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Abstract

The goal is to construct a symplectic evolution map for
a large section of an accelerator, say a full turn of a large
ring or a long wiggler. We start with an accurate track-
ing algorithm for single particles, which is allowed to be
slightly non-symplectic. By tracking many particles for
a distance S one acquires sufficient data to construct the
mixed-variable generator of a symplectic map for evolu-
tion over S, given in terms of interpolatory functions. Two
ways to find the generator are considered: (i) Find its gra-
dient from tracking data, then the generator itself as a line
integral. (ii) Compute the action integral on many orbits. A
test of method (i) has been made in a difficult example: a
full turn map for an electron ring with strong nonlinearity
near the dynamic aperture. The method succeeds at fairly
large amplitudes, but there are technical difficulties near
the dynamic aperture due to oddly shaped interpolation do-
mains. For a generally applicable algorithm we propose
method (ii), realized with meshless interpolation methods.

1. INTRODUCTION

The method of differential algebra, giving automatic dif-
ferentiation of functions defined by complex algorithms,
allows the construction of the truncated Taylor series of a
map defined by a tracking code. After this method was im-
plemented by Martin Berz [1], the option of producing a
Taylor map eventually became a feature of several tracking
codes. The Taylor map is not symplectic, but some codes
use the Taylor coefficients to produce the mixed-variable
generator of a symplectic map, itself represented as a trun-
cated power series [2]. Another way is to use the Taylor
coefficients to form the symplectic “jolt factorization” of
Irwin, Abell, and Dragt [3]. The Taylor map, symplectified
or not, is good at small phase space amplitudes, but has a
range of usefulness at larger amplitudes that varies with the
type of accelerator lattice considered. It appears to be fairly
useful for hadron rings, but can fail badly for electron rings
with stronger nonlinearity near the dynamic aperture. In
this paper we choose such a lattice for a demanding test of
mapping methods.
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Figure 1: Phase plot from element-by-element tracking,
1000 turns, νx = 16.23.

For our example the Taylor map fails at large amplitudes.
For a striking illustration we choose a tune νx = 16.23.
Element-by-element tracking gives the plot of Fig.1 on a
Poincaré section at a fixed position in the ring; p is dimen-
sionless and q is in meters. The corresponding plot from
iteration of the 10th order Taylor map is shown in Fig.2.
The prominent 9th order island chain is only vaguely vis-
ible, and there is spurious stochasticity. The result is not
improved by going to 13th order. The symplectified Taylor
map [2] shows islands and gets rid of the stochasticity, but
the shape of phase contours is all wrong. Changing to a
better tune of νx = 15.81, for which the lattice has a much
larger dynamic aperture, we find that the Taylor map still
breaks down at about the same amplitude.
One can easily see, however, that producing a more suc-

cessful map when the Taylor series fails is not out of the
question. A spline fit to one-turn tracking data on a grid
of initial conditions gives a map which produces the plot
of Fig.3 in 1000 iterations. To graphical accuracy it agrees
with the tracking map of Fig.1, but the symplectic condi-
tion is badly violated at large amplitudes: the determinant
of the map’s Jacobian differs from 1 at some points by as
much as 0.004. Nevertheless it does not do badly over 105

iterations, as is seen in Fig.4. The main features of the
phase plot persist correctly, but fuzziness appears near ends
of the islands. By 106 turns there is a clear failure, with
spurious damping, whereas phase curves including the is-
lands are sharply defined in tracking for 106 turns. The
spline is a tensor product B-spline interpolating tracking
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Figure 2: Phase plot from 10th order Taylor map, 1000
turns, νx = 16.23.
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Figure 3: Phase plot from Spline Map, 1000 turns, νx =
16.23.

data on a 40 × 40 uniform mesh; the spline coefficients
were determined in 0.6 sec, and the time for 105 iterations
was 0.14 sec. Computation times are for a single 2.66 GHz
processor.
This example supports our belief that interpolative meth-

ods can produce maps that are both accurate and fast, even
in cases where power series are not useful. Actually, the
promise of interpolative map construction was evident long
ago, in the work of Refs.[4, 5, 6, 7]. That work resulted in
the generator of a fast symplectic map represented in po-
lar coordinates in a hybrid Fourier-spline basis. It was ap-
plied successfully to an early LHC lattice, but in a slightly
restricted region of phase space owing to a coordinate sin-
gularity arising from the polar coordinates. In work go-
ing back to 1984, G. Wüstefeld and collaborators have ap-
plied generating functions to maps for complicated mag-
netic fields, sometimes using interpolative methods [8].
In 1999 two of the authors proposed a method to find

the map generator in Cartesian coordinates, with splines
in all variables [9]. (Earlier, Berz had described a for-
mally similar construction of the generator, but to be re-
alized through power series rather than splines [10].) The
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Figure 4: Phase plot from Spline Map, 105 turns, νx =
16.23.

