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Abstract

An adaptive high order discontinuous Galerkin (DG)
scheme for performing beam dynamics simulations is pre-
sented. We elaborate onh- andp-adaptations, the former
modifying the actual size of computational elements and
the latter the dimension of the associated approximation
space. The efficiency and stability of the adaptation tech-
niques are emphasized. The scheme is applied in order to
performhp-adaptive beam dynamics simulations. We com-
pare the results with the analytical solution and demon-
strate that the adaptive scheme requires significantly less
computational resources for obtaining a certain accuracy.

INTRODUCTION

The problem of self-consistent simulations of short rel-
ativistic particle bunches in long accelerator structuresex-
hibits a pronounced multi-scale character. The adequate
resolution of the THz space charge fields excited by short
ultra-relativistic bunches requires mesh spacings in the mi-
crometer range. On the other hand, the discretization of
complete accelerator sections using such fine meshes re-
sults in a prohibitive number of Degrees of Freedom (DoF).
Due to the spatial concentration of the particles and the ex-
cited space charge fields, the application of time-adaptive
mesh refinement is an emerging idea. We reported on the
implementation of time-adaptive mesh refinement for the
Finite Integration Technique (FIT) [1]. Based on this work,
an adaptive discontinuous Galerkin (DG) code was imple-
mented. Within the DG method, the electromagnetic field
solution is approximated elementwise, employing a set of
basis functions. This provides two options for adapting the
local accuracy of the DG approximation. First, the size
of the grid elements can be varied. This is referred to as
h-adaptation. Additionally, the maximum order of the em-
ployed basis functions can be modified, which is referred
to asp-adaptation. Combining both options yields anhp-
adaptive method. The twofold refinement mechanisms of
the hp-adaptive DG method offer maximum freedom for
the approximation of the electromagnetic field solution.
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DISCONTINUOUS GALERKIN METHOD
FOR MAXWELL’S EQUATIONS

Spatial Discretization Procedure

Given a decomposition of the computational domainΩ
into N non-overlapping, hexahedral elements{Ci}, i =
1..N , a set of linearly independent basis functions{ϕp

i },
p = 0..P for every cell is defined, whereP denotes the
highest order employed. The basis functions are required
to be continuous within the cellCi and vanish otherwise

ϕ
p
i (r) =

{
ϕp(r), r ∈ Ci,

0, otherwise.
(1)

Subsequently, the space and time continuous electromag-
netic field quantitiesE andH are approximated in the form

E(r, t)≈Ẽ(r, t) =
∑

i

Ẽi(r, t) =
∑
i,p

e
p
i (t)ϕ

p
i (r), (2)

H(r, t)≈H̃(r, t) =
∑

i

H̃i(r, t) =
∑
i,p

h
p
i (t)ϕ

p
i (r), (3)

whereẼ andH̃ denote the approximate field vectors. The
numerical DoF are denoted byep

i andhp
i . They are gath-

ered in the vectorse andh.
Substituting the electromagnetic quantities by their ap-

proximations in Faraday’s and Ampère’s law and apply-
ing the Galerkin procedure yields the weak DG formula-
tion [2]. Due to the cell-wise compact support of the ba-
sis functions (1), the approximations (2) and (3) will, in
general, be discontinuous at element interfaces. Continuity
is enforced only in the weak sense via numerical fluxes.
Among the different flux definitions, we chose centered
fluxes. As demonstrated in [2, 3] this ensures the strict con-
servation of the electromagnetic energy. Using the naming
convention given there and vector notation for all terms, the
semidiscrete formulation reads

d
dt

(
Mǫe

Mµh

)
+

(
0 −C

CT 0

) (
e

h

)
= −

(
j

0

)
. (4)

The termsMǫ andMµ are the mass matrices andC de-
notes the weak DG curl operator. The vectorj represents
the convective currents.

