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Abstract

Precise and fast 3D space-charge calculations for
bunches of charged particles are of growing importance in
recent accelerator designs. One of the possible approaches
is the particle mesh method, computing the potential of the
bunch in the rest frame by means of Poisson’s equation. In
this, the charges of the macro particles representing the dis-
tribution of the particles of the whole bunch are distributed
on a mesh. Two kinds of Poisson solvers are implemented
in the tracking code Astra. One of them is the direct solu-
tion of the Poisson equation applying Fast Fourier Methods
(FFT), the other is a finite difference discretization com-
bined with an iterative multigrid Poisson solver (MG). Due
to recent developments in beam dynamics studies, the sim-
ulation of high brightness electron bunches is a growing
field of interest. In this paper the numerical behavior of
such bunches is investigated with respect to the two differ-
ent 3D Poisson solvers implemented in Astra.

INTRODUCTION

The program package Astra (A space charge tracking al-
gorithm) has been successfully used in the design of linac
and rf photoinjector systems. The Astra suite originally
developed by K. Flottmann tracks macro particles through
user defined external fields including the space charge field
of the particle cloud [1].

The first version of Astra allowed the calculation of
space charge fields of bunches with azimutal symmetry
only. A further development was the implementation of
a FFT-based Poisson solver for full 3D space charge calcu-
lations with free space boundary conditions [2]. Recently,
a new set of 3D Poisson solvers has been implemented in
Astra by G. Poplau. These Poisson solvers are iterative al-
gorithms, among them the state-of-the-art multigrid Pois-
son solver. The first version of the multigrid solver espe-
cially developed for space charge calculations on adaptive
discretizations was introduced in [9]. Further, these multi-
grid solvers have been developed as software package MO-
EVE [5]. Applications of the solvers within tracking rou-
tines can be found, for instance, in [7, 8].

In this paper, only the basic concepts of both the FFT
and the iterative Poisson solvers are described. Advantages
and disadvantages were discussed in [6]. Since high bright-
ness, low emittance electron bunches have important appli-
cations in future light sources and linear colliders, the main
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part of this paper deals with the the numerical investiga-
tion of such bunches. In particular, the space charge calcu-
lation of bunches with uniform particle distribution poses
a challenge. Results on this subject were reported, for in-
stance, in [3, 10]. Here, cylindrical bunches with uniformly
distributed macro particles will be studied with respect to
space charge calculations of both the FFT and the multigrid
Poisson solver.

3D SPACE CHARGE PARTICLE MESH
ALGORITHMS

A widely used method for the calculation of 3D space
charge fields is the particle mesh method (PM) described
e. g. in [4]. For this approach, the bunch is modelled as
a distribution of macro particles. The potential ¢ of the
bunch is determined in the rest frame by means of Poisson’s
equation given by

AQ — P . 3
—Ap=— in QC R’ (D)
€0

where p denotes the space charge density and € the dielec-
tric constant. Generally, a rectangular box Q is constructed
around the bunch and a Cartesian mesh is defined inside
this box. The values p are assigned at the grid points by
a volume weighted distribution of the charge of the macro
particles. Next, the potential values at the grid points are
determined by a Poisson solver. In Astra two different
solver types are implemented. One of these methods is the
widespread FFT Poisson solver. The second approach is a
fast iterative solver based on multigrid.

FFET Poisson Solver

The FFT Poisson solver is based on the direct solution
of Poisson’s equation by means of the Green’s function G
given by

Qijk= D Gigj ki P ji- (2
i/7j/’k/

Here, ¢; jx, Gi—y j—j x—r and Py jr p refer to the values of
the related functions at the mesh points. Applying the dis-
crete Fourier transformation (DFT) the relation

(bl,m,n = Gl,m,nﬁl,m.n 3)

is obtained from (2) due to the convolution theorem. The
circumflex denotes the DFT and (I,m,n) the harmonic
wave numbers. The inverse DFT provides the potential at
the grid points.
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Figure 1: Longitudinal electric field of a bunch with aspect ratio 1: E, along the z-axis calculated with FFT (left) and MG

(right).
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DISTRIBUTION

Space charge simulations of bunches with uniform par-
ticle distribution pose a problem which is caused by the
jump in the space charge density at the edges of the bunch.
In practice, one example of the occurrence of such parti-
cle distributions is near the cathode of a rf photo gun: the
bunch is short because the electrons start at the cathode
with an energy of almost zero. Furthermore, at high en-

In Astra a multigrid algorithm (MG) and a multi-
ergies a bunch appears long stretched in the rest frame.

State-of-the-art is the application of a multigrid Poisson
solver which has optimal convergence, i. e. the number of
Recently, especially short bunches were investigated

iteration steps to obtain a certain accuracy is independent

of N.

mented. The computational effort of the second algorithm

is a little bit higher but its performance is more stable than
BUNCHES WITH UNIFORM PARTICLE

grid preconditioned conjugate gradient method are imple-
MG. This can be advantageous for real applications.

at the grid points. Since the matrix A is sparse, iterative

solvers can be applied efficiently.