present paper gives the first numerical implementation of
the scheme of Ref.[9]. Another idea, which came to light
when one of the authors was preparing an article on the
Hamilton-Jacobi equation [11], is to compute the genera-
tor directly as Hamilton’s Principal Function, which is the
integral of the Lagrangian regarded as a function of initial
and final spatial coordinates.

2. RELATION OF THE GENERATOR TO
THE TRACKINGMAP

We denote the map defined through an element-by-
element tracking code as follows:

q = Q(q0, p0) , (1)

p = P (q0, p0) , (2)

where z = (q, p) = (z1, · · · , z2n) and z0 = (q0, p0) are
final and initial phase space points for a system with n de-
grees of freedom. The map can refer to an arbitrary period
in a circular or linear machine, but in the present applica-
tion it is for one turn of a circular machine. In the the-
ory of canonical transformations [11] the map is expressed
implicitly in terms of a generating function or generator,
which we take to be a “Type 1” generator of the form
F (q, q0). The implicit map is defined by the equations

p = Fq(q, q0) , (3)

p0 = −Fq0(q, q0) , (4)

where subscripts denote partial derivatives: Fq =
(∂F/∂q1, · · · , ∂F/∂qn). We suppose that for q and q0 in
the region of interest, the n×nHessian matrix Fqq0 is non-
singular:

detFqq0 (q, q0) �= 0 . (5)

Then one can solve (4) for q = q(q0, p0) (at least locally)
and substitute the result in (3) to obtain also p(q0, p0) =
Fq(q(q0, p0), q0) [12]. We wish to determine F so that the
functions q(q0, p0), p(q0, p0) can be identified with the map
componentsQ(q0, p0), P (q0, p0).
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One can show that any F (q, q0) that has continuous sec-
ond derivatives and satisfies (5) defines a symplectic trans-
formation (q(q0, p0), p(q0, p0)). This fact is important for
our map construction since it shows that symplecticity can
be ensured even if F does not precisely reproduce the map
(1),(2).
To derive the relation of F to the map (Q, P ), let us

suppose that in the region of interest

detQp0(q0, p0) �= 0 , (6)

in which case we can solve (1) for p0(q, q0), provided that
q is in the range of Q. Then, if F actually generates the
map, Eqs. (3),(4), (2) show that

Fq(q, q0) = P (q0, p0(q, q0)) =: γ1(q, q0) , (7)

Fq0 (q, q0) = −p0(q, q0) =: γ2(q, q0). (8)

Symplecticity of the map guarantees that the vector γ =
(γ1, γ2) is actually a gradient; i.e., that it has zero curl.
The proof, which is not obvious, is given in Ref.[13]. Thus
we have ∇F = γ from which we can obtain F itself as a
path-independent line integral,

F (ζ) =
∫ ζ

ζ0

γ(ζ′) · dζ′ , ζ = (q, q0) . (9)

3. APPROXIMATION OF THE
GENERATOR AS A SPLINE

Our first realization of the scheme of the previous section
is based on interpolation of data by spline functions, with
the help of the B-spline basis [14]. Let s(x) be any spline
function specified by a knot sequence [ti]n+k

i=1 where k is the
order (degree +1) of the local polynomials that are joined
to make up the spline. The B-splines Bi(x) determined by
that knot sequence form a basis, so that for some λi

s(x) =
n∑

i=1

λiBi(x) . (10)

