
VIZSCHEMA – A STANDARD APPROACH FOR VISUALIZATION OF
COMPUTATIONAL ACCELERATOR PHYSICS DATA*

S. Shasharina#, J. Cary, M. Durant, S. Kruger, S. Veitzer, Tech-X Corporation, Boulder, CO,
80303, U.S.A.

Abstract
Even if common, self-described data formats are used,

data organization (e.g. the structure and names of groups,
datasets and attributes) differs between applications. This
makes development of uniform visualization tools
problematic and comparison of simulation results
difficult. VizSchema is an effort to standardize metadata
of HDF5 format so that the entities needed to visualize the
data can be identified and interpreted by visualization
tools. This approach allowed us to develop a standard
powerful visualization tool, based on VisIt, for
visualization of large data of various kinds (fields,
particles, meshes) allowing 3D visualization of large-scale
data from the COMPASS suite for SRF cavities and laser-
plasma acceleration.

INTRODUCTION
Visualization is extremely valuable in providing better

understanding of scientific data generated by simulations
and guiding researchers in designing more meaningful
experiments. Scientific models need to be compared with
each other and validated against experiments.
Consequently, most computational scientists rely on
visualization tools. However, visualization and data
comparison is often made difficult by the fact that various
simulations use very different data formats and
visualization tools.

Self-describing data formats are increasingly being used
for storage of data generated by simulations. Such formats
allow the code to store and access data within a file by
name. The file storage system then takes care of
developing an index for the data. In addition, the data can
be decorated with attributes describing the units,
dimensions, and other metadata for a particular variable.
The self-describing formats now in use also help to deal
with binary incompatibilities. Because different machine
architectures use different binary representations for
numbers, a binary file written by one processor may not
be readable by another processor. Self-describing data
file formats and interfaces ensure that the data is written
in a universal binary format on all processors, and that
software reading the data translates it to the appropriate
architecture-specific format.

The Hierarchical Data Format (current version is
HDF5) [1] and the NetCDF [2] format are in common use
in the fusion, accelerator and climate modeling
communities. HDF5 allows one to create a multi-tiered
data structure inside of a file, so that one can create nested
structures of groups and datasets.

Examples of HDF5 use include plasma physics codes

such as VORPAL [3], a 3D plasma simulation code
developed under development and Tech-X, and
SYNERGIA [4], a multi-particle accelerator simulation
tool developed at Fermilab. Both codes are actively used
in the COMPASS SciDAC project [5]. Many other
communities (earth sciences, fusion simulations) also use
HDF5.

In spite of the fact that all these codes use self-
describing data format, their files are organized very
differently. They often do not share the node structure, do
not agree on attributes, use different names for physically
similar variables and store data in different structures. In
other words, self-describing formats, though powerful, do
not impose universally interpretable data structures.

For example, VORPAL put particles data in one dataset
with all spatial information coming first: x = data[0,:], y =
data[1,:], z = data[2.:], followed by momenta: p_x =
data[3,:], p_y = data[4,:], p_z = data[5:,:], while
SYNERGIA intermixes momenta and spatial information:
p_x = data[0,:], x = data [1,:] etc.

How one can guess from looking at the data what is
what? How does one recognize that a particular dataset
represents a mesh and what kind of mesh is it? How does
one indicate that a dataset is mapped to a particular mesh?
Which data ordering is used (is it grouped by components
or position indices)? Using some standards and common
metadata within these formats could resolve this problem.

Visualization tools used by different teams are also very
non-uniform. For a long time, scientific community used
IDL [6] and AVS/Express [7]. Lately, many teams are
moving towards the freely available, open source, high-
quality visualization tools such as VisIt [8].

In this paper we present our efforts to develop such a
standard for computational applications dealing with field
and particles data. Our approach is based on first
identifying the entities of interest to visualization,
relationships between these entities and then defining
intuitive and minimalistic ways to express them using
metadata and common constructs used in self-described
data formats: groups, datasets, and attributes. We call
this data model VizSchema.