“4)
(&)

where u denotes the vector of the unknown values of the

N3 the
potential and f the vector of the given space charge density

:

n
a

)+

m

2
) +(

ay

Au=Ff,

il
ax

It is well-known that the DFT can be efficiently cal-

culated by Fast Fourier Transformation (FFT) algorithms.
The numerical effort of the Fourier approach in the three
dimensional case is O(MlogN) with the same number of

2" in each coordinate direction and M

total number of grid points.

Gl,m,n

Iterative Poisson solvers require a different approach.

Firstly, the Laplacian in (1) is discretized. The discretiza-

Let the computational domain € be defined as Q
[—ay,ay] x [—ay,a,] x [—a;,a;]. Then, the DFT of the stan-

Figure 2: Longitudinal electric field of a bunch with aspect ratio 1: E, along the z-axis calculated with FFT (left) and MG
dard Green’s function is given by

(right).
tion by second order finite differences (FD) provides a lin-

ear system of equations
Numerical Methods in Field Computation
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Figure 3: Longitudinal electric field of a short bunch with aspect ratio 2: E, along the z-axis calculated with FFT (left)

and MG (right).
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Figure 4: Longitudinal electric field of a short bunch with aspect ratio 10: E, along the z-axis calculated with FFT (left)

and MG (right).

in [10] and new Poisson solvers based on the FFT with
variations of the Green’s function were constructed. In the
following, bunches of cylindrical shape were chosen as the
model problem. All bunches contain 20,000 uniformly dis-
tributed macro particles. Further, bunches of different as-
pect ratios are investigated, where the aspect ratio is defined
by o./0; with 6, = o,

Bunch with Aspect Ratio One

The first numerical example is a cylindrical bunch with
aspect ratio one in the rest frame, more precisely 6 = 6, =
0, =1mm.

Figure 1 presents the longitudinal electric field obtained
with the FFT and the MG Poisson solver, respectively. The
resolution of the bounding box Q is given by N, = N, =
N, = N = 32. While the MG solver provides a good ap-
proximation of the field at the edges of the bunch, the FFT
solver smoothes the hard edges.

Figure 2 shows that a higher resolution (Ny = N, = N, =
64) reduces these edge effects. Further, the FFT solver
achieves better results with respect to the inner part of the
bunch: the electrical field is smoother here. The result of
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the MG solver can be improved by enlarging the number of
macro particles.

Short Bunches

At low energy, for instance, near the cathode, a bunch
has a pancake-like shape. In order to demonstrate the
numerical problems with space charge calculations of
pancake-shaped bunches, first a bunch of cylindrical shape
with 6, = 6, = 1 mm and 6; = 0.5 mm was chosen. The
bounding box € was discretized by Ny = N, = N, = 32
steps.

While Figure 3 shows satisfying results for the MG Pois-
son solver, the FFT solver has bigger edge effects than for
the bunch with aspect ratio one (compare Figure 3 and 1).
In particular, the highest values of the field are not situated
at the edges of the bunch but outside.

As shown in Figure 4, the edge effect related to the
FFT solver becomes bigger, if the aspect ratio is enlarged.
This simulation was performed with 6 = 6, = 1 mm and
0, = 0.1 mm. Further, Figure 4 demonstrates the good ap-
proximation of the longitudinal field obtained by the MG
solver. It has to be mentioned that the edge effect will be

Numerical Methods in Field Computation
Solver Techniques
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Figure 5: Transverse electric field of a long bunch with aspect ratio 0.01: E, along the x-axis calculated with FFT (left)

and MG (right).

reduced if the FFT Poisson solver is applied with a higher
resolution and a larger number of macro particles.

Long Bunches

For space charge calculations a bunch appears at high en-
ergies long stretched in the rest frame. As numerical model
for a long bunch a cylindrical bunch with 6, = 6y, = 1 mm
and 6, = 100 mm was chosen.

The behavior of the electric field that appeared for the
short bunches in longitudinal direction can now be ob-
served transversally. Figure 5 represents E, of the related
field in x-direction (for symmetry reasons the same plot
was obtained for E), in y-direction). Here, the edge effect is
not as big as for the short bunches.

CONCLUSIONS

Beam dynamics simulations of high brightness, low
emittance electron beams have gained in importance over
the last few years due to the application for future light
sources and linear colliders. Since space charge calcula-
tions of such bunches pose a challenge to numerical proce-
dures, the two 3D space charge algorithms implemented in
Astra - the direct FFT and the iterative MG Poisson solver -
were investigated concerning cylindrically shaped bunches
with uniform particle distribution. It turned out that the
FFT solver shows the well-known problem to approximate
the field at the edges of the bunch correctly. This effect
occurs for short bunches in the longitudinal and for long
bunches in the transverse direction. A higher resolution re-
duces the edge effects. The MG Poisson solver provides
good results for short as well as for long bunches. While
the MG method requires a larger number of macro particles
for simulations with a higher resolution, the FFT approach
still achieves good results without enlarging the number of
macro particles.
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