The λi are fixed so that s(x) interpolates data at distinct
sites xj , j = 1, · · · , n. This is done efficiently thanks to
the banded nature of the interpolation matrix. The banded
structure arises because at any x only k of the B-splines are
non-zero. At a given x all of the non-zeroBi are computed
at once by de Boor’s stable recursive method; their deriva-
tives can be obtained similarly. This gives a fast evaluation
of (10) or its derivatives in a time that increases only mildly
with n; the increase is due only to a higher cost of search-
ing for the knot interval in which x lies. Thus when the
B-spline representation of a function is refined the evalua-
tion time hardly changes, in marked contrast to a represen-
tation by Taylor series. For all B-spline operations we use
standard Fortran software available at netlib.org [15].
For multidimensional interpolation the simplest ap-

proach is through a tensor product of B-splines. In 2D this
is

s(x1, x2) =
∑
i,j

λijB
(1)
i (x1)B

(2)
j (x2) , (11)

a simple iteration of the 1D interpolation. The superscripts
indicate possibly different knot sequences for the two di-
mensions. The tensor product interpolation requires data
on a Cartesian grid, which can be used in the present study
only at fairly small phase space amplitudes. At large ampli-
tudes we have oddly shaped interpolation domains, which
we handle by completing the array of real data with rea-
sonable but arbitrary values. An item on our agenda is
to look at more local interpolation methods that not only
can handle general domains but also are more efficient in
high-dimensions, for instance radial basis functions [16] or
Shepard interpolation [17]
Our construction of F proceeds in the following steps:

1. Make a spline Q̃(q0, p0) of Q(q0, p0) from values on
a Cartesian mesh {q0i, p0j}.

2. Solve (1) for p0(q, q0) on a similar mesh {qi, q0j}.
This is done by Newton’s method, taking a first guess
for p0 from the linear part of the map. The required
Jacobian is approximated by Q̃p0 .

3. Using this solution, evaluate γ1 in (7) on the same
mesh, and then make a spline of (γ1, γ2).

4. Integrate this spline on some convenient path to find
F (qi, q0j) through (9).

5. Finally, make a spline to represent F from the values
F (qi, q0j). This spline must be of order k ≥ 4 (cubic
or higher degree), to ensure that F ∈ C2.

The map defined implicitly by F comes from (3),(4) and
is evaluated as follows:

a. For any initial point (q0, p0) solve (4) for q by New-
ton’s method, taking the spline value Q̃(q0, p0) as a
first guess.

b. Substitute the solution from (a) in (3) to obtain p as
well.

In all the above steps the derivatives and integrals of splines
are expressed analytically then evaluated numerically by
means of BSPLVD and FPINTB [15]. Note that for a cubic
spline the function Fq0(q, q0) is C2 in q, which makes it
suitable for Newton’s method in step (a).

4. APPLICATION TO AN ELECTRON
RING LATTICE

We have carried out the map construction just described
for horizontal motion in a lattice for an electron ring that
was part of a study for an ILC damping ring. For a full de-
scription see [18]. It has racetrack form and entails 64 cells,
primarily 90◦ FODO cells. The energy is 5 GeV, the length
960m, and the x-emittance is 47nm. A scaling to include
more cells gives a lower emittance and a candidate for the
damping ring. Tracking is done by the code LEGO, which
integrates equations of motion based on the Hamiltonian in
the local frame of each lattice component [19].
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Figure 5: Phase plot from tracking, νx = 15.81.
Dynamic aperture (2000 turns) just beyond outer curve.

The motion of this example becomes very nonlinear as
the dynamic aperture is approached. This makes it a chal-
lenging example for map construction. A hadron machine
such as the LHC has weaker sextupoles and weaker nonlin-
earity out to the dynamic aperture, notwithstanding impor-
tant effects of random higher order multipoles which con-
tribute to long-term diffusion. On the basis of earlier work
[5, 6, 7] we expect that the present algorithm will be use-
ful for the LHC over a bigger range of amplitudes than it
is in the present example. Nevertheless, the difficulties of
this example have been very informative, and the lessons
learned will certainly be relevant to other cases.
We now choose a tune, νx = 15.81, for which the

short term dynamic aperture is large, near the orbit with
(q0, p0) = (7cm, 0). There are no easily found resonances
except for an 11th order one very close to the dynamic aper-
ture. A phase plot is shown in Fig.5.
We try to construct a map on a rectangular region |q0| ≤

r1, |p0| ≤ r2, and expect that some sub-region will be
mapped into itself by the constructed map. We therefore
seek to construct F (q, q0) in a square domain, |q|, |q0| ≤
r1. For r1 = 2.5cm everything goes according to the plan
of the previous section. This is in accord with the mathe-
matical analysis of Ref.[9] which showed that the scheme
should work at small amplitude. Passing to r1 = 4.5cm,
we encounter a new situation. The solution for p0(q, q0)
does not exist in one corner of the domain, as is seen in
Fig.(6). Let us call this triangular region B, for Bermuda
Triangle. The Newton iteration, which converges beauti-
fully elsewhere, diverges in B in a mode such that iterates
get larger and larger. To generate the plot of successful so-
lutions in Fig.6 the Newton iteration was declared a failure
when iterates p