In the particular case of particle accelerator problems,
the issue of charge conservation is specially relevant due to
the existence of freely moving charges. In [3] it was shown
that strict charge conservation is guaranteed if, and only
if, a tensor product basis on conforming Cartesian grids is
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applied for the approximations (2) and (3). The continuous
current density is given by

J(r, t) =

Np∑
k=1

QkvkS(|rk − r|), (5)

whereQk is the charge carried by thek-th ofNp particles,
rk andvk are its position and velocity vector andS is a
distribution function describing the assumed particle shape.
In caseS corresponds to the Kronecker delta, the particles
are modeled as point charges. Other shape functions are
discussed in [4]. Integrating the current density over one
time step and projecting to the basis functions yields the
DG approximation

(jp
i )n =

(
ϕ

p
i ,

∫ n∆t

(n−1)∆t
J(r, t)dt

)
Ci

(ϕp
i , ϕ

p
i )Ci

. (6)

Above,(a, b)Ci
denotes the inner product ofa andb onCi,

∆t is the time step andn the time step number.

Suitability forhp-Adaptation

The discontinuous Galerkin method is highly suited for
the application ofh- andp-adaptation techniques. Indepen-
dently of the approximation order, the method always pre-
serve the same high degree of locality. Due to the element-
wise compact support, individual elements communicate
only via interface fluxes. The computation of these, in
turn, involves only the interface values of direct neighbors.
Splitting and merging of elements, hence, is a purely local
operation, which affects none but the adapted elements. For
our particular setup of Cartesian grids and a tensor product
basis, this adaptation can be performed very efficiently, as
it will be shown in the following section. Since addition-
ally, assigning different approximation orders throughout
the elements of the computational domain is readily possi-
ble, the method is well-suited for anhp-adaptive procedure,
i.e., adapting the local grid step size, as well as the local ap-
proximation order in a problem oriented fashion.

ADAPTATION TECHNIQUES

h-Adaptation

When performingh-adaptation the size of dedicated el-
ements is modified locally by splitting them into subele-
ments or, conversely, by merging them into larger ones.
The grid topology is, thus, altered while the approximation
orders of the involved elements are kept constant.

In the case ofh-refinement, the approximations within
the subelements are obtained by projecting the existing ap-
proximation onto the support of the subelements. We re-
strict ourselves to the bisection of elements and do not con-
sider other division ratios. Continuous basis functionsψi,l

andψi,r are defined within the interior of the left and right

Figure 1: For the splitting of elements (top), the approx-
imate solution within the elementCi (gray, solid) is ac-
curately projected onto its subelementsCi,l (red, dotted)
andCi,r (blue, dash-dotted). Due to the discontinuity the
approximation within the merged element cannot be exact
(bottom).

subelementCi,l andCi,r and set identically zero elsewhere.
The integral terms

P
qp
l =

(ϕp, ψ
q
l )

Ci,l

(ψq
l , ψ

q
l )

Ci,l

and Pqp
r =

(ϕp, ψ
q
r )Ci,r

(ψq
r , ψ

q
r )Ci,r

, (7)

for p, q = 1..P determine the entries of the projection ma-
tricesPl andPr. Each term describes the contribution of
the basis function of orderp of the elementCi to the basis
function of orderq of its subelements. The numerical DoF
of the subelements,ei,l , ei,r andhi,l , hi,r, are obtained by
means of the matrix-vector multiplications

ei,l = Plei, ei,r = Prei, (8)

hi,l = Plhi, hi,r = Prhi. (9)

These operations are exact in the sense that the approxi-
mation within the subelements is identical to the approxi-
mation within the original element in every point. This is
shown in Figure 1 (top).

For the converse process, i.e., merging of elements, it
is not possible to obtain an exact representation within the
merged element due to the discontinuous character of the
approximations. The approximation withinCi is consid-
ered to be given piecewise on the subelements with the DoF
ei,l , ei,r andhi,l , hi,r. The entries of the projection matrix
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Pm are specified by

Pqp
m =

(ψq
l + ψ

q
r , ϕ

p)
Ci

(ϕp, ϕp)Ci

=
(ψq

l , ϕ
p)

Ci

(ϕp, ϕp)Ci

+
(ψq

r , ϕ
p)Ci

(ϕp, ϕp)Ci

= P
qp
m,l + Pqp

m,r.

