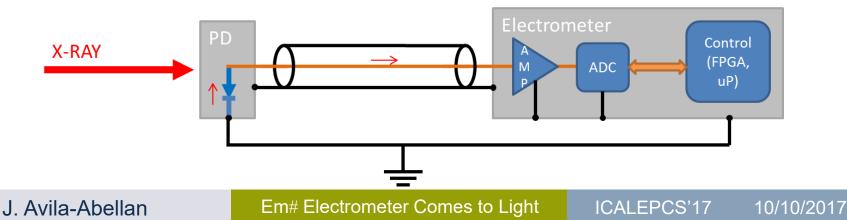


Computing division

Em# Electrometer Comes to Light

J. Avila-Abellan

Em# Electrometer Comes to Light


ICALEPCS'17

What is an Electrometer?

- An electrometer is an electrical instrument for **measuring electric charge** or electrical potential difference. There are many different types, ranging from historical handmade mechanical instruments to **high-precision electronic devices**. Modern electrometers based on vacuum tube or solid-state technology can be used to make voltage and charge measurements with very low leakage currents, down to 1 femtoampere.
- …The most modern electrometers consist of a solid state amplifier using one or more field-effect transistors … allow attachment of diodes or ionization chambers for ionizing radiation measurement.

WikipediA

The Free Encyclopedia

Collaboration Project

- High performance electrometer
- Share development resources towards common objective

Background

- ALBA designed first ALBA Em in 2010, which was cheaper than commercial solution with comparable resolution.
- Based on:
 - In-house developed ALBA Current Amplifier
 - Commercial microcontroller core RCM4200 (custom interface) via custom HW

■ 4 ↔

Custom Control HW

J. Avila-Abellan

Em# Electrometer Comes to Light

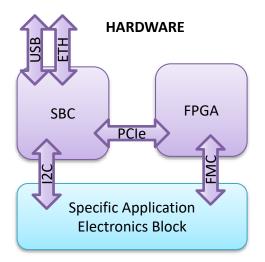
ICALEPCS'17

Lessons Learnt

- Obsolescence problem in microcontroller with custom interface
- No more units could be produced

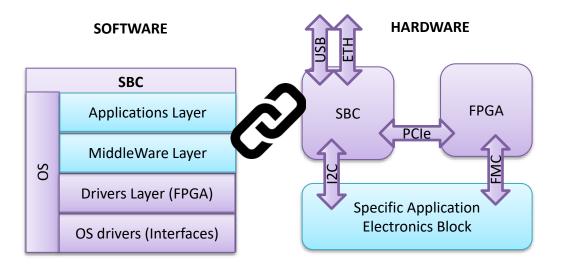
New Strategy, design an Instrumentation Platform

- Use a hardware interface standardization scheme
 - Reduce HW redesign impact in case of a module obsolescence
- Develop reusable SW
 - Reduce SW redesign impact in case of controller obsolescence
- Add advanced features based on the experimental needs


10/10/2017

J. Avila-Abellan

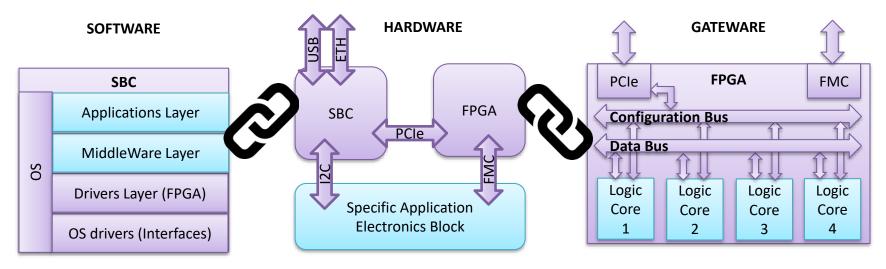
Em# Electrometer Comes to Light


- Tiny cost-effective SBC
- FPGA module (processing)
- Specific Application Electronics Block
- Use of Standard Interfaces

