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Abstract

Beam-scattering effects, including intra-beam scatter-
ing (IBS) and Touschek scattering, may become an issue
for linac-based 4th-generation light sources, such as X-
ray free-electron lasers (FELs) and energy recovery linacs
(ERLs), as the electron density inside the bunch is very
high. In this paper, we describe simulation tools for mod-
eling beam-scattering effects that were recently developed
at the Advanced Photon Source (APS). We also demon-
strate their application to a possible ERL-based APS up-
grade. The beam loss issue due to the Touschek scattering
effect is addressed through momentum aperture optimiza-
tion. The consequences of IBS for brightness, FEL gain,
and other figures of merit are also discussed. Calculations
are performed using a particle distribution generated by an
optimized high-brightness injector simulation.

INTRODUCTION

The Coulomb scattering between particles inside a beam
has been widely studied for circular accelerators. They
were largely ignored for linacs in the past, since signifi-
cant effects are not expected for one-pass, low-repetition-
rate systems with relatively large beam size. The scatter-
ing rate is quite low, and there is not enough time for the
beam to develop any noticeable diffusion. The situation
has dramatically changed since linac-based 4th-generation
light sources are on the horizon. To provide users with syn-
chrotron radiation with unprecedented high brightness, the
required linac beam must have extremely low emittance
with significant charge and a high repetition rate. To en-
sure that the machine can be run safely with acceptable
beam losses and that the beam quality will be not harmed
by IBS, we developed a series of simulation capabilities in
elegant [1]. They provide the ability to simulate beam-
scattering effects for an arbitrarily distributed linac beam
with energy variation.

Beam-scattering effects are traditionally separated into
two categories, Touschek effect and IBS, based on whether
the scattered particles are lost immediately after the scatter-
ing event or not, respectively. In the case of IBS, we only
see diffusion that leads to increased emittance in 6-D phase
space; whereas in Touschek, a single scattering event may
result in loss of the scattered particles. Different theoret-
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ical approaches are used to calculate the beam size diffu-
sion rate and beam loss rate. In developing our simulation
tools, we followed the same path: the widely used Bjorken-
Mtingwa’s [2] formula is chosen for calculating the emit-
tance growth rate due to the IBS effect, while a combina-
tion of Piwinski’s formula and Monte Carlo simulation is
used for determination beam loss rates and positions.

Both the Bjorken-Mtingwa formula and Piwinski’s for-
mula were developed for stored beam, which has constant
energy, and both assume a Gaussian bunch. These assump-
tions are generally invalid for a linac beam. In previous
papers [3, 4, 5, 6], we discussed the beam loss issue for a
one-pass transport system (Gaussian beam, constant beam
energy), and the IBS for a arbitrarily distributed acceler-
ating beam. In this paper, we describe newly developed
methods that give us the ability to simulate the beam loss
for an arbitrarily distributed linac beam, and summarize the
already existing IBS tools. We also give an example appli-
cation to a possible ERL-based APS upgrade design [7] us-
ing a particle distribution generated by an optimized high-
brightness injector simulation [8].

A PROPOSED APS ERL UPGRADE

The APS has an eye on building an ERL for a future
upgrade. Figure 1 shows the layout of one proposed de-
sign. The existing APS ring is used as part of the new
machine. Since the radiation shielding of the APS already
exists, there is concern about beam loss rate from the high-
average-current ERL beam. Also, because of energy recov-
ery, we will find that a small energy deviation generated at
high energy may exceed the energy aperture at the end of
deceleration, resulting in beam loss. Therefore, a detailed
simulation tool that can determine the beam loss rate and
the beam loss position precisely is needed.

Figure 1: Layout of a proposed APS ERL upgrade.

In general, a linac beam departs from the normally as-
sumed Gaussian distribution that holds for a stored beam,
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especially in the longitudinal dimension. Figure 2 shows
the particle distribution from our optimized high-brightness
injector simulation. This distribution is used in the laterex-
amples of our simulation tools. The major beam parame-
ters of the simulated bunch are:εx,n = εy,n = 0.35µm,
σp = 2.63 ·10−3, σl = 0.6mm, bunch charge= 77pC, and
repetition frequency= 1.3GHz.