It is then used to implement a VisIt plugin (called Vs)
which reads visualization entities from HDF5 files into
memory and creates VisIt data structures thus providing a
data importing mechanism from VizSchema compliant
HDF5 files into VisIt.

In what follows we describe the VizSchema data
model, Vs plugin, give examples of visualization and
discuss future directions. __

*Work supported by DOE grant DE-FC02-07ER54907.
#sveta@txcorp.com

Proceedings of ICAP09, San Francisco, CA WE2IOPK05

Computer Codes (Design, Simulation, Field Calculation)

101

VIZSCHEMA DATA MODEL
Principles

In this section we describe the elements of the
VizSchema. These elements identify the data structures
that one needs to expose in order to do visualization.
They are not about HOW the visualization is performed
(i.e. the type of light or position of the camera); instead,
they are WHAT is being visualized (data and geometry)
and WHAT needs to be exposed for minimal default
visualization.

In designing the schema we use the following guiding
principles:
• VizSchema assumes that data comes as one of three

types: variables (data which lives on a mesh
described outside of the HDF5 node containing the
data), variables with meshes (data which mixes
physical values with the spatial information which is
contained within the same HDF5 nodes) and meshes.

• These entities are identified by HDF5 markup and
have particular attributes specific to their types.

• All the markup for the schema should be contained in
the attributes so that users could choose the names of
the data itself (typically contained in groups and
datasets) as they please. The markup can be
generated during I/O or added in a post-processing
step. We expect these attributes to start with “vs”.

• VizSchema attributes can refer to other entities using
their short or fully-qualified names. If a short name
is used, the reader will first search in the same space
and then enlarge the search until the matching name
is found.

• Each vs entity has an attribute vsType, which
describes its category (variable or mesh, for
example).

• Some entities have different kinds (i.e. subtypes), in
which case a vsKind attribute specifies the kind.

Although, the schema entities described below use
HDF5 lingo, mapping to the NetCDF lingo is
straightforward; one needs just to substitute the term
“variable” in place of “dataset.” In the remainder of this
section we give some details of the VizSchema elements.

Variables and Variables With Mesh
We assume that data comes as one of two kinds: a

variable or a variable with mesh. A variable represents
data, which lives on a mesh described outside of the
variable array, while a variable with mesh contains spatial
information within itself. In Particle-in-Cell simulations,
all fields share the same mesh, so this mesh is described
once and the values of the electric and magnetic fields do
not contain the spatial information but rather depend on
the tool to determine the mesh that they live on. Such
fields are typically “variables.” For particle data, one
typically outputs their momentum and position in one
dataset, so here the tool is supposed to generate a point
mesh from within this dataset. So, particle data is a
“variable with mesh.” The suggested markup gives the
information to the visualization tool to interpret the data.

In the following pseudo-code snippet we show the
variable markup in HDF5:

Dataset "phi" {
 Att vsType = "variable"
 Att vsMesh = "mycartgrid"
 Att vsCentering = "zonal"
}

The vsType attribute in this example indicates that this

dataset needs to be visualized and needs a mesh called
mycartgrid to be defined elsewhere in the file. The
optional attribute vsCentering instructs that the data
should be interpolated to a zone (with the default being
nodal). The dimensions of the variable can be derived
from querying the dataspace and are not needed in the
explicit metadata.

Since variables with mesh mix spatial and other data in
one dataset, there should be a way to specify the data
structure. If the dataset’s first N indices specify the
coordinates (like in VORPAL), one could use the
following markup:

Dataset "vorpalElectrons" {
 Att vsType = "variableWithMesh"
 Att vsNumSpatialDims = N
}

If the layout of data is different from this order (for

example, like in SYNERGIA), one needs to use
vsSpatialIndices, which would indicate which indices of
the dataset contain spatial information:

Dataset “synergiaElectrons” {
 Att vsType = “varibaleWithMesh”
 Att vsSpatialIndices = [1, 3, 5]
}