J. Avila-Abellan

Em# Electrometer Comes to Light

- Light OS
- Driver Layers related to interfaces and FPGA
- MiddleWare and Applications layers related to the application


- Tiny cost-effective SBC
- FPGA module (processing)
- Specific Application
 Electronics Block
 - Use of Standard Interfaces

J. Avila-Abellan

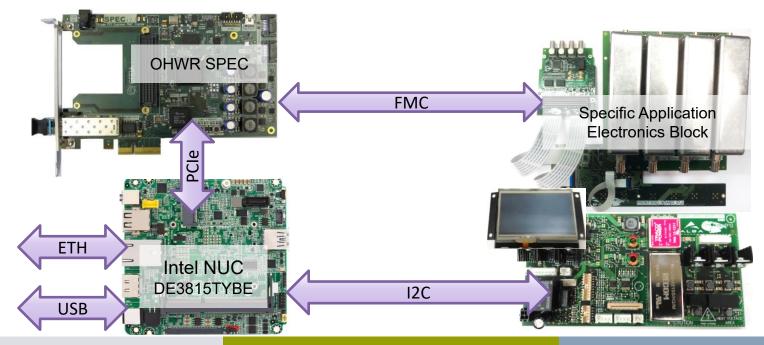
Em# Electrometer Comes to Light

- Light OS
- Driver Layers related to interfaces and FPGA
- MiddleWare and Applications layers related to the application

- Tiny cost-effective SBC
- FPGA module (processing)
 - Specific Application Electronics Block
 - Use of Standard Interfaces

- Dual bus strategy
 - Configuration Bus
 - Data Bus
- Logic Cores related to application

J. Avila-Abellan


Em# Electrometer Comes to Light

General Block Diagram

- Based on expected long-life interfaces for communication between modules
- Used COTS modules, except for the specific application

J. Avila-Abellan

Em# Electrometer Comes to Light

ICALEPCS'17

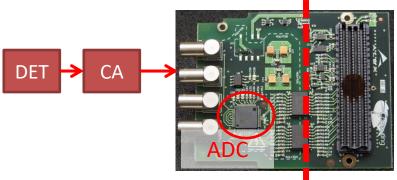
Commercial Electronics

- Single Board Computer Intel NUC DE3815
 - Intel Atom x86-64, 4GB DDR3L, 4GB eMMC
 - ETH, PCle, I2C
- Simple PCIe FMC carrier (SPEC) [OHWR.org]
 - SPARTAN 6 FPGA, 8Gb DDR3
 - Produced and used under CERN OHL
 - PCle, FMC
- Display DIP128
 - HMI device
 - I2C

J. Avila-Abellan

Em# Electrometer Comes to Light

ICALEPCS'17



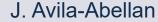
Specific Application Electronics Block

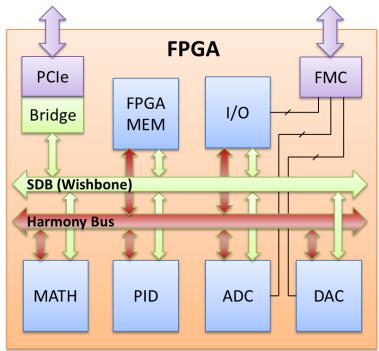
- Current sensing with ALBA Current Amplifier
 - 7 ranges from 1mA to 100pA
 - Analog output +/-10V
 - Temperature sensor for gain correction
 - Calibrated gain map in EEPROM
- Connectivity
 - 1x 200MHz Trigger IN
 - 4x 100MHz configurable I/O
 - 9x 20MHz differential configurable I/O
 - 4x 100kHz Analog Outputs
 - 4x 5V@500mA power outputs
- FMC ADC 400k 18b 4cha iso [OHWR.org]
 - ADC in isolated area. Digitalization in HV Bias
 - Up to 1kV HV bias
 - Designed at ALBA and used under CERN OHL

