
G.Kruk, O.Alves, L.Molinari, CERN, Geneva, Switzerland

Grzegorz Kruk
e-mail: grzegorz.kruk@cern.ch
CERN BE/CO

JAVAFX CHARTS: IMPLEMENTATION OF MISSING FEATURES

 JavaFX, the GUI toolkit included in the standard JDK, provides charting components with commonly used chart types, a simple API and wide customization possibilities via CSS.
Nevertheless, while the offered functionality is easy to use and of high quality, it lacks a number of features that are crucial for scientific or controls GUIs. Examples are the possibility
to zoom and pan the chart content, superposition of different plot types, data annotations, decorations or a logarithmic axis. The standard charts also show performance limitations
when exposed to large data sets or high update rates.
 Some of these features are present in the enhancements list in OpenJFX but up to Java 10 (including) there are no plans to address them by the JavaFX team.

 Introduction

 The central entity of the extension package is XYChartPane class, overlaying
instances of XYChart (see Fig. 1) and managing nodes belonging to custom chart
plugins.
 The main (base) chart must be specified at the construction of XYChartPane but the
additional charts, drawn on top of each other, can be added and removed at any
moment via exposed observable list of overlay charts.

JavaFX Chart Extensions

 The XYChartPane provides an extension point via XYChartPlugin class that allows to
interact with the content of displayed charts and to add graphical elements that are
drawn on top of them (see Fig. 2).
 At the moment the package provides the following plugins:
•  ChartOverlay - allows adding to the chart area any Node at an arbitrary position.
•  CrosshairIndicator – cross following the mouse cursor and displaying its

coordinates.
•  DataPointTooltip – tooltip label with coordinates of the hovered data point
•  Zoomer – zooms the visible area to the drawn rectangle drawn with mouse cursor.
•  Panner – allows dragging the visible chart area.
•  XValueIndicator, YValueIndicator – line indicating specified X or Y value, with an

optional text label.
•  XRangeIndicator, YRangeIndicator – rectangle indicating range between specified X

or Y values, with an optional text label.

 Every plugin can listen for mouse and keyboard events generated on the XYChartPane
and react on them accordingly. For instance CrosshairIndicator listens for mouse move
events, changing location of horizontal and vertical line (following the cursor), and
updating text label that displays current coordinates.

 Chart Plugins

 The JavaFX NumberAxis does not allow adding zoom capabilities to XYCharts
therefore we implemented NumericAxis that provides the necessary enhancements. In
addition, it can be further customized via dedicated properties:
•  autoRangePadding – fraction of the range to be applied as padding on both sides of

the axis.
•  autoRangeRounding – determines if the automatically calculated range should be

extended to the next major tick value.
•  tickUnitSupplier – strategy (TickUnitSupplier) responsible for calculation of major

tick units.
 We implemented also LogarithmicAxis with a configurable logarithm base and minor
tick count (see Fig. 3).

 NumericAxis and LogarithmicAxis

 HeatMapChart is a specialised chart that uses colours to represent data values
contained in a matrix. At CERN, it is typically used by applications displaying beam
images like on Figure 4.

Heat Map Chart

 The JavaFX charting package performs well with series containing up to a few
thousands data points. However drawing series containing tens of thousands points
takes it several seconds, efficiently blocking the FX thread and making the application
unresponsive.
 To address this issue, we developed DataReducingObservableList, a specialized
implementation of the ObservableList interface, performing data reduction to the
specified number of most significant points. It is a wrapper over a source list (containing
all points) that triggers execution of the reduction algorithm on every change of the
source data or X-axis range, exposing to the chart Series reduced number of points from
the current range. This allows users to see the entire signal and zoom-in to the
interesting segments to see more details (see Fig. 5 and 6).
 By default, DataReducingObservableList uses Ramer-Douglas-Peucker reduction
algorithm that is fast and suitable for vast majority of cases. The reduction of 100,000
points to 500 takes around 50-60ms, preserving the original shape of the signal. Usage
of other algorithms is possible by providing its implementation via dedicated property.

Plotting Large Data Sets

 The implemented extension fulfils the substantial set of features missing in the JavaFX charting package, enabling its usage for all controls applications. All added components follow
JavaFX design principles and API style, making their usage simple and intuitive.
 The application of data reduction algorithm addresses the performance issues, allowing visualisation of large data sets flawlessly.

Conclusion

Figure 1: XYChartPane with three chart types

Figure 3: NumericAxis (X) and LogarithmicAxis (Y)

Figure 4: Heat Map Chart with LHC beam image Figure 5: Chart with two series (100,000 points each) and
zoom-in rectangle

Figure 2: Decorations and annotations drawn on top of XYChart

Figure 6: Zoomed part of the chart