(10)

Summing up the contributions of the subelements yields
the DoF of the merged element

ei = Pm,lei,l + Pm,rei,r, (11)

hi = Pm,lhi,l + Pm,rhi,r. (12)

The matricesPm,l andPm,r, as well asPl andPr, do not
depend upon the actual approximation but only on the basis
functions. They can be evaluated analytically and stored for
repeated use.

p-Adaptation

P-adaptation refers to a local or global modification of
the approximation orderP while keeping the mesh unal-
tered. In time-domain simulationsp-adaptation can be effi-
ciently implemented if a set of hierarchical basis functions
is employed. In this case, the DoF associated with the dif-
ferent approximation orders do not depend upon each other.
Thus, increasing the approximation order is as simple as
preserving the current coefficients and attaching those of
the next higher order basis functions to the DoF vectorsei

andhi for the respective elementCi. The new coefficients
are initialized to zero. In order to reduce the order, the
DoF associated with the higher order basis functions are
dismissed.

hp-Adaptation

For smooth solutions, the approximation order is di-
rectly linked to the asymptotic convergence order. It is,
thus, desirable to work with high order elements. However,
the convergence order breaks down if the solution is non-
smooth. In Fig. 2 the error of the DG approximation to a
Gaussian and a trapezoidal field distribution is shown. The
error is plotted versus the grid step size, both of them on
a logarithmic scale. The approximation error of the Gaus-
sian (top) reduces with the expected rate for increasedP .
For the trapezoidal distribution (bottom), however, the con-
vergence rate stagnates for higher approximation orders.
An important key point of anhp-adaptation algorithm is,
hence, the detection of regions with a low degree of so-
lution smoothness. Also, regions of low electromagnetic
field energy should be identified since they probably do not
require a high resolution.

Efficiency and Stability

We employ the orthogonal set of Legendre polynomials
as basis functions and define a tensor product basis for con-
forming Cartesian grids. This particular setting allows for
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Figure 2: Approximation error in theL2-norm of a Gaus-
sian (top) and a trapezoidal distribution (bottom) versus the
grid step. For the smooth function in the top graph the ex-
pected convergence rate is observed. For the non-smooth
function in the bottom graph the convergence rate breaks
down.

a very efficient implementation of the DG method since all
inner products of basis and test functions reduce to zero if
their order differs and to a factor which depends only on
the dimensions of the respective element, otherwise.

The projection basedh-adaptation can also be imple-
mented in a very efficient manner since the projection ma-
trices do not vary with time. They have to be evaluated only
once, which can be done analytically. During the actual
simulation, we additionally benefit from the Cartesian grids
and the tensor product basis ansatz since the bisection of
elements and the calculation of the coefficients within the
modified elements can also be performed very efficiently.

It remains to address the stability of the adaptation tech-
niques. The adaptations are stable if their application does
not increase the electromagnetic energy within the modi-
fied elements. The energy of the elementCi reads

Wi =
1

2
|Ci|

(
ǫi‖ei‖

2
2 + µi‖hi‖

2
2

)
, (13)

where|Ci| denotes the volume ofCi andǫi, µi are its per-
mittivity and permeability.

It is readily seen that ap-reduction induces a loss of the
discrete energy associated with the respective coefficients.
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Figure 3: Snapshot of the total electric field excited by a
bunch of particles in cut view. The upper half shows the
electric field and the computational grid, the lower half
shows thehp-adapted grid exclusively.

The coefficients, which are added duringp-enrichment are
initialized by zero. In this caseWi is preserved.

We will not present formal derivations of the stability of
theh-adaptations but rather state their results. Details are
found in [5]. In the case ofh-refinement, the sum of the
discrete energies of the subelements is equal to the energy
of the parent element. Since the approximations within
the subelements exactly represent the original approxima-
tion this is consequential. Forh-coarsening the energy is
at most preserved. The application ofp-enrichment orh-
refinement, hence, conserves the discrete energy exactly
while p-reduction orh-coarsening usually induce a loss of
energy.

APPLICATIONS

The method has been applied to the simulation of a parti-
cle bunch drifting with the constant velocityv = 0.9c0 in a
cylindrical perfectly electrically conducting tube, wherec0
is the speed of light in vacuum. The electromagnetic field
solution for this situation at an arbitrary point in time is de-
scribed in [6], where the tube is considered semi-infinite in
the direction of bunch propagation. The length and radius
of the tube are set to 120 mm and 40 mm respectively. The
particle distribution of the bunch is Gaussian with an RMS
length and radius of 5 mm and 3 mm, respectively.