ISOLATION

10/10/2017

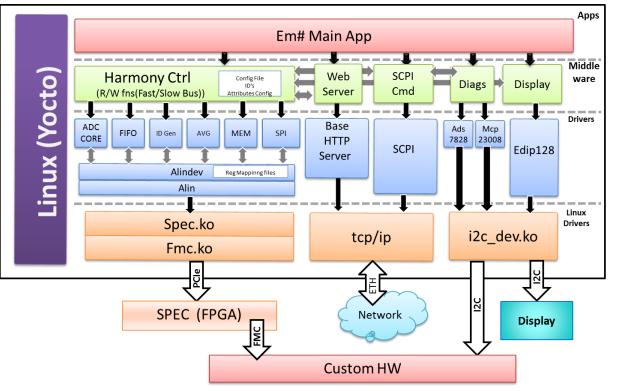
J. Avila-Abellan


Em# Electrometer Comes to Light



Self-Describing Bus (SDB) & Harmony Bus

- SDB: Slow bus for configuration [OHWR.org]
 - Direct R/W of the FPGA registers and values from the SBC processor using the SDB structure and the register mapping defined in the *.wb files.
 - Implemented with a Wishbone bus.
 - Developed at CERN
- Harmony Bus: Fast bus for data [WEAPL01: M. Broseta et al. "Present and Future of Harmony Bus"]
 - Fast data transfer between FPGA cores.
 - Each FPGA core will be programmed via SDB to output data with a determined ID.
 - Each FPGA core will be programmed via SDB to react to a determined data ID present in the bus.
 - Data with timestamp.
 - Real-time processing capability.
 - Developed at ALBA.


Em# Electrometer Comes to Light

Software Architecture

Simple applications to control the equipment

Communication protocols & Main functions: SCPI, algorithms, operations...

Physical devices drivers

10/10/2017

J. Avila-Abellan

Em# Electrometer Comes to Light

Control System Interfaces

LOCAL

- Touch Display
- Basic configuration & monitoring

<section-header><complex-block>

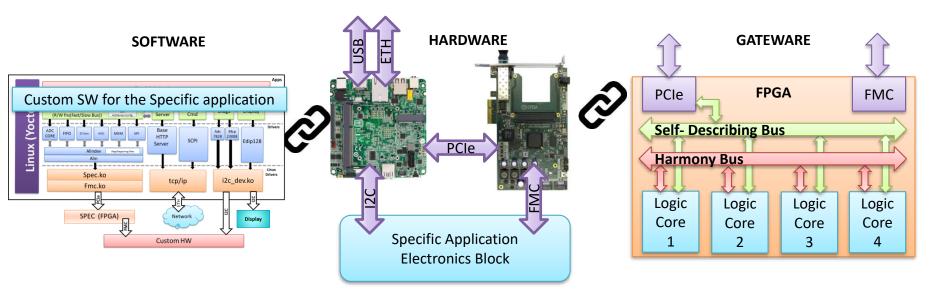
- Tornado WebServer
- Complete configuration & monitoring
- Basic acquisition

Remote

- SCPI: Set of ASCII commands for integration in the facility control system
- SSH: Developer tools to monitor and configure

