
TESTING SOLUTIONS FOR SIEMENS PLC PROGRAMS
BASED ON PLCSIM ADVANCED

Gy. Sallai∗, D. Darvas, E. Blanco, CERN, Geneva, Switzerland

Abstract
Testing Programmable Logic Controllers (PLCs) is chal-

lenging, partially due to the lack of dedicated support for
testing. Isolating a part of the PLC program, feeding it with
test inputs and checking the test outputs often require man-
ual work and physical hardware. The Siemens PLCSIM
Advanced tool is a simulator solution for new generation
Siemens PLCs and provides a rich application programming
interface (API). This work presents a testing workflow for
PLC programs built upon the capabilities of the PLCSIM
Advanced API and the TIA Portal Openness API. Our tool
takes a test case described in an intuitive but powerful tabu-
lar format, which is then executed on the full PLC program
or a selected part of it. Outputs are captured automatically
via the simulator API. Experience with this workflow shows
that it offers an automated and scalable solution for PLC pro-
gram testing and is applicable for multiple levels of testing
without the need of using a physical hardware.

INTRODUCTION
Programmable Logic Controllers (PLC) are widely used

devices for process control and automation. As their error-
free operation is crucial, thorough verification and testing is
required to gain confidence in their correct operation. While
a plethora of tools are available for testing other languages
and platforms, testing support for PLC programs is rather
limited. As such, PLC program testing is often restricted
to higher levels, with the need for a physical hardware and
some tedious manual configuration steps.

This means that there is a need for improvement in PLC
program testing. Testing should be easier (with easy configu-
ration and less manual effort), more accessible (by reducing
the need for dedicated testing hardware) and should not re-
quire the modification of existing source code.

Our solution, built upon Siemens PLCSIM Advanced,
offers a scalable, accessible and user-friendly workflow for
testing Siemens PLC programs. Using a simulator allows us
to perform testing without having hardware in the loop, and
by using the API offered by the simulator, the whole process
can be automated. We describe a test table format, which
is easy to understand and allows developers to conveniently
define test cases. In addition, we introduce an automated
process to isolate certain parts of the PLC program. This
isolation allows us to perform lower-level (such as unit or
integration) testing on PLC programs. As the whole process
is automated, it may easily be used in conjunction with
continuous integration solutions.

∗ Corresponding author. E-mail: gyula.sallai@alumni.cern

PLC PROGRAM TESTING
Testing is the process of verifying that a system is fit for

its purpose and satisfies its specified requirements. For the
remainder of the paper, we define three levels of program
testing, relevant to our use cases.1

• Unit testing aims to test small, individual components
of a system. For PLC programs, a practical unit-level
component is a single function or function block. Unit
testing a component requires the isolation of said com-
ponent from its dependencies and dependant blocks.

• Integration testing targets the interaction of some units
of the system, i.e. the interaction of different program
blocks.

• System testing is performed on the whole application,
checking whether the system satisfies its functional
requirements.

In the domain of PLC programming, testing is usually
done at the system testing level. The most commonly used
testing procedures are factory acceptance testing (FAT) and
site acceptance testing (SAT), as defined by the IEC 62381
standard [1]. FAT aims to verify system correctness by scru-
tinizing the production software on a (usually) dedicated
testing hardware in laboratory conditions. SAT is done on
the premises of the final installation, verifying that the soft-
ware and the hardware equipment work together as intended.

Most testing workflows for PLC programs require physical
hardware. However, testing with the involvement of physical
hardware poses several challenges.

• It is hard to automate: hardware cannot be acquired,
assigned, and configured on-demand.

• Feeding the inputs and capturing the outputs often re-
quires manual effort, e.g. supplying inputs through the
supervision system.

• Outputs cannot be extracted precisely – the latency
induced by I/O communication makes it difficult to
extract values at an arbitrary point of the program.

• For lower level (unit and integration) testing, precision
and traceability often demands to check the behaviour
of the program within really small time periods or at a
given program location. However, there is no support
in PLC hardware for such use cases.