We applyhp-adaptation for the simulation of the prob-
lem. Thep-adaptation is controlled by the field ampli-
tude. In addition,h-refinement is applied to the elements
containing particles and all neighboring elements with the
same index along thez-axis. This ensures a conforming
grid refinement. Fig. 3 shows the total electric field along
with the hp-adapted grid. For thep-adaptation a range
of one through four for the approximation orders was ap-
plied. In order to visualize the approximation order of an
element, the respective number of collocation points are
plotted. Along thez-direction an additional conforming
h-refinement is applied to the elements, which contain par-
ticles and all neighboring elements with the samez-index.

Table 1: Relative error and total variation of solutions ob-
tained by the non-adaptive and adaptive scheme using var-
ious settings.

L Pmin Pmax ≈DoF / 1e6 Time / sec ε
rel TV

0 1 1 6.80 310 0.081 8.71

0 2 2 22.96 2020 0.042 4.15

1 1 3 9.00 1170 0.043 2.68

1 1 4 10.50 1650 0.028 1.00

The relativeL∞-error and the total variation (TV) [7] of
the electric field along the cylinder axis are given as mea-
sures for the quality of the numerical solutions. The TV is
a measure for the smoothness of a function. It is defined as

TV (E(z)) =

∫
|E′(z)|dz. (14)

Table 1 summarizes the results. The number ofh-
refinement levels is denoted byL. The grid step sizes and
theh-refinement level are chosen such that the minimum
step size remains identical. The total variation is normal-
ized to the smallest value obtained. The adaptive simula-
tions consume more time per DoF. Partly, the extra time is
spent for the adaptation routines, and partly it is due to the
reduced maximally stable time step connected with higher
approximation orders.

As a second application, we have simulated a part of
the PITZ injector (Photo Injector Test Facility at DESY
Zeuthen) [8]. The PITZ project was initiated in order to
test and optimize sources of high brightness electron beams
for future free electron lasers (FELs) and linear colliders.
Fig. 4 shows the total electric field andhp-adapted grid in
a y-cut through the three-dimensional domain. The sim-
ulated section consists of the 1.5 cell RF gun and has a
length of 25 cm. This grid was generated for illustration
purposes only. Accurate simulations require a higher res-
olution. Nevertheless, it demonstrates the ability of the
scheme to handle more complex situations.

OUTLOOK ON ERROR BASED
AUTOMATIC HP-ADAPTATION

For the examples presented above, we used a naive algo-
rithm for controlling thehp-adaptation. The approximation
orderp of every element, e.g., is determined from a com-
parison of its field magnitude with the maximum field mag-
nitude. However, the adaptation should be based on the ap-
proximation error, which is for general examples not linked
to the field magnitude. In [9] it is shown that the residual re-
lates to the size of the jump across element interfaces. Per-
forming an error estimation is, hence, a trivial task for the
DG method. After deciding whether to adapt an element,
the next step is the decision betweenh- andp-adaptation.
This requires the estimation of the local smoothness of the
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Figure 4: Snapshot of the total electric field excited by a
bunch of particles in cut view. The upper half shows the
electric field and the computational grid, the lower half
shows thehp-adapted grid exclusively.

approximation. In [5, 10] smoothness indicators are pre-
sented.

We implemented an algorithm for performing automatic
hp-adaptations for the scalar wave equation, which was
tested on a Gaussian and trapezoidal wave packet as de-
picted in Fig. 5. There, the blue and green line repre-
sent the electric and magnetic field approximations. The
gray dashed lines depict the position of the grid points
and the height of the red circles indicate the approxima-
tion order employed for the respective element divided by
ten. The snapshots were recorded after several hundreds of
time steps. For the Gaussian packet the adaptation algo-
rithm chooses medium sized to big elements and the preset
maximum approximation order of five in the vicinity of the
packet. For the non-smooth trapezoidal packet, the algo-
rithm does not employ an approximation order above two
throughout the simulation. In the vicinity of the pulse edges
a high degree ofh-refinement is applied, thus showing the
desired behavior for the second packet as well.

CONCLUSIONS

Adaptation techniques for the high order DG method
have been presented, which we apply on Cartesian grids
using a tensor product basis of orthogonal basis functions.
This particular setting allows us to performh- and p-
adaptations in a very efficient manner. Details of both kinds
of adaptation were presented, and we showed that their ap-
plication does not induce any instability. We performed
hp-adaptive simulations and compared the results with the
analytical solution. Thehp-adaptive scheme was shown to
require significantly less computational resources and time,
yielding a higher accuracy as the non-adaptive method.
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