Enhancing the MxCuBE user interface by a finite state machine (FSM) model

Ivars Karpics, Gleb Bourenkov, Thomas R. Schneider

European Molecular Biology Laboratory (EMBL) Hamburg Unit c¢/o DESY,

Notkestrasse 85, 22607, Hamburg, Germany

Abstract

The acquisition of X-ray diffraction data from macromolecular crystals is a major activity at many synchrotrons and requires user interfaces that provide robust and easy-to-use control of the
experimental setup. Building on the modular design of the MxCuBE [1] beamline user interface, we have implemented a finite state machine model that allows to describe and monitor the
interaction of the user with the beamline in a typical experiment. Using a finite state machine, the path of user interaction can be rationalized and error conditions and recovery procedures can

be systematically dealt with.

Typical steps of a macromolecular crystallography (MX) data collection

Standard Collection

Oscillation start:
_ Number of images:
Exposure time (s):
Kappa:
Energy (kev):
Resolution (A):
Transmission (36):

+'| Shutterless

Folder:

Prefix

Run number 1

M.o. residues; | 200
Unit cell:
a:[12.0 b: [12

a 90.0

Figure 2: Sample centering.

Figure 1: Sample mounting on the sample
positioning device (goniometer).

Use Case

» The MxCuBE graphical user interface (GUI) for MX beamlines contains numerous widgets

to control the settings of the beamline hardware and set the collection parameters [Fig. 5].
= The many different ways of collecting data on a given crystals and the interdependencies
between different components of the beamline result in a highly complex system for which
stable operation is not trivial to achieve.
= Many users of MX beamlines are inexperienced posing high requirements in terms of
making the operation robust and supporting recovery from errors.

Acquisition

‘L'entrlng Manual 3-click ‘S_a_qnple_ nger .
._ | i No filter | " Dewarlevelinrange
- I S L - ' Ramdisk size
‘Free: 128.0GB (100%)
-age disc space

Status:

nnnnnnn

dddddd

Close |

disabled

Image tracking

B — % P | BEAM ~ =
Vertical: 100 ¢/ £21@ Vertical (2933 §

| ouw || B

g

5
3 e

o
s 5
o oL - -

L ' ' ®F B F B B F ®F F = = 5 = = B = 5 F B 5 5 s e
g [By Ny vy g 3
g ad: EeEEEEEEEmI(EEE®I ©

‘ractometer: - Sample changer: - Last collect: -

Figure 5: Graphical user interface MxCuBE as seen at EMBL beamline P14.

Implementation in MxCuBE

L

= MxCuBE is logically divided into a
hardware access and a graphical
representation layer.

= Hardware access level contains self-
contained hardware objects that
represents beamline components.

= FSM is implemented as an object

. | - — | =

Pkt

4]

T T, T - ol I - - =T = T - . I -
W | e =
3 | & L | =
2| 5|3 | & | =
2 |3
2 | @

=

2]

= o

— |
— 3 =

= | =2 "

= | = | & | & | o

'~
A 'n] o

=
o =

1]

— =3 = =

] w =]

k= = | 3
2 |» |52 3|3
U:-E-n
l—'_r:_E'c
J |2 [Ia (2 [®
Q|5 |c|&
= re

= | 5 —]
&2
-

B By

] —

-

——————
= = =

o | B
o — T4 = -

& &
-2 =2

=

o

o =] = 3 = =3
il

:::::

a | 5| .]
| 2 (=g = -4

s =]

o’ 1 Sample Is Loaded

3 2 sample Mounting Sample Changer
3K 3 5ample Unmounting Sample Changer
3 4 Manual Centering Done

3 5 Auto Centering Done

& & Centering Position Accepted

Jdatalnt/p14/10736_206/karpics/20160927/RAW_DATA

File name: testCr-p01s02_ 1 ftifit#iit.cbf

testCr-p01s02

B: |90.0

+'| Run processing after collection

Figure 3: Entry and validation
of data collection parameters.

connecting all hardware objects. /12y el v
= Transitions are triggered upon request — X«
when the conditions as evaluated by ———
individual hardware objects are 3 i Recsionioar
. 3K 15 Diffrackometer Ready
fulfilled. X Corence e Tt
State Start time End time Total time Previous state

= For debugging purposes a window

with information about the state of
the FSM is available [Fig 8].