1 Unless indicated otherwise, this paper follows the terminology defined
by the International Software Testing Qualifications Board (ISTQB). See
https://glossary.istqb.org for further information.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA018

Device Control and Integrating Diverse Systems
WEPHA018

1107

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Table 1: Feature Comparison of Various Simulation Solutions

Translation to C PLCSIM PLCSIM Advanced
Access to I/Q/M ✓ ✓ ✓

Cycle-by-cycle execution ✓ ✓ ✓

Time synchronisation ✓

Automatable ✓ ✓

Supported CPUs All* S7-300/400, S7-1200/1500 S7-1500 only
* Translation must be implemented for each input language. Semantic differences in execution may arise.

These challenges can be met by the exclusion of the phys-
ical hardware and using a simulator instead. A simulated
PLC replicates most of the behaviour found in real hardware,
offers more control and does away with some of the problems
introduced by unpredictable communication. As software
products, simulators can be spawned and used easily, with
simpler and fewer configuration steps (e.g. no cabling).

SIMULATION AND TESTING
BASED ON PLCSIM ADVANCED

Table 1 offers a feature overview of some simulator so-
lutions available for testing Siemens PLC programs. We
investigated simulation packages based on the following
criteria.

1. Their ability to access memory, most notably the input,
output, and global internal memory (I/Q/M) areas.

2. Support for cycle-by-cycle execution, i.e. the ability to
step between PLC program cycles.

3. Time synchronisation capabilities, precise and con-
trolled execution for a given (possibly short) timespan.

4. Automation capabilities, support for programmable
simulation.

5. Supported target PLCs.

Our previous attempts on unit testing involved the trans-
lation of PLC code to C or Java [2]. This approach gave
us the power of defining and executing tests efficiently in
a well-known environment, with a lot of support from unit
test libraries. However, due to the semantic differences be-
tween a general purpose programming language and one
designed for PLCs, the translation lacked several features,
most notably proper time synchronisation.

Another possibility is PLCSIM, a simulation solution
integrated into the Siemens development environments.2
PLCSIM offers semantically correct simulation, with capa-
bilities for forcing particular values from the outside, but
it lacks proper time synchronisation. Furthermore, it is a
tool mostly designed for manual use, thus there is no easily
programmable API to automate its execution.
2 Not to be confused with PLCSIM Advanced, the target of this article.

PLCSIM is the built-in simulation package found in either STEP7 v5.x
or TIA Portal. PLCSIM Advanced is an optional software, largely inde-
pendent of the “regular” PLCSIM.

PLCSIM Advanced is an optional simulator package for
Siemens S7-1500 PLC series, which addresses the shortcom-
ings discussed previously. It allows writing to and reading
from arbitrary global memory locations (such as the I/Q/M
areas of the PLC and contents of data blocks). It provides
continuous, cycle-by-cycle and time-synchronised execu-
tion modes and comes with a C♯ API which can be used to
automate the simulation and execution process.

Test Definition
We use a form of generalised test tables described by

Weigl et al. [3], slightly adapted to our needs. In this test
specification format, each column represents a variable,
which might be a PLC symbol or memory location. Rows
represent different test steps. Each test step has a defined
duration, which might be a given number of PLC cycles or
a timespan. An individual cell can either be an input value
for input variables or an expectation for output variables.

Input values must either be fully defined or denoted as
“don’t care” with a dash (–) symbol. If an input value is set to
don’t care, the simulator will force no value for that particular
input in the corresponding test step. An output expectation
could be a concrete value, a complex constraint or a don’t
care. If an output cell contains a fully defined value (e.g. 0),
the captured output value of the corresponding variable must
be equal to this particular value. In addition, we allow more
abstract constraints in the cells. Output cells can contain
expressions such as >0, which are constraints to the actual
value of the corresponding variable (i.e. the captured value
for a given PLC variable in the given test step must greater
than zero). We can also specify range constraints such as
1..5 where the user can define a range of acceptable values.
If the output constraint is a don’t care, the actual output is
ignored and the output expectation is always satisfied.

Example. Table 2 shows an example test table. The first
row lists the different PLC variable names, while the second
row declares the type of each column. Assume that the
variable B is an inout parameter. Thus, it is present in the
table twice: once as an input and once as an output. During
execution, the test runner first forces the values present the
input column for B, then after the specified test step duration,
it asserts against the values in the output column.