(a) (b)

Figure 2: Particle distribution from optimized high-
brightness injector simulation: (a) horizontal, (b) longitu-
dinal (p=βγ).

TOUSCHEK EFFECT

Simulation of beam loss due to Touschek effect is per-
formed in several steps. The procedure is illustrated in Fig-
ure 3. To start the simulation, the beamline under study is
first divided into many small sections by inserting a special
elementTSCATTER into it. (This is easily done using the
elegant commandinsert_elements.) The total num-
ber and locations where one should insertTSCATTER ele-
ments depends on the rapidity with which the energy and
optical functions vary. To ensure reliable results, these vari-
ations should be small between successive scattering ele-
ments.

Figure 3: Procedure of the Touschek-caused beam loss sim-
ulation.

Estimate local momentum aperture

Unlike in storage rings, the fractional momentum aper-
ture varies over a large range in linacs, as illustrated in Fig-
ure 4. In order to efficiently study beam loss from Touschek
scattering, we need to know the approximate local momen-
tum aperture and use these results for later simulation [9].

elegant provides themomentum_aperture command
to determine local momentum aperture. We also added a

Figure 4: Local momentum aperture for example APS
ERL lattice (tracking stopped before last rf module (E=189
MV).

switch in the Touschek simulation module that can gener-
ate a momentum aperture bunch at eachTSCATTER position
and then track the bunch to the end of the beamline. The
lost particles are collected and an approximate local mo-
mentum aperture is obtained. Figure 5 shows an example
of the aperture bunch and lost particles.

Figure 5: A momentum aperture bunch and lost particles.
All particles havex(x′, y, y′, t) = 0.

The results obtained from this step are very important for
performing an economical yet detailed Monte Carlo simu-
lation in subsequent steps.

Calculate local bunch distribution function

The electron bunch from a high-brightness injector is
typically not Gaussian distributed, especially in the longi-
tudinal direction. As shown in Figure 2, the energy spread
of the entire bunch is more than two orders of magnitude
larger than the “intrinsic” energy spread. The traditional
formulae, which calculate the beam-scattering effect based
on the assumption of a Gaussian beam, are therefore in-
valid. To match our simulation result more closely to the
real machine, we track the simulated electron bunch from
the gun through the beamline with insertedTSCATTER ele-
ments. At eachTSCATTER position, the tracked particles’
coordinates are saved so that a corresponding distribution
histogram can be made. This distribution histogram (table)
is read back later by the Monte Carlo simulation module in
order to obtain the particle density by interpolation of the
table.

To accomplish this task, we wrote a general tool to gen-
erate an n-dimension histogram for a collection of n-tuples,
where n can be any integer. Of course, it’s natural to build
a 6D histogram from a particle distribution. One concern is
that, in order to have a meaningful 6D histogram, we need a
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huge number of particles from the injector simulation. For
example, to have 11 bins in each dimension, the total num-
ber of bins is about116 ≈ 2 · 106, and the total number
of particles need to be larger than this value. Another con-
cern is to interpolate in 6D, any point’s value is determined
by the nearby26 = 64 grid point values. This calcula-
tion is in principle possible using our software. However,
to demonstrate our method in this paper, we separated the
beam distribution into two parts: transverse (4D) and lon-
gitudinal (2D), see Figure 6. The simulated gun bunch has
500,000 particles.

Figure 6: Histogram of the simulated bunch at the begin-
ning of the APS ELR beamline: (a) transverse (4D), (b)
longitudinal (2D). (The index is an n-bit counter where
each bit has the size of the number of bins of the corre-
sponding dimension.)

Monte Carlo simulation

In the center-of-mass (CM) system1, the probability of
one of the two interacting particles being scattered into a
solid angledΩ∗ is given by the differential Møller cross
section [10]
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(1)
where re is the classical electron radius;γ∗ and β∗ are
the relative energy and velocity of scattered electrons in
the CM system, respectively;Θ∗ is the angle between
the momenta before and after scattering; anddΩ∗ =
sin Θ∗dΘ∗dΨ∗.