References

Invalid inpukt parameters 2017-09-28 12:02:51 ...

sample centered 2017-09-28 12:02:51 2017-09-28 12:02:51 0:00:00
Ssample mounted 2017-09-28 12:02:47 2017-09-28 12:02:51 0:00:04
sample mounting 2017-09-28 12:02:44 2017-09-28 12:02:47 0:00:03
sample not mounted 2017-09-28 12:02:40 2017-09-28 12:02:44 0:00:04

Ssample centered
sample mounted
Sample mounting
sample not mounted
Initial state

Figure 8: Window for monitoring the FSM described in [Fig. 6].

testCr-p01s502_1 (Point 1)

Acquisition
320 Oscillation range: 0.1
é First image: I

W

0.04 Detector mode: O

Phi:

12.7001 | MAD

"

7.055

Detector

100

Rotating
crystal

Data location

Sample dismounting
Returning to Step 1.

Browse

=)

Xray beam

—_—

—

Processing

' Space group: | P4

L

0 c 100

v 90,0

Figure 4: Execution of data collection.

Finite State Machine

= An FSM is a mathematical model of a closed or open loop discrete-event system with
defined states [2]. FSM graph contains states and transitions between them.

= It is widely used to define, analyse and control the functioning of a system.

= Applications include software engineering and experimental control systems. For example,
the usage of FSMs are described in [3, 4, 5].

= A FSM describing user interaction with MX graphical user interface MxCuBE has been
created [Fig. 6].

Collection
done

TEE B B I I = @ = =

n
Last
| frame
[~ done
Manual centring - B
Ik e Allarpet < All conditions OK Collect feanfirm.\ ac Prepari BN -
loaded? Sample '\ Auto centringy [Sample \ parametefs oK alid inpu ConErans Accepted | presssd : "\ Aecelr frrepanngy g o [Collectio
Start o window data .
mounted centered ¥ barametersg conditions : running
; ; displayed collection
|
n
n

Rejeced

Failed

Onid mot =
G condition

Is sample Mounted Unrmounting Unrmounting Bad input™g Test passed Blocking

Test passed

Was not
mounted
in 2 min

Sample
unmaounted
in 2 min

finish i
ot loaded? in 2 min failed requested parametersy ondition(s) 5 min reached
in 2 min ‘
Invalid . .
Sample s Rejected Unable to Collection
nmounting pEIrI:Im Jest failed conditions Test failed tart collect]. failed

Mounting

Unmaounting
requested

Beam
alignmen

Figure 6: State graph of a user interaction during a macromolecular crystallography data collection. Circles represent FSM discrete states.
Normal states are shown in white, while states painted in red are error states and require actions to return system to a normal state. Blue
arrows point to Sample mounted state and are executed automatically, red arrows indicate the request from a user to unmount a sample.

Conclusion and Perspectives

= An idealized Finite State Machine model for the interaction of a beamline user with a
beamline to collect diffraction data from a crystal is presented.

= Resulting description is helpful for the user of the beamline, the beamline scientist
supporting the beamline user, and for the developers of the beamline control interface.

= For the (inexperienced) beamline user, being informed about the current state/current
transition is useful especially in situations in which the beamline is seemingly idle or blocked

» The clean information about error state and - when possible - suggested recovery procedures
make the beamline user more autonomous.

= For the developer, the state history provides an important tool for debugging.

= Gathering statistics about the behavior of beamline components as seen via the states
assumed and transitions take can be used to build a knowledge base for pin-pointing fault-
causing beamline components.

= Describing subsystems as FSMs can be useful both for achieving a better understanding of
the needs and for optimizing procedures in terms of efficiency and robustness.

[1] J. Gabadinho et al., "MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments", Journal of synchrotron radiation. vol. 17, pt. 5, pp. 700-707, 2010.
[2] D. Harel, "Statecharts: a visual formalism for complex systems", Science of Computer Programming, vol 8, iss 3, pp. 231-274, 1987.
[3] F. Calheiros, P. Golonka, and F. Varela, “Automating The Configuration Of The Control Systems Of The Lhc Experiments”, in Proc. ICALEPCS2007, paper RPPA04, pp. 529-531.

[4] G. De Cataldo, A. Augustinus, M. Boccioli, P. Chochula, and L. Stig Jirdén, “Finite State Machines for Integration and Control in ALICE”, in Proc. ICALEPCS2007, paper RPPB21, pp. 650—652.

[5] B. C. Heisen et al., “Karabo: An Integrated Software Framework Combining Control, Data Management, And Scientific Computing Tasks”, in Proc. ICALEPCS2013, paper FRCOAABO2, pp. 1465-1468.

	Slide 1