While test tables offer a powerful, precise, easy-to-
understand format, they may prove to be too low-level for
larger applications. Due to the lack of any abstraction, cer-

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA018

WEPHA018
1108

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems



Table 2: An Example Test Table

A B X Y B
input input output output output duration
True 1 - >X 5 80ms
False 4 - 5 2 10
False - 1..5 >(X + Z) - 200ms

tain high-level commands which set multiple values (or bits
in different registers) may be inconvenient to represent. How-
ever, it is possible to build upon our format and extend with
a component, which is able to read a high-level test case files
and generate the low-level test tables required by our tool.

Test Project Generation
Using our solution, system testing requires no modifica-

tion in the source code of the user program. For unit and
integration testing, however, the unit under test (UUT) needs
isolation from its callers and dependencies. In addition, a
test driver is needed to invoke the test process for each UUT.
While general purpose programming languages offer quite
a lot of support for unit isolation and test drivers (separate
binaries, test runners, mocking frameworks, etc.), there is
no dedicated support for such features in the PLC domain.
As the simulator can only execute programs starting from a
single entry point (the entry OB), adding a test driver would
imply unacceptably intrusive and tedious changes on the
user program. We overcome this issue by generating a new
PLC project for unit testing, based on the original program,
using TIA Portal Openness.

Consider a PLC program with the call graph (meaning
that OB1 calls FB1 and FB2, FB1 calls FC3, and so forth)
shown in Figure 1a. The test project generator creates the
unit test project for a given set of criteria blocks, i.e. the
blocks we wish to isolate. In this example the criteria blocks
are FB1 and FC5, shown with a filled background. The test
project generator first strips away all blocks which are un-
needed to execute the criteria blocks (in this case FB2 and
FB4). In the second step, it generates special data blocks,
which will be used by the test executor to interact with the
data of the UUTs. Finally, a new test driver OB is gener-
ated, which will serve as the entry point of the program,
calling all program blocks marked for isolation. Figure 1b
shows the call graph obtained after this procedure. This
test driver uses a separate identifier (a hash value) to distin-
guish between program blocks. Clients may write this vari-
able ("TEST_DRIVER".TestSelector) to decide which
program block to test in a particular test case. Figure 1c
shows this generated test driver code for our current exam-
ple.

Note that this process only isolates blocks from its callers
by calling them explicitly from the generated test driver.
Isolating blocks from their dependencies requires more so-
phisticated methods, such as mocking. We are currently
investigating the problem of providing meaningful mocks
for PLC programs in a non-intrusive way.

(a) Call graph of the source
PLC project.

(b) Call graph of the project
generated from Figure 1a.

CASE "TEST_DRIVER".TestSelector OF
16#49ca240b: "DB_FB1"();
16#497d39ca: FC5(i := "DB_FC5".i, q => "DB_FC5".q);

END_CASE;

(c) The generated test driver code.

Figure 1: Test project generation for a simple PLC program.

Test Execution
PLCSIM Advanced offers two execution modes relevant

to our case. First, a time-synchronised mode, in which exe-
cution lasts for at least a given timespan. Second, a cycle-
by-cycle execution mode, which lasts for one PLC cycle
and may be used to step between cycles. In both cases, the
simulator only allows execution to freeze on so-called syn-
chronisation points. Such synchronisation points are hit
before the execution of each PLC scan cycle. This ensures
that we always read consistent values from the virtual PLC.

During execution, test steps are processed in the order the
test case table declared them. At the beginning of each test
step, we write the input values to the virtual PLC and start
execution according to the value of the duration column. If
the duration is specified to be a timespan, the simulator will
run in time-synchronised mode for the requested time plus
the time required to reach the next synchronisation point. If
a number of cycles is specified as the duration, the simulator
will run precisely for the given number of cycles. At the end
of the test step, we extract the actual test outputs from the
memory of the virtual PLC using the simulator API. Finally,
the captured outputs are compared to the output constraints
defined in the test case table, yielding a test verdict.

Test Report
Our tool is able to represent a test report in various formats,

such as plaintext, HTML, timing or waveform diagrams. To
obtain as much information as possible, the behaviour of the
system is recorded in every cycle. This offers opportunities
to display detailed reports to the user.

Figure 2 shows such a report for a hysteresis module with
a configurable delay in the timing diagram format. Notice
how the elapsed time signal is ramping up cycle-by-cycle

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA018

Device Control and Integrating Diverse Systems
WEPHA018

1109

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



and how the output signal raises when the elapsed time hits
the configured delay.

