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RHIC Control System Overview
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Client-Server Problem with Dynamic Server Capacity

» A performance bottleneck in
the Front End System...

In the RHIC front end system,
every computer acts as a
server providing services to a

large number of clients.
When the number of clients
reaches its limit, the system
slows down or even crashes.
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» Moreover, there are asynchronous processes residing on FECs, those
processes will share FECs’ resources when the information they queried is
updated, resulting in a varying available server capacity circumstance.

» One difficulty to deal with this situation is how to regulate clients behaviors
so that they can learn the server’s limitations and adjust their strategies
properly.

» In this work, we consider this problem from a game theory perspective.
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Client-Server Game Model — Repeated Game

Repeated game:
A same stage game is

Timel 3T N Timek 3T

t w1 -

f Stage Game \
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played over and over
again.

Actions Send (S) or Hold (H) -c,-¢c  L(1),0
Client i’s traffic L(i) H o,L(2) 0,0
Qerver crash cost -C Payoff table of a 2-client example/
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» Moreover, there are asynchronous processes residing on FECs, those
processes will share FECs’ resources when the information they queried is
updated, resulting in a varying available server capacity circumstance.

» One difficulty to deal with this situation is how to regulate clients behaviors
so that they can learn the server’s limitations and adjust their strategies
properly.

» In this work, we consider this problem from a game theory perspective.

>‘ Our goal is to safely and efficiently route clients’ traffic so that server’s
throughput is maximized, and server crashes as little as possible.
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Our goal is to maximize server’s
throughput.

The first constraint restricts that the
server does not crash during the game.
The second constraint specifies that
clients’ actions are binary.

The third constraint states that the
maximum traffic load a client can have
is below a threshold L[max].

It is a NP-hard problem, seeking any
optimal solution would be difficult.
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» We adopted a discrete regret-based procedure to regulate clients’
behaviors.

» Clients applying this procedure will play strategies which are more
profitable according to their history.

» Clients can learn their environment gradually based only on their own
information.

» However, it only works good in a static environment...

» To accommodate the dynamic aspect in our system, we proposed a success-
history based parameter adaptation scheme.
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» We leverage server crash cost to help to regulate clients’ behaviors.

» The general idea is high server crash cost will cause clients to pay more
when server crashes, hence suppress their intentions to send traffic, and
vice versa.

» More precisely, we modify a parameter called Crash Cost Factor (CCF) - ¥
to control server crash cost. It is proportional to a client’s amount of traffic
load.

» Forclient i:

C; = EI’L{‘
note that differentclients have different crash cost, which are proportional
to the amount of traffic they hold.
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We leverage server crash cost to help to regulate clients’ behaviors.

The general idea is high server crash cost will cause clients to pay more
when server crashes, hence suppress their intentions to send traffic, and
vice versa.

More precisely, we modify a parameter called Crash Cost Factor (CCF) to
control server crash cost. It is proportional to a client’s amount of traffic
load (¢i = aL;).

While clients applying this scheme, they keep monitoring the amount traffic
they successfully route to the server (amount of effective traffic).
Whenever an increment occurs, clients record the corresponding CCF value
() as a successful value.
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» The memory structure is shown above. The first row stores CCF values, the
second row stores the increment of effective traffic correspondingly.

» Anindex k decides the position in the memory to update. k is increased
whenever a new element is inserted. When k > H, k is reset to 1.
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» Clients check their effective amount of traffic periodically;
» Whenever there is an increase, they record the CCF values and the
correspondingincrement, which will be used to generate new CCF values.
» When clients need to update their CCF values, with probability p (adaptive
probability):
» If the memory is not full, clients choose a CCF value from a predefined
set randomly.
» If the memory is full, clients generate a new CCF using a weighted mean
of all values in the memory.
» With probability 1-p, clients explore new CCF values.
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» Clients use the amount of effective traffic as a metric to update parameters,
which helps to optimize server’s throughput, and also preserves the trend
of changes of CCF values due to the varying server capacities.

» Clients always have chances to explore new CCF values, which helps them
to adapt to new server capacity changes.

» Clients use weighted mean to generate new CCF values, so more profitable
values in the memory will have larger impact to the new CCF values, which
facilitates the algorithm’s convergence rate.
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Parameter Value
Number of clients 300
Simulation length 12 hours
Stage game length (one time slot) | second
Clients message rate | msgs/sec

Maximum traffic load

256 + 8 bytes

Server capacity variation period 3 hours
Crash cost factor options 1,5, 10, ..., 100
Memory size 20

Statistic period

3 minutes

Adaptive probability

0.9

Normal variance

3
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Effective Amount of Traffic
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Server Crash Percentage
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(a) Server alive time using the regret-based scheme.

q\\\‘ Stony Brook University

Server Alive

46% less crashes
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(b) Server alive time using the success-history based scheme.
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45.5% less variations
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G robaniity » With the proposed SHB scheme:
Scheme » Clients can adapt to server capacity
1 2 3 + All .
changes faster, which means they can
SHB |0.0446 00 00815 00 00315 utilize the server’s resources more
| ] efficiently;
RR 0.0643 00 01693 0.0 0.0584 .
: » The server has higher throughput and
Effective Traffic Avg. (x107)
Period # crashes |eSS,'
Scheme
| i : s A » It helps to promote a more equal user
experience.
SHB | 1.205 2700 0795 1495 1.569 Scheme  “Send” Count Std.
SHB 6326.600
RR 1.285 2.273 0778 1.225 1.393 RR 11500 000
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In this work, we analyze a real world performance bottleneck in the RHIC
control system using game theory approach;

We model it as a repeated game, formulate it as an integer programming
problem, and point out its difficulty;

We provide a basic solution by adopting a regret-based procedure, and
propose a success-history based parameter adaptation scheme to better
accommodate the dynamic server capacity scenario in our system;
Simulation results show that both schemes can significantly improve system
performance. Moreover, compared with the regret-based scheme the
proposed success-history based scheme can result in a notably higher
server throughputand lower crash probability.
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Thank You!
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