Since the data can be ordered in many various ways,

one also needs to describe the ordering of the data or the
order of indices starting from the fastest-varying. For
example, for the 3D case:

compMinorC = (i0, i1, i2, ic)
compMinorF = (ic, i2, i1, i0)
compMajorC = (ic, i0, i1, i2)
 (same as compMinorF for 1D)
compMajorF = (i2, i1, i0, ic)
 (same as compMinorC for 1D)

In component minor order, the indices (i0, i1, i2, ic) are

such that the component index, ic, appears last. The C
reference would be array[i0][i1][i2][ic], while the Fortran
reference would be array(i0,i1,i2, ic). In component
major, the indices (ic, i0, i1, i2) are such that the
component index, ic, appear first. The C reference would
be array[ic][i0][i1][i2], while the Fortran reference would
be array(ic,i0,i1,i2).

When addressing the array in memory, two adjacent
memory locations can differ by incrementing either the
first index (Fortran) or the last index (C). Since the data is
generally written to HDF5 files without changing the

WE2IOPK05 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

102

order, the component index must be specified. The default
value of this attribute is compMinorC. This attribute is
needed to reorder data as expected by a visualization tool.

Derived Variable
It is often useful to define additional variables, which

are not being dumped by a simulation but present an
interesting thing to see as well. That is why, in addition
to the prime variable described above, we allow defining
expressions using regular mathematical symbols. For
example, one could define a density of electric energy as
follows:
Group anygroupname {
 Att vsType = "variableDefinition"
 Att vsDefinition = "elecEnergyDensity =

(E_0*E_0+E_1*E_1+E_2*E_2)"
}

In defining this, we assume that the visualization tool

can parse and evaluate such expressions. These
assumptions are valid for our VisIt plugin
implementation, which uses Python as its expression
language.

Meshes
There is no uniform classification of meshes across

tools and experiments. Based on our experience with
several codes, we determined that the following mesh
type categorizations are fairly general:
• Structured grid, which is defined by a list of points

defined by their coordinates.
• Rectilinear grid, which is defined by the lists of

increasing coordinate values for each axis and is a
specialization of a structured grid

• Uniform grid (sometimes also called uniform
Cartesian), which has constant distances between
nodes in all directions and is a specialization of a
rectilinear mesh

• Unstructured grid, which are defined by points and
cells of various types.

The VizSchema markup for these mesh types is shown
by the following examples. The first example describes a
structured mesh with component-minor ordering. The
dataset contains the mesh's points as an array ordered in
X, Y, and Z, with 3 values (x,y,z) at each mesh point, for
a total of 4 array dimensions:

Dataset "mystructmesh" {
 Att vsType = "mesh"
 Att vsKind = "structured"
 Att vsIndexOrder = "compMinorC"
 Att vsStartCell = [0, 0, 0]
}

The second example describes a 2D rectilinear mesh. It

is a group containing 2 datasets, each of which contains
the mesh points along one axis (X, Y). The optional
vsAxis* attributes provide a name for each axis.

Group "myrectgrid" {
 Att vsType = "mesh”

 Att vsKind = "rectilinear"
 Att vsAxis0 = "axis0"
 Att vsAxis1 = "axis1"
 Dataset axis0[n0]
 Dataset axis1[n1]
}
The third example describes a 3D uniform mesh. Since

all the mesh points are uniformly distributed, the
coordinates of each point do not have to be provided.
Instead, the VS attributes give the start and end position
and number of cells along each axis, permitting a
visualization tool to generate the mesh.

Group "myunigrid" {
 Att vsType = "mesh"
 Att vsKind = "uniform"
 Att vsStartCell = [0, 0, 0]
 Att vsNumCells = [200, 200, 104]
 Att vsLowerBounds = [-2.5, -2.5, -1.3]
 Att vsUpperBounds = [2.5, 2.5, 1.3]
}
The final example describes a 3D unstructured mesh.

Such a mesh is generated from two arrays, one containing
the coordinates of the mesh points, and the other
containing entries giving the set of points that compose
each cell in the mesh. By default, the coordinate array is
named “points” and the cell array is named “polygons”.
The optional attributes vsPoints and vsPolygons permit
arrays with non-default names to contain this information.

Group "mypolymesh" {
 Att vsType = “mesh”
 Att vsKind = “unstructured”
 Att vsPoints = "points"
 Att vsPolygons = "polygons"
}
The list of supported kinds of meshes will be growing

as we encounter more kinds of simulation data. Some of
them will need to have mappings to already existing types
with the data translations implemented in the Vs plugin.

Multi-Domain Data
Quite often simulation data comes from multiple

domains and uses different names in these domains, while
it would be natural to treat it as one variable in a
continuous domain. For such cases, we use vsMD
attribute, which instructs visualization tools to connect
data having the same value of this attribute.

Here is an example of two domain blocks that will be
treated as a single multi-domain mesh named "edgeMesh"
amd the two variables psiPriv and psiSol are declared to
be an md variable named psi:

Dataset "privMesh" {
 Att vsType = "mesh"
 Att vsKind = "structured"
 Att vsMD = “edgeMesh”
}
Dataset "solMesh" {
 Att vsType = "mesh"
 Att vsKind = "structured"
 Att vsMD = "edgeMesh"
}

Proceedings of ICAP09, San Francisco, CA WE2IOPK05

Computer Codes (Design, Simulation, Field Calculation)

103

Dataset "psiPriv" {
 Att vsType = "variable"
 Att vsMesh = "privMesh"
 Att vsMD = “psi”
}
Dataset "psiSol" {
 Att vsType = "variable"
 Att vsMesh = "solMesh"
 Att vsMD = "psi"
}

Summary Of The Data model
To summarize, the visualization data model consists of

variables, variables with mesh and meshes and their
metadata. Variables metadata includes their names, their
meshes, data ordering and centering. Variables with
mesh have metadata for their name, data ordering,
centering and separation of values from the spatial
information. Meshes metadata depends on the mesh kind
and fully describes each kind.

There are also variables defined as expressions and
links that allow creating multi-domain variables.

In addition to the metadata described above,
visualization needs additional metadata needed for correct
allocation of the memory. For example, each dataset has
its internal type (int, for example) and dimensions. This
metadata should also be extracted before the visualization
is possible but does not have to be present in the data
markup.

VS PLUGIN
Based on the data model described above, we

implemented a C++ data reader class, which reads all the
needed metadata from HDF5 files into the memory. This
reader creates an object that reflects the structure of an
HDF5 file as it is seen by visualization – lists of variables
with the meshes that they live on, variables with meshes,
derived variables and meshes and all their metadata.
Once such object is created, one uses the reader’s
methods for reading these entities by their name. All the
data is returned as a void* array (consistent with HDF5
model) for which memory should be allocated based on
the metadata of this entity. The interface of the reader
class is independent of the type of the visualization tool
and is implemented for HDF5 data.

Next we created a VisIt plugin using the reader’s API.
This plugin is available for the download at
https://ice.txcorp.com/trac/vizschema/wiki/WikiStart. We
are in the process of adding it to VisIt repository so it will
be available upon VisIt installations.

EXAMPLES
Several codes adopted VizSchema and now provide the

compliant output during I/O. One can also change the
files after they have been generated using PyTables [9]
(we have successfully using to change data as the schema
evolved and also to annotate SYNERGIA files in
accordance with the schema).

The plugin code was tested on Linux and OS X and is
installed on such supercomputers as franklin.nersc.gov.
Figs. 1-4 show some examples of visualizations done
using the VizSchema plugin for VisIt. Fig. 1 is a screen
capture of OASCR Award for Scientific Visualization at
the 2008 Scientific Discovery through Advanced
Computation Conference (Seattle) for the video, “Visual
Inspection of a VORPAL Modeled Crab Cavity.”