120

100

80

60

40

20

0 10.7 m
s

131.9 m
s

282.5 m
s

403.1 m
s

533.6 m
s

10.7 m
s

131.9 m
s

282.5 m
s

403.1 m
s

533.6 m
s

120

100

80

60

40

20

0

in
high
low

q
et

Figure 2: Timing diagram report for a hysteresis module
with a configurable delay. The chart on the top shows input
signals, the bottom chart shows the outputs.

Test Automation
In order to support full test automation, our tool is able

to automatically compile and download the user program
to a freshly spawned virtual PLC via TIA Portal Open-
ness. Through our tool’s command line interface, the whole
process can be executed in a continuous integration (CI)
pipeline, such as Jenkins or GitLab CI. This allows users to
have automatically executed unit tests on each commit. As
the tool is able to generate test reports in JUnit’s XML for-
mat, the (possible failing) test results can be shown natively
in GitLab’s interface on each merge request. Furthermore,
automated execution offers a convenient way to execute tests
on a remote machine, thus reducing the need to install the
simulator on every developer’s workstation.

USE CASES
The unit and integration testing capabilities of our tool

have already been demonstrated in two real-world instances.
We are currently evaluating our testing workflow on the
system testing of a full-scale application.

Unit Testing UNICOS Baseline Objects
The UNICOS-CPC [4] framework ships with a handful

of baseline objects, the building blocks of a UNICOS appli-
cation. As such, proper unit testing for these objects is an
important issue. We have built a prototype testing workflow
for UNICOS baseline objects, partly translating our previous
test cases into test tables. This workflow uses our test project
generation feature, along with automated execution through
GitLab CI.

Reproducing Counterexamples from Formal Veri-
fication

PLCverif [5] is a formal verification tool for PLC pro-
grams, developed at CERN. It supports several underlying
model checking engines, which systematically explore the

state space of a program to provide a proof or counterexam-
ple of a given requirement property. If formal verification
reports a property violation, the resulting counterexample is
usually time- or cycle-sensitive, meaning that the violating
execution is hard to reproduce using traditional testing meth-
ods. However, PLCverif counterexamples can be represented
in our test table format, providing a suitable input for our
tool, which can execute it in a time- or cycle-synchronised
manner. This allows developers to easily turn formal verifi-
cation results into reproducible test cases. We are currently
using this approach for the verification of the CERN SPS
accelerator Personnel Protection System.

CONCLUSION
In this paper we presented our PLC program testing so-

lution based on the PLCSIM Advanced simulator, its C♯

API and TIA Portal Openness. We described an intuitive
tabular test definition format, which can be executed using
a simulated PLC. During execution, our tool feeds inputs,
captures outputs, and provides a high-resolution recording
for test reports through the simulator. This allows automated
testing, with great precision, but without the need for human
intervention or physical hardware. In order to facilitate unit
testing with our testing framework, we proposed a solution
to (partially) isolate program blocks for unit testing by gen-
erating a new unit test project from a PLC program. The
tool was built to be high-level and easily extensible, thus it
is possible to adopt it to other publicly available and suitable
simulators for other vendors and PLC series. Our workflow
has demonstrated its usability in multiple testing scenarios,
showing that it provides an easy-to-use, automated, and ac-
cessible continuous testing solution for PLC programs to
reveal errors as early as possible.

REFERENCES
[1] IEC 62381:2012 Automation systems in the process industry –

Factory acceptance test (FAT), site acceptance test (SAT), and
site integration test (SIT), IEC Standard IEC-62 381, 2012.

[2] G. Sallai, D. Darvas, and E. Blanco, “Testing, simulation, and
visualisation of PLC programs using x86 code generation,”
CERN, Tech. Rep. EDMS 1844850, 2017.

[3] A. Weigl, F. Wiebe, M. Ulbrich, S. Ulewicz, S. Cha, M. Kirsten,
B. Beckert, and B. Vogel-Heuser, “Generalized test tables:
A powerful and intuitive specification language for reactive
systems,” 2017, pp. 875–882.

[4] unicos-cpc,
[5]

http://unicos.web.cern.ch/unicos-cpc

E. Blanco Viñuela, D. Darvas, "PLCverif Re-engineered:
An Open Platform for the Formal Analysis of PLC Pro-
grams", presented at the 17th International Conference on
Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’19), New York, USA, October 2019, paper
MOBPP01, this conference.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA018

WEPHA018
1110

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems


