yelick Kathy NERSC / LBNL / UC Berkeley 
Yuri Yosuke Japan Atomic Energy Agency 
Zhang Yuan Institute of High Energy Physics 
Zhou Demin KEK 
	  

Proceedings of   ICAP09 – San Francisco, CA

Participants List 391


	Preface
	Foreword
	Contents
	Committees
	Pictures
	MO3IOPK03 – Calculation of Realistic Charged-Particle Transfer Maps
	MO3IOPK04 – Construction of Large-Period Symplectic Maps by Interpolative Methods
	MO4IOPK02 – Highly Scalable Numerical Methods for Simulation of Space Charge Dominated Beams
	MO4IOPK04 – Overview of (Some) Computational Approaches in Spin Studies
	MO4IOPK05 – An Efficient 3D Space Charge Routine with Self-Adaptive Discretization
	MO3IODN01 – Impedance Estimation by Parabolic Partial Differential Equation for Rectangular Taper
	MO4IODN02 – Applying an hp-Adaptive Discontinuous Galerkin Scheme to Beam Dynamics Simulations
	MO4IODN03 – Portable High Performance Computing for Microwave Simulation by FDTD/FIT Machines
	MO4IODN05 – High-Order Differential Algebra Methods for PDEs Including Rigorous Error Verification
	TU1IOPK01 – Computational Beam Dynamics for a High Intensity Ring: Benchmarking with Experiment in the SNS
	TU1IOPK02 – Comparison of Different Simulation Codes with UNILAC Measurements for High Beam Currents
	TU1IOPK04 – Benchmarking Different Codes for the High Frequency RF Calculation
	TU2IOPK02 – Simulation Studies & Code Validation For The Head-Tail Instability With Space Charge
	TU3IOPK03 – Progress with Understanding and Control of Nonlinear Beam Dynamics At The Diamond Storage Ring
	TU3IOPK04 – Design and Control of Ultra Low Emittance Light Sources
	TU4IOPK02 – Novel Methods for Simulating Relativistic Systems Using an Optimal Boosted Frame
	TU3IODN03 – Modeling Techniques for Design and Analysis of Superconducting Accelerator Magnets
	TU3IODN05 – Transient, Large-Scale 3D Finite Element Simulations of the SIS100 Magnet
	TU4IODN01 – A Parallel Hybrid Linear Solver for Accelerator Cavity Design
	WE2IOPK01 – Hard- and Software-based Acceleration Techniques for Field Computation
	WE2IOPK03 – Graphical Processing Unit-Based Particle-In-Cell Simulations
	WE2IOPK05 – VizSchema - A Standard Approach for Visualization of Computational Accelerator Physics Data
	WE3IOPK01 – The Object Oriented Parallel Accelerator Library (OPAL), Design, Implementation and Application
	WE3IOPK02 – Recent Progress and Plans for the Code ELEGANT
	WE3IOPK04 – Update on MAD-X and Future Plans
	WE4IOPK02 – High-Fidelity Injector Modeling with Parallel Finite Element 3D Electromagnetic PIC Code Pic3P
	WE4IOPK04 – Beam Dynamics In The Low Energy Part Of The Low Emittance Gun (LEG)
	WE3IODN01 – The XAL Infrastructure for High Level Control Room Applications
	WE3IODN03 – Improvement Plans for the RHIC/AGS On-Line Model Environments
	WE4IODN01 – Beam-Beam Simulations for KEKB and Super-B Factories
	WE4IODN03 – Recent Advances of Beam-Beam Simulation in BEPCII
	TH1IOPK02 – Modeling of Ultra-cold and Crystalline Ion Beams
	TH1IOPK04 – Developing the Physics Design for NDCX-II, a Unique Pulse-Compressing Ion Accelerator
	TH2IOPK01 – Self Field of Sheet Bunch: A Search for Improved Methods
	TH2IOPK02 – Simulation of Microwave Instability in LER of KEKB And SuperKEKB
	TH2IOPK04 – Study of Beam-Scattering Effects for a Proposed APS ERL Upgrade
	TH3IOPK01 – The Simulation of the Electron Cloud Instability in BEPCII and CSNS/RCS
	TH3IOPK03 – Modeling Laser Stripping with the Python ORBIT Code