Fig. 2 has been used as a cover for one of the issues of
SciDAC review magazine [10]. Fig. 3 shows
visualization for SYNERGIA data. Fig. 4 shows an
example of multi-domain visualization and demonstrates
that VizSchema is general enough to accommodate
applications outside of computational accelerator physics:
data from FACETS (Framework Application for Core-
Edge Transport Simulations) [11].

CONCLUSIONS AND FUTURE
DIRECTIONS

Standardization of the HDF5 output using consistent
markup for visualization proved to be useful in
accelerator physics applications as well as other domains
having notions of fields and particles. The developed
VisIt plugin is available for all interested parties.

In the nearest future we intend to extend the schema
and the plugin with more detailed metadata for
unstructured meshes and bring more applications into the
VizSchema realm.

It will be interesting to develop a means to
automatically annotate data with the markup. One could
have a text or XML input for mapping internal data to the
data elements of the schema and then use PyTables to add
the expected attributes.

ACKNOWLEDGMENT
We would like to thank the VisIt, FACETS and

VORPAL teams for helping us in this work. We also
thank C. Geddes and G. Weber for providing us with
images and J. Amundsen for providing us with
SYNERGIA data.

WE2IOPK05 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

104

Figure 1: Examples of a visualization of VORPAL data: electromagnetic fields (red and green) and magnetic stress on
the cavity (on the walls).

Figure 2: A three-dimensional VORPAL simulation models the self-consistent evolution of the wake resulting from a
laser pulse and the acceleration of particles in a laser-plasma particle accelerator. Shown in volume rendering are the
wake (blue) and a particle bunch (green and yellow). Courtesy of G.H. Weber and C. Geddes.

Proceedings of ICAP09, San Francisco, CA WE2IOPK05

Computer Codes (Design, Simulation, Field Calculation)

105

Figure 3: Examples of a visualization of SYNERGIA data: beam colored by the energy of the particles.

Figure 4: Examples of a visualization of FACETS data: electron temperature defined in multiple domains.

REFERENCES

[1] http://hdf.ncsa.uiuc.edu/HDF5/.
[2] http//www.unidata.ucar.edu/packages/netcdf
[3] C. Nieter and J/ R. Cary, "VORPAL: a versatile

plasma simulation code," J. Comp. Phys. 196, 448-
472 (2004).

[4] J. Amundson and P. Spentzouris, J. Qiang and R.
Ryne, Synergia: A 3D Accelerator Modelling Tool
with 3D Space Charge, Journal of Computational
Physics, Volume 211, Issue 1, 1 January 2006, Pages
229-248.

[5] http://www.scidac.gov/physics/COMPASS.html.
[6] http://www.rsinc.com/idl/index.asp.
[7] http://www.avs.com/.
[8] H. Childs, E. S. Brugger, K. S. Bonnell, J. S.

Meredith, M. Miller, B, J Whitlock and N. Max, A
Contract-Based System for Large Data Visualization,

Proceedings of IEEE Visualization 2005, pp 190-198,
Minneapolis, Minnesota, October 23--25, 2005.

[9] http://www.pytables.org.
[10] http://www.scidacreview.org/0903/index.html.
[11] J. R. Cary, J. Candy, J. Cobb, R. H. Cohen, T.

Epperly, D. J. Estep, S. Krasheninnikov, A. D.
Malony, D. C. McCune, L. McInnes, A. Pankin, S.
Balay, J. A. Carlsson, M. R. Fahey, R. J. Groebner,
A. H. Hakim, S. E. Kruger, M. Miah, A. Pletzer, S.
Shasharina, S. Vadlamani, D. Wade-Stein, T. D.
Rognlien, A. Morris, S. Shende, G. W. Hammett, K.
Indireshkumar, A. Yu. Pigarov and H. Zhang,
Concurrent, parallel, multiphysics coupling in the
FACETS project, SciDAC 2009, J. Physics: Conf.
Series 180, 012056 (2009).

WE2IOPK05 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

106

