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Abstract

The acquisition of X-ray diffraction data from macromolecular crystals is a major activity at many synchrotrons and requires user interfaces that provide robust and easy-to-use control of the
experimental setup. Building on the modular design of the MxCuBE [1] beamline user interface, we have implemented a finite state machine model that allows to describe and monitor the
interaction of the user with the beamline in a typical experiment. Using a finite state machine, the path of user interaction can be rationalized and error conditions and recovery procedures can

be systematically dealt with.

Typical steps of a macromolecular crystallography (MX) data collection
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Figure 2: Sample centering.

Figure 1: Sample mounting on the sample
positioning device (goniometer).

Use Case

» The MxCuBE graphical user interface (GUI) for MX beamlines contains numerous widgets

to control the settings of the beamline hardware and set the collection parameters [Fig. 5].
= The many different ways of collecting data on a given crystals and the interdependencies
between different components of the beamline result in a highly complex system for which
stable operation is not trivial to achieve.
= Many users of MX beamlines are inexperienced posing high requirements in terms of
making the operation robust and supporting recovery from errors.
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Figure 5: Graphical user interface MxCuBE as seen at EMBL beamline P14.

Implementation in MxCuBE

L

= MxCuBE is logically divided into a
hardware access and a graphical
representation layer.

= Hardware access level contains self-
contained hardware objects that
represents beamline components.

= FSM is implemented as an object
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Figure 3: Entry and validation
of data collection parameters.
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= For debugging purposes a window

with information about the state of
the FSM is available [Fig 8].

References

Invalid inpukt parameters 2017-09-28 12:02:51 ...

sample centered 2017-09-28 12:02:51 2017-09-28 12:02:51 0:00:00
Ssample mounted 2017-09-28 12:02:47 2017-09-28 12:02:51 0:00:04
sample mounting 2017-09-28 12:02:44 2017-09-28 12:02:47 0:00:03
sample not mounted 2017-09-28 12:02:40 2017-09-28 12:02:44 0:00:04

Ssample centered
sample mounted
Sample mounting
sample not mounted
Initial state

Figure 8: Window for monitoring the FSM described in [Fig. 6].
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Figure 4: Execution of data collection.

Finite State Machine

= An FSM is a mathematical model of a closed or open loop discrete-event system with
defined states [2]. FSM graph contains states and transitions between them.

= It is widely used to define, analyse and control the functioning of a system.

= Applications include software engineering and experimental control systems. For example,
the usage of FSMs are described in [3, 4, 5].

= A FSM describing user interaction with MX graphical user interface MxCuBE has been
created [Fig. 6].
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Figure 6: State graph of a user interaction during a macromolecular crystallography data collection. Circles represent FSM discrete states.
Normal states are shown in white, while states painted in red are error states and require actions to return system to a normal state. Blue
arrows point to Sample mounted state and are executed automatically, red arrows indicate the request from a user to unmount a sample.

Conclusion and Perspectives

= An idealized Finite State Machine model for the interaction of a beamline user with a
beamline to collect diffraction data from a crystal is presented.

= Resulting description is helpful for the user of the beamline, the beamline scientist
supporting the beamline user, and for the developers of the beamline control interface.

= For the (inexperienced) beamline user, being informed about the current state/current
transition is useful especially in situations in which the beamline is seemingly idle or blocked

» The clean information about error state and - when possible - suggested recovery procedures
make the beamline user more autonomous.

= For the developer, the state history provides an important tool for debugging.

= Gathering statistics about the behavior of beamline components as seen via the states
assumed and transitions take can be used to build a knowledge base for pin-pointing fault-
causing beamline components.

= Describing subsystems as FSMs can be useful both for achieving a better understanding of
the needs and for optimizing procedures in terms of efficiency and robustness.
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