
A Success-History Based Learning
Procedure to Optimize Server Throughput

in Large Distributed Control Systems
Yuan Gao

Department of Electrical and Computer Engineering

Stony Brook University, USA

ICALEPCS 2017 1

ICALEPCS 2017

2Outlines

PART 1:
Client-Server Problem with Dynamic Server Capacity

PART 2:
A Regret-Based Procedure and Success-History based

Parameter Adaptation Scheme

PART 3:
Simulation Results

ICALEPCS 2017

3Outlines

PART 1:
Client-Server Problem with Dynamic Server Capacity

PART 2:
A Regret-Based Procedure and Success-History based

Parameter Adaptation Scheme

PART 3:
Simulation Results

4RHIC Control System Overview

ICALEPCS 2017

5RHIC Control System Overview

ICALEPCS 2017

6Client-Server Problem with Dynamic Server Capacity

 A performance bottleneck in
the Front End System…

In the RHIC front end system,
every computer acts as a

server providing services to a
large number of clients.

When the number of clients
reaches its limit, the system
slows down or even crashes.

ICALEPCS 2017

Experiment

7Client-Server Problem with Dynamic Server Capacity

 Moreover, there are asynchronous processes residing on FECs, those
processes will share FECs’ resources when the information they queried is
updated, resulting in a varying available server capacity circumstance.

 One difficulty to deal with this situation is how to regulate clients behaviors
so that they can learn the server’s limitations and adjust their strategies
properly.

 In this work, we consider this problem from a game theory perspective.

ICALEPCS 2017

8Client-Server Game Model – Repeated Game

Time 1 Time k

Players A set of n clients

Actions Send (S) or Hold (H)

Client i’s traffic L(i)

Server crash cost -c

Stage Game

Repeated game:
A same stage game is
played over and over

again.

S H

S -c, -c L(1), 0

H 0, L(2) 0, 0

Payoff table of a 2-client example

ICALEPCS 2017

9Client-Server Problem with Dynamic Server Capacity

 Moreover, there are asynchronous processes residing on FECs, those
processes will share FECs’ resources when the information they queried is
updated, resulting in a varying available server capacity circumstance.

 One difficulty to deal with this situation is how to regulate clients behaviors
so that they can learn the server’s limitations and adjust their strategies
properly.

 In this work, we consider this problem from a game theory perspective.
 Our goal is to safely and efficiently route clients’ traffic so that server’s

throughput is maximized, and server crashes as little as possible.

ICALEPCS 2017

10Client-Server Game – Integer Programming

ICALEPCS 2017

 Our goal is to maximize server’s
throughput.

 The first constraint restricts that the
server does not crash during the game.

 The second constraint specifies that
clients’ actions are binary.

 The third constraint states that the
maximum traffic load a client can have
is below a threshold L[max].

 It is a NP-hard problem, seeking any
optimal solution would be difficult.

ICALEPCS 2017

11Outlines

PART 1:
Client-Server Problem with Dynamic Server Capacity

PART 2:
A Regret-Based Procedure and Success-History based

Parameter Adaptation Scheme

PART 3:
Simulation Results

12A Regret-based Learning Procedure

 We adopted a discrete regret-based procedure to regulate clients’
behaviors.

 Clients applying this procedure will play strategies which are more
profitable according to their history.

 Clients can learn their environment gradually based only on their own
information.

 However, it only works good in a static environment…
 To accommodate the dynamic aspect in our system, we proposed a success-

history based parameter adaptation scheme.

ICALEPCS 2017

13Effect of Server Crash Cost

 We leverage server crash cost to help to regulate clients’ behaviors.
 The general idea is high server crash cost will cause clients to pay more

when server crashes, hence suppress their intentions to send traffic, and
vice versa.

 More precisely, we modify a parameter called Crash Cost Factor (CCF) -
to control server crash cost. It is proportional to a client’s amount of traffic
load.

 For client i:

note that different clients have different crash cost, which are proportional
to the amount of traffic they hold.

ICALEPCS 2017

14Effect of Server Crash Cost

 We leverage server crash cost to help to regulate clients’ behaviors.
 The general idea is high server crash cost will cause clients to pay more

when server crashes, hence suppress their intentions to send traffic, and
vice versa.

 More precisely, we modify a parameter called Crash Cost Factor (CCF) to
control server crash cost. It is proportional to a client’s amount of traffic
load ().

 While clients applying this scheme, they keep monitoring the amount traffic
they successfully route to the server (amount of effective traffic).

 Whenever an increment occurs, clients record the corresponding CCF value
() as a successful value.

ICALEPCS 2017

15Memory Structure

 The memory structure is shown above. The first row stores CCF values, the
second row stores the increment of effective traffic correspondingly.

 An index k decides the position in the memory to update. k is increased
whenever a new element is inserted. When k > H, k is reset to 1.

ICALEPCS 2017

16Algorithm Procedure

 Clients check their effective amount of traffic periodically;
 Whenever there is an increase, they record the CCF values and the

corresponding increment, which will be used to generate new CCF values.
 When clients need to update their CCF values, with probability p (adaptive

probability):
 If the memory is not full, clients choose a CCF value from a predefined

set randomly.
 If the memory is full, clients generate a new CCF using a weighted mean

of all values in the memory.
 With probability 1-p, clients explore new CCF values.

ICALEPCS 2017

17Algorithm Features

 Clients use the amount of effective traffic as a metric to update parameters,
which helps to optimize server’s throughput, and also preserves the trend
of changes of CCF values due to the varying server capacities.

 Clients always have chances to explore new CCF values, which helps them
to adapt to new server capacity changes.

 Clients use weighted mean to generate new CCF values, so more profitable
values in the memory will have larger impact to the new CCF values, which
facilitates the algorithm’s convergence rate.

ICALEPCS 2017

ICALEPCS 2017

18Outlines

PART 1:
Client-Server Problem with Dynamic Server Capacity

PART 2:
A Regret-Based Procedure and Success-History based

Parameter Adaptation Scheme

PART 3:
Simulation Results

19Simulation Settings

ICALEPCS 2017

20Effective Amount of Traffic

ICALEPCS 2017

If there is no regulation on
clients’ behaviors, they will send

traffic all the time. The actual
amount of traffic from them

(the top line) are always greater
than the server capacity,

resulting in a all-0 effective
amount of traffic (the bottom

line).

21Server Crash Percentage

ICALEPCS 2017

46% less crashes

22Counts of “Send” for Every Client

ICALEPCS 2017

45.5% less variations

23Statistics Table

 With the proposed SHB scheme:
 Clients can adapt to server capacity

changes faster, which means they can
utilize the server’s resources more
efficiently;

 The server has higher throughput and
crashes less;

 It helps to promote a more equal user
experience.

ICALEPCS 2017

24Conclusions

 In this work, we analyze a real world performance bottleneck in the RHIC
control system using game theory approach;

 We model it as a repeated game, formulate it as an integer programming
problem, and point out its difficulty;

 We provide a basic solution by adopting a regret-based procedure, and
propose a success-history based parameter adaptation scheme to better
accommodate the dynamic server capacity scenario in our system;

 Simulation results show that both schemes can significantly improve system
performance. Moreover, compared with the regret-based scheme the
proposed success-history based scheme can result in a notably higher
server throughput and lower crash probability.

ICALEPCS 2017

25Q & A

Thank You!

ICALEPCS 2017