The Touschek scattered particles’ distribution is mod-
eled by Monte Carlo simulation. To use Equation (1), a
pair of particles with same position (x, y, t) are generated
randomly. Their momenta are transformed into the CM
system using the Lorentz transformation. In the CM sys-
tem, the scattering angles (Θ∗,Ψ∗) are selected randomly.
The scattered particles’ momenta, together with the associ-
ated Møller cross section, are then transformed back to the
laboratory coordinate system. Therefore, a single random
scattering event includes 11 random numbers (3 positions,
6 momenta, and 2 scattering angles).

The total scattering rateR is given by integral over
all possible scattering angles and over all electrons in the

1For clarity, we use (*) to denote all quantities in the CM system, as
opposed to quantities in the laboratory coordinate system.

bunch. In the CM system,

R∗ = 2

∫
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where v∗ is the scattered electrons’ velocity,σ∗ is the
total Møller cross section,~x∗ = (x∗, y∗, z∗, p∗x, p∗y, p∗z),
ρ(x∗
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∗ is the electron phase-space density, anddV =
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The reason forΘ∗ ∈ (0, π
2
] is that, if one electron is

scattered into the region0 < Θ∗ ≤ π
2

, then the other is
scattered into the regionπ

2
≤ Θ∗ < π. The factor “2” in

Equation (2) includes both regions.
For the problem we are interested in, we assume that

px ≪ pz andpy ≪ pz, which means that the Lorentz trans-
formation is mainly taking place along thez direction, and
σ∗ is parallel to thez∗-axis. Transforming to the laboratory
coordinate system gives

|v|σ =
|v∗|

γ

σ∗

γ
(4)

and

R = 2

∫

|v|σρ( ~x1)ρ( ~x2)dV, (5)

with

dV = dxβdyβd∆zdx′
β1

dx′
β2

dy′
β1

dy′
β2

d∆p1d∆p2. (6)

Equation (5) can be computed using the Monte Carlo
integration withN uniform distributed samples in the n-
dimensional volumeV , e.g.,

∫

V

f(~x)d~x ≈
V

2N

M
∑

i=1

f(~xi), (7)

where “2” represents two particles involved in a sampled
scattering event, and the integration is calculated for each
scattered particle respectively. For the problem of interest
(beam loss calculation),M (M < 2N ) is the total number
of particles withδ > δm, whereδm is an input value and
should be chosen slightly smaller than the local momentum
aperture for an economical simulation.

Figure 7 shows the Monte Carlo integration convergence
vs. the total number of valid simulated scattered particles
M . Based on this, we use5 · 106 as the default value of
M in elegant. Figure 8 shows the comparision of the lo-
cal scattering rates calculated from Piwinski’s formula [11]
and our Monte Carlo simulation for a Gaussian-distributed
beam. We can see that the agreement is excellent.

For a non-Gaussian-distributed beam,elegant has the
ability to read the real beam distribution function from a
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Figure 7: Scattering rate (in an arbitrary scale) vs. number
of valid simulated scattered particles.

Figure 8: Local Touschek scattering rate (1/s): Piwinski
formula (black) and Monte Carlo simulation (red).

histogram table. The table is interpolated to get the val-
ues ofρ( ~x1) andρ( ~x2) in Equation (5). Figure 9 shows
the comparison of simulated scattering rate for the assumed
Gaussian-distributed beam and the realistic beam distribu-
tion. In the dispersion-free regions (η = 0), we obtained
similar results for both cases, which is expected since the
transverse beam distribution is very close to the Gaussian
distribution. At a location withη 6= 0, the simulated rate
depends on energy spread and the local value of the dis-
persion. Since the energy distribution is not Gaussian, the
results from the Gaussian bunch are unreliable.

Figure 9: Simulated local Touschek scattering rate (1/s)
for Gaussian beam (PRate) and realistic beam distribution
(SRate).

