CERN BE JAVAFX CHARTS: IMPLEMENTATION OF MISSING FEATURES

_/ Beams Department

//

G.Kruk, O.Alves, L.Molinari, CERN, Geneva, Switzerland

N\

Introduction

JavaF X, the GUI toolkit included in the standard JDK, provides charting components with commonly used chart types, a simple API and wide customization possibilities via CSS.
Nevertheless, while the offered functionality is easy to use and of high quality, it lacks a number of features that are crucial for scientific or controls GUIs. Examples are the possibility
to zoom and pan the chart content, superposition of different plot types, data annotations, decorations or a logarithmic axis. The standard charts also show performance limitations
when exposed to large data sets or high update rates.

kSome of these features are present in the enhancements list in OpenJFX but up to Java 10 (including) there are no plans to address them by the JavaFX team. /
JavaFX Chart Extensions Chart Plugins

The central entity of the extension package is XYChartPane class, overlaying The XYChartPane provides an extension point via XYChartPlugin class that allows to
instances of XYChart (see Fig. 1) and managing nodes belonging to custom chart interact with the content of displayed charts and to add graphical elements that are
plugins. drawn on top of them (see Fig. 2).

The main (base) chart must be specified at the construction of XYChartPane but the At the moment the package provides the following plugins: | N
additional charts, drawn on top of each other, can be added and removed at any * ChartOverlay - allows adding to the chart area any Node at an arbitrary position.
moment via exposed observable list of overlay charts. » Crosshairindicator — cross following the mouse cursor and displaying its

coordinates.
DataPointTooltip — tooltip label with coordinates of the hovered data point

BarChart<String, Number> barChart =
new BarChart<>(xAxis(), vAxis()):

o inCChgsmng(;mell(zl_) « Zoomer — zooms the visible area to the drawn rectangle drawn with mouse cursor.
SR © new LineCharc<> (xBxis(), yAxis()); * Panner — allows dragging the visible chart area.
) - - A Cumze, gerTAR= () +RetSide (S1de RIHT): » XValuelndicator, YValuelndicator — line indicating specified X or Y value, with an
£ LE LB scatrercharcesrring, Numhers seatcercnare = optional text label.
scatterCiart. getthria() .sectabel (*hata 8%)7 XRangelndicator, YRangelndicator — rectangle indicating range between specified X

scatterChart.getYAxis () .setSide (Side.RIGHT) ; . .
or Y values, with an optional text label.
XYChartPane<String, Number> chartPane =
new XYChartPane<>(barChart):;
chartPane.setCommonYAxis (false);

List<XYChartPlugin<Number, Number>> plugins = new LinkedList<>():;

chartPane.setlegendVisible (true); e e ing Ca ey plugins.add (new XValuelIndicator<> (75, "XValuelIndicator")):
chartPane.getOverlayCharts() .add(1lineChart); 100 Q o plugins.add (new YValueIndicator<>(7.5, "YValueIndicatoxr™)):
Datal OData2 & Data3 chartPane.getOverlayCharts () .add (scatterChart) ? ‘c ? II' plugins.add (new XRangeIndicator<>(40, 60, "XRangeIndicator")):;
_ ff rL ——————————————— -+ + = === =T plugins.add (new YRangeIndicator<> (-5, 5, "YRangeIndicator")):
‘Q : T ? | | I ?(52 \n || 'o 4
l | ? ' o Label label = new Label ("Label added using ChartOverlay"):

AnchorPane.setTopAnchor(label, 5.0);
plugins.add(
new ChartOverlay<>(PLOT AREA, new AnchorPane (label))):

o
l %l u plugins.add (new Zoomer()):
plugins.add (new Panner()):
(o]

\\ Figure 1: XYChartPane with three chart types /

&IYRI!gehdhr / AnchorPane.setlLeftidnchor(label, 5.0);

NumericAxis and LogarithmicAxis

—
O=—5

] : o . ‘ o ? | | | pi:.ng:fs.add(new Crzsshéiilndiz§t2§<>().);
The JavaFX NumberAxis does not allow adding zoom capabilities to XYCharts TR L RN
. . . . 75| |/ .' “ [Fest Data O-. X artPane< er er