(n)
0 got bigger than a small multiple of r2, or

when it failed to converge to desired accuracy within a set
maximum number of iterations. As expected, the bound-
ary of B corresponds closely to the curve along which the
condition of Eq.(6) first fails.
In order to make a tensor product spline of γ(q, q0) in

spite of the missing values, we have to fill in the array

−0.05 0 0.05
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

q (m)

q0
 (

m
)

Figure 6: Points at which p0(q, q0) exists, in blue. The
curves represent values of (q, q0) on the orbits of Fig.7.
The path of integration for Eq.(9) is shown in red.
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Figure 7: Symplectic map from generator, 107 turns. Itera-
tion time 20-25 sec. for 107 turns, per orbit.

in some reasonable manner. We choose to put in values
close to those on the boundary of B, line-by-line in the q-
direction. Of course, the path in the line integral must avoid
the region B. We choose the path shown in Fig.6.
This procedure with a 50 × 50 mesh leads to a symplec-

tic map that gives the phase plot of Fig.7, where each orbit
is followed for 107 turns in 20-25 seconds. We have also
followed the outer orbit for 109 turns, finding no change
to graphical accuracy from the result of 107 turns. Map-
ping time per turn is 20-200 times faster than the under-
lying tracking code (depending on the tracking integrator
chosen), but this is not a fair comparison since our tracking
code is not optimal for 2D tracking; it routinely computes
the time of flight which is not needed in 2D. Nevertheless,
the timing suggests a good outlook for speed in higher di-
mensions. The Newton iteration to solve (4) converged to
machine precision in two or three steps.
The plot of Fig.7 is graphically indistinguishable from

the corresponding plot from tracking over 105 turns. The
quantitative agreement is not spectacular, however. At the
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Figure 8: Two orbits in (q, q0) plane close to the boundary
of the region in which F (q, q0) exists. The dotted points
are the same as those of Fig.6.
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Figure 9: An enlargement of the top of Fig.8 showing in-
tersecting orbits in (q, q0) plane.

one turn level we have agreement to 5 digits at small am-
plitudes, declining to 4 digits at the outermost curve. As
the map is iterated a lot of phase error quickly builds up,
even though the iterates adhere to a clearly defined invari-
ant curve. This is in accord with much earlier experience
in approximating maps. For a quantitative test in spite of
phase error one has to make an accurate representation of
an invariant curve from tracking, then see howwell the map
follows it; this can be done with the method of [20].

When we try to go beyond the outermost curve of Fig.7,
the method abruptly breaks down. The reason can be un-
derstood by using the tracking code to plot orbits in the
(q, q0) coordinates for increasingly large amplitudes. At
some point two curves for neighboring initial conditions
cross, as is seen in the upper right corner of Fig.8. There
are two crossings, as seen in the enlargement in Fig.9. After
this happens, the pair (q, q0) does not determine a unique
orbit, hence p0(q, q0) is not a single-valued function and
the construction of F (q, q0) must fail. The curve with
smaller initial condition (q0 = 0.0604m, p0 = 0) roughly

defines the boundary of existence of F . As seen in Fig.8,
the divergence of the Newton method defines part of the
boundary quite accurately.
We should be able with sufficient care to construct the

generator in its full region of existence. The reason that
our attempted construction failed abruptly with increasing
amplitude is seen by comparing Fig.6 and Fig.8, both of
which show the points at which p0(q, q0) was determined
by Newton’s method. The orbits of higher amplitude that
we seek go into the cusp-like region in the upper right cor-
ner of Fig.8, but the path of integration used in the code can
reach such points only by penetrating the boundary of the
allowed region, thus giving nonsensical F . This could be
avoided by a better choice of path, but that would be dif-
ficult if not impossible to generalize to higher dimensions.
Even with a better path, we have to face the problem of in-
terpolation, which becomes increasingly awkward for the
tensor product spline.
One might ask whether a generatorF2(q, p0) exists when