Simulation of loss rate and position

Beam-scattering is a random process and can happen at
any place along the beamline. The Monte Carlo simula-
tion at one location is already very time consuming. To
simulate the Touschek effect at every location of the beam-
line and obtain a stable statistical result is almost a non-
realistic task. From Figure 8, we see clearly that the Monte

Carlo simulation results are very close to Piwinski’s for-
mula for a Gaussian-distributed bunch. This fact inspired
us to consider using Piwinski’s formula to calculate the in-
tegrated scattering rate over a section of beamline and using
the Monte Carlo simulation to generate random scattered
particles. This allows obtaining accurate results with far
few particles. Each scattered particle represents a scatter-
ing rate of

Ri =
ri

∑

ri

∫

RPiwinski, (8)

where ri is the associated local scattering rateV
2N f(~xi)

in Equation (7),
∑

ri is the value of Equation (7), and
∫

RPiwinski is the integrated Piwinski rate over the section
of beamline. For a non-Gaussian-distributed bunch the lo-
cal scattering rate can not be given by Piwinski’s formula.
In this case, Equation (8) is modified by multiplying by a
factor RMonteCarlo

RP iwinski
, whereRMonteCarlo andRPiwinski are

both local rates calculated at the same place.
The scattered particles are then tracked from the scatter-

ing location to the end of the beamline. The lost particles
Ri and locations are collected, and the total beam loss rate
and loss position are given by adding results from all the
small beamline sections together.

As shown in Figure 7, to obtain a stable statistical result,
the total number of valid eventsM (not the total number
of samples 2N ) needs to be large enough. (Recall thatM

is the number of particles for whichδ > δm.) In the case
of calculating beam loss rate, it implies that the input value
of δm should be close to the real momentum aperture for
an economical calculation. A value of0.8δ0, whereδ0 is
the estimated momentum aperture, is used in our example
simulation.

We examined the scattering rate that each simulated par-
ticle represents and, not surprisingly, found a large varia-
tion. Some simulated particles represent very likely scat-
tering events, while some represent very low probability
events. We sorted all simulated particles by the associated
scattering rate. Figure 10 illustrates the sum of the scatter-
ing rate (

∑

ri) vs. the number of simulated particles (
∑

i

).

Figure 10: Integrated scattering rate vs. number of simu-
lated particles. Particles are sorted with increasing associ-
ated scattering rate.

From this plot we can see that about5% of simulated
particles represent about99% of the scattering rate. If we

TH2IOPK04 Proceedings of ICAP09, San Francisco, CA

Multi-Particle Beam Dynamics

176



Figure 11: Simulated loss rate vs. position for various val-
ues of the scattering rate cut-off.

make use of an estimate of the local momentum aperture,
which we do, then a large portion of the simulated particles
will be lost somewhere along the beamline. Of those, we
need only track that5% of the particles, which represents
99% of the scattering events. The resulting error will be
negligible. Figure 11 compares the computed loss rate for
tracking scattered particles with95%, 99%, and100% of
the total scattering rate, respectively. It’s clear that the dif-
ferences are small. In practice, the user can determine what
percentage of scattering they would like to simulate, and
elegant will choose the corresponding high-probability
scattering events automatically for beam loss study. This
strategy makes the calculation even more economical.

An application to the APS ERL upgrade is shown in
Figure 12. Without optimized sextupoles installed in the
turn-around-arc (TAA) section, the beam loss rate is too
high. After optimization of the sextupoles configuration,
the beam loss rate in the APS ring portion (from about
2600m to 3600m) is reduced significantly, to a level that
is safe for operation.

Figure 12: Simulated loss rate vs. position for APS ERL:
(a) without sextupole optimization; (b) with optimized sex-
tupoles

IBS EFFECT

The IBS effect is another widely studied beam-scattering
effect in storage rings. The emittance growth rateτd in the
directiond (x, y, orz) is given by the Bjorken-Mtingwa [2]
formula for a Gaussian-distributed beam:

1

τd
=

π2cr2

0
m3NlnΛ

γΓ
f, (9)

wherec is the speed of light,r0 is the classical particle
radius,m is the particle mass,N is the number of particles
per bunch (or in the beam for the unbunched case),lnΛ
is a Coulomb logarithm,γ is the Lorentz factor,Γ is the
6-dimensional invariant phase-space volume of the beam

Γ = (2π)3(βγ)3m3εxεyσpσz, (10)

andf is a complicated function of beam size.
As for the Touschek effect, for a non-Gaussian beam

Equation (9) is no longer valid, and we have to search for a
new method. Due to the different natures of IBS and Tou-
schek scattering, we care more about beam size evaluation
than the real particle distribution, so we choose to continue
to use the Bjorken-Mtingwa formula with some modifica-
tions. Figure 2 shows that the major difference between a
linac beam and a Gaussian beam is in the longitudinal di-
rection. The “intrinsic” energy spreadσp is much smaller
than the bunch’s energy spread, and

1

τd
∝

1

γεxNεyNσpσz
f. (11)

This difference could result in many orders of magnitude
error in the computation ofτd and must be taken into ac-
count. Inelegant we provide a slice method to overcome
the problem.