	TH3IOPK04 – Using Geant4-based Tools to Simulate a Proton Extraction and Transfer Line
	TH4IOPK02 – End To End Simulations of the GSI Linear Accelerator Facility
	TH4IOPK03 – Aperture and Beam-Tube Models for Accelerator Magnets
	TH1IODN01 – A Fast and Universal Vlasov Solver for Beam Dynamics Simulations in 3D
	TH1IODN04 – Discretizing Transient Curent Densities in the Maxwell Equations
	TH2IODN01 – Simulation and Commissioning of J-PARC Linac Using the IMPACT Code
	TH2IODN04 – Physics Problem Study For A 100 MeV, 500 Microamp H- Beam Compact Cyclotron
	TH3IODN02 – Space Charge Simulations for ISIS
	TH4IODN02 – An Integrated Beam Optics-Nuclear Processes Framework in COSY Infinity and Its Applications to FRIB
	TH4IODN04 – The Study on the Space Charge Effects of RCS/CSNS
	FR1IOPK01 – Optimization Algorithms for Accelerator Physics Problems
	FR1IOPK02 – Application of Multiobjective Genetic Algorithm in Accelerator Physics
	FR1IOPK09 – Application of Direct Methods of Optimizing Storage Ring Dynamic and Momentum Apertures
	THPSC003 – RadTrack: A User-Friendly, Modular Code to Calculate the Emission Processes from High-Brightness Electron Beams
	THPSC004 – Tomographic Reconstruction of a Beam Phase Space from Limited Projection Data
	THPSC006 – Particle-In-Cell Simulation of Electron-Helium Plasma in Cyclotron Gas Stopper
	THPSC010 – Including Partial Siberian Snakes Into the AGS Online Model
	THPSC011 – A Fast Point to Point Interaction Model for Charged Particle Bunches By Means of Nonequispaced Fast Fourier Transform (NFFT)
	THPSC012 – TRIUMF-VECC Electron Linac Beam Dynamics Optimization
	THPSC013 – Design of 10 GeV Laser Wakefield Accelerator Stages with Shaped Laser Modes
	THPSC017 – Multipole Effects in the RF Gun for the PSI Injector
	THPSC018 – An Application of Differential Algebraic Methods and Liouville's Theorem: Uniformization of Gaussian Beams
	THPSC019 – COSY Extensions for Beam-Material Interactions
	THPSC020 – Optimizing SRF Gun Cavity Profiles in a Genetic Algorithm Framework
	THPSC021 – Computational Models forChannel Plate Simulations
	THPSC022 – Recent Improvement of Tracking Code BBSIMC
	THPSC023 – A New Model-Independent Method for Optimization of Machine Settings and Electron Beam Parameters
	THPSC026 – RF-Kick Caused by the Couplers in the ILC Acceleration Structure
	THPSC028 – Computation of a Two Variable Wake Field Induced by an Electron Cloud
	THPSC030 – A High-Level Interface for the ANKA Control System
	THPSC031 – PteqHI Development and Code Comparing
	THPSC035 – Tracy#
	THPSC036 – Modeling Single Particle Dynamics in Low Energy and Small Radius Accelerators
	THPSC037 – Possibility of Round Beam Formation in RIBF Cyclotrons
	THPSC041 – Set Code Development and Space Charge Studies on ISIS
	THPSC047 – Complete RF Design of the HINS RFQ with CST MWS and HFSS
	THPSC049 – H5PartRoot - A Visualization And Post-Processing Tool For Accelerator Simulations
	THPSC050 – Parallel SDDS: A Scientific High-Performance I/O Interface
	THPSC052 – The Python Shell for the ORBIT Code
	THPSC054 – Recent Progress on Parallel ELEGANT
	THPSC056 – Beam Fields in an Integrated Cavity, Coupler, and Window Configuration
	THPSC057 – BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider
	THPSC058 – Recycler Lattice for Project X at Fermilab
	THPSC059 – Array Based Truncated Power Series Package
	THPSC061 – Molecular Dynamics Simulation of Crystalline Beams Extracted from a Storage Ring

	Appendices
	 List of Authors
	 Institutes List
	 Participants List