F (q, q0) = F1(q, q0) does not. Plotting the same two or-
bits of Fig.8 in (q, p0) coordinates, we find again two inter-
sections but at negative q ≈ −.0605,−.025, rather than the
positive q ≈ .0375, .0475 of the intersections in (q, q0) co-
ordinates. Thus when (q, q0) fails to specify an orbit (q, p0)
succeeds, and vice versa. Each of the generators fails to ex-
ist at some points on each of the two orbits. The symplec-
tic condition in 2D phase space is Qq0Pp0 − Qp0Pq0 = 1
which shows that Qp0 and Qq0 cannot vanish simultane-
ously, hence either F1 or F2 must exist locally. A theorem
in [21] generalizes this statement to higher dimensions.

5. GENERATOR CONSTRUCTION BY
ACTION INTEGRAL

We have shown one way to construct the generator,
through a partial map inversion to give p0(q, q0) and
a line integral. Another method goes back to Hamil-
ton’s original work of 1830-1832 [11]. He obtained
the generator through the integral of the Lagrangian.
Namely,

S(q0, p0, t) =∫ t

0

[
p(τ, z0) · q̇(τ, z0) − H(z(τ, z0), τ)

]
dτ ,

(12)

whereH is the Hamiltonian and the second argument of the
orbit z(τ, z0) indicates its initial condition, z0 = (q0, p0).
The time-like variable t would normally be path length s in
accelerator physics. Hamilton’s essential idea was to regard
the action as a function of (q, q0) rather than (q0, p0). Then
the generator, which is a solution of the Hamilton-Jacobi
equation called Hamilton’s Principal Function, is

F (q, q0, t) = S(q0, p0(q, q0, t), t) . (13)

This is identical to the function of the previous sections
when t = T is the period of the map.
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The advantage of this formula for a practical construc-
tion is that it avoids the line integral (9), which could be
almost impossible to deal with in higher dimensions with
excluded regions. A disadvantage is that the tracking code
must be augmented to calculate the action integral in the
course of tracking. Fortunately, LEGO is able to furnish
the Hamiltonian needed in the integrand.

6. LOCAL INTERPOLATION AND THE
USE OF SCATTERED DATA

Tensor product splines may be adequate in many prob-
lems but in general we need a more local sort of interpola-
tion or approximation that can be used in non-rectangular
domains. One possibility is a generalized Shepard method
[17] based on the formula

F (ζ) =
∑

i

Pi(ζ)
wi(ζ)∑
j wj(ζ)

,

wi(ζ) = c(ζ − ζi)‖ζ − ζi‖−n , (14)

where n is a positive integer such as 4 or 6. Here Pi(ζ) is a
polynomial that interpolates or approximates values of F at
ζi and a few nearby sites. The factor c(ζ − ζi) is a smooth
cutoff that restricts the sum at any evaluation. For ζ close
to ζi this behaves like Pi(ζ) with small corrections from
other terms in the sum. The formula is globally smooth,
with the degree of smoothness controlled by that of c.
This formula works when the sites ζi lie on a mesh or

even when they are scattered. In the latter case one would
normally use a least squares fit to determine the coefficients
of Pi, rather than strict interpolation, since the interpola-
tion matrix could be nearly singular for some dispositions
of sites. Interpolation could be done by replacing the poly-
nomial by a radial basis function [16].
As suggested by Fasshauer (private communication) it

may be advantageous to use scattered sites from a quasi-
random (low discrepancy) sequence. This might enjoy the
advantage that quasi - Monte Carlo quadrature has over
mesh based quadrature in high dimensions [22]. Such a
scheme was tried in Ref.[23], in connection with solution
of a Vlasov equation. In 2D it was possible to reduce the
number of data sites by a factor of 8 in comparison to mesh
based interpolation. A much bigger advantage is expected
in higher dimensions, and this augurs well for construction
of maps in 4D or 6D phase space using quasi-random data.

7. CONCLUSION

After analysis of a difficult example in 2D phase space,
we have a plan for building fast symplectic maps in higher
dimensions. The method described in Sec.3 will proba-
bly succeed in many cases, but in general we shall need
a more powerful approach using local interpolation and
Hamilton’s Principal Function. The use of scattered inter-
polation sites from quasi-random sequences may increase
the efficiency of interpolation in high dimensions.
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