J. Avila-Abellan

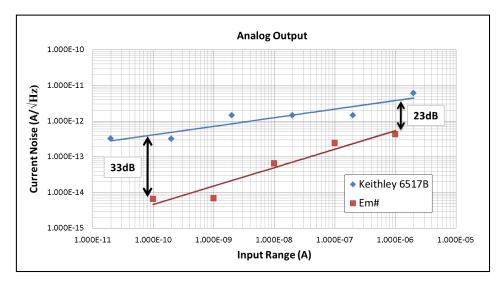
Em# Electrometer Comes to Light


ICALEPCS'17

ICALEPCS'17

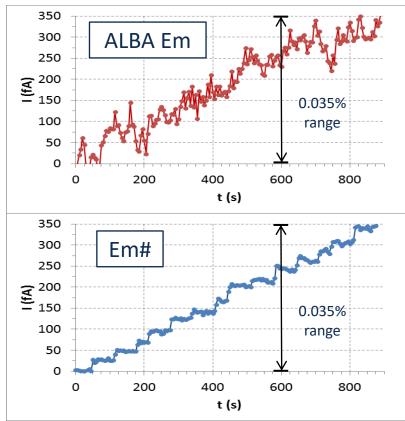
10/10/2017

- From a specific application development it has been created an instrumentation platform reusable for future developments.
- Only the blocks related to the specific application of the equipment should be changed.
- REUSE Software & Hardware & Gateware


J. Avila-Abellan

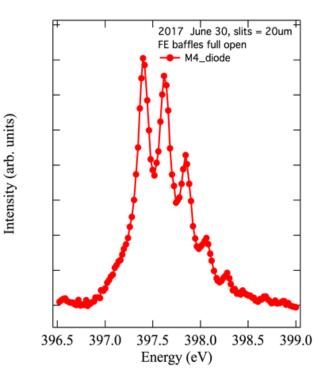
Em# Electrometer Comes to Light

- Current Noise Density
 - Measured and calculated from Analog Out
 - Better than similar commercial electrometer


J. Avila-Abellan

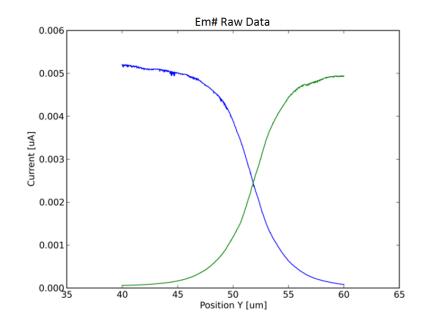
Em# Electrometer Comes to Light

- Current Noise Density
 - Measured and calculated from Analog Out
 - Better than similar commercial electrometer
- Internal ADC acquisition comparison:
 - Input current signal with 25fA steps, 1nA range used, 0.5Hz filter, 4.8s integration time
 - Dynamic Range ~92dB


J. Avila-Abellan

Em# Electrometer Comes to Light

- Current Noise Density
 - Measured and calculated from Analog Out
 - Better than similar commercial electrometer
- Internal ADC acquisition comparison:
 - Input current signal with 25fA steps, 1nA range used, 0.5Hz filter, 4.8s integration time
 - Dynamic Range ~92dB
- First MAX IV Beamline Experiments
 - N2 absorption spectrum @ Veritas


J. Avila-Abellan

Em# Electrometer Comes to Light

- Current Noise Density
 - Measured and calculated from Analog Out
 - Better than similar commercial electrometer
- Internal ADC acquisition comparison:
 - Input current signal with 25fA steps, 1nA range used, 0.5Hz filter, 4.8s integration time
 - Dynamic Range ~92dB
- First MAX IV Beamline Experiments
 - N2 absorption spectrum @ Veritas
 - Beam positioning @ NanoMAX

Em# Electrometer Comes to Light

ICALEPCS'17

10/10/2017

Production @ ALBA

- 2016 12 units produced (3 LV, 9 HV)
- 2017 12 units (planned)

Production @ MAXIV

- 2017 50 units produced (50 LV)
- 2017 25 units on-going (25 HV)

Next Steps

• Gateware and SW development for advanced Em# applications (e.g. Feedback)

J. Avila-Abellan

Em# Electrometer Comes to Light

Em# meets high performance requirements, beyond the state-of-the-art commercial electrometers

Instrumentation platform is stable, working and ready for new developments

It is time to develop advanced applications taking profit of the powerful platform

J. Avila-Abellan

Em# Electrometer Comes to Light

Thanks for your attention!

Questions?

J. Avila-Abellan

Em# Electrometer Comes to Light