First, the beamline is divided into several sections by
inserting a special elementISCATTER in the beamline,
similar to what we did in the Touschek simulation. Un-
like the Touschek simulation, it is not necessary to put as
manyISCATTER elements asTSCATTER elements along the
beamline, due to the fact that IBS effects need time to de-
velop. AnIBSCATTER element is only needed when beam
size has a noticeable change due to the IBS effect.

For each section of beamline, the bunch is sliced longi-
tudinally at the beginning of the section. The beam param-
eters and optical functions are calculated for each slice and
propagated to the end of the section. To deal with a bunch
traveling through a linac with energy variation, normal-
ized beam parameters are used and are assumed to be un-
changed for each section. Because there are no synchrotron
oscillations for a linac bunch, the longitudinal growth rate
is increased by a factor of 2 based on Piwinski’s [12] for-
mula

1

τz
[linac-bunch] = 2

1

τz
[circulating-bunch] , (12)

and the effective bunch length isσz = 1√
2π

c∆t, where∆t

is the slice duration.
Each slice is assumed to be Gaussian distributed in trans-

verse coordinates and energy spread, and to be uniformly
distributed in the longitudinal direction. The Bjorken-
Mtingwa formula is used to calculate the growth rateτd

locally and is integrated over the entire section for each
slice. At the end of the section (just prior to the location
of the nextIBSCATTER element), particles in each slice are
scattered smoothly or randomly based on the calculatedτd.
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Particles are then put back together as a whole bunch, and
all is ready for simulation of the next section of beamline.

We applied this method to the same APS ERL lattice
used for our Touschek studies. Figure 13 shows the IBS
growth rate with and without slicing beam. It’s clear that
the IBS growth rate of each slice is higher than if calcu-
lated for the whole bunch, especially in the longitudinal
direction.

(a) (b)

Figure 13: IBS growth rate for sliced bunch (black, each
dot represents a slice) and unsliced bunch (red): (a)τx, (b)
τz.

Figure 13 also shows that the longitudinal IBS growth
rate is much higher than the transverse growth rate; this
is expected due to the fact that the beam is much cooler
in the longitudinal dimension. Figure 14 shows the beam
dimensions at the end of the linac with (77pC) and with-
out (0 pC) IBS effect. There is no noticeable change in
the transverse dimension. In the longitudinal, the energy
spread at the center of the bunch increases due to the IBS
effect. The change of energy spread is small and mainly
happens at the center of the bunch. There should be no sig-
nificant effect on brightness or FEL gain. It is possible that
it may reduce CSR effects. Figure 15 shows the evaluation
of energy spread of the entire bunch. There is no noticeable
difference with and without the IBS effect.

Figure 14: Particle distribution vs. longitudinal position
(t) at the end of beamline with/without IBS: (a) normalized
emittance; (b) energy spread.

Figure 15: Bunch energy spread evolution vs. s.

CONCLUSION

We developed a method based onelegant to simulate
beam-scattering effects for a linac beam with energy vari-
ation. The beam loss rate and location can be obtained by

tracking scattered particles from Monte Carlo simulation,
using realistic beam distributions. Beam-size evaluationis
obtained by applying the Bjorken-Mtingwa formula to a
sliced bunch. After applying the tools to an example APS
ERL lattice design, we found that the Touschek scattering
effect is significant. The momentum aperture of the lattice
needs to be optimized carefully, and a beam collimation
system can be designed based on the simulation results.
The IBS growth rate is also very high for such a beam, but
due to the fact that the time to travel through the linac is
very short, the IBS effect has not enough time to develop.
Hence there is no obvious effect on the machine’s perfor-
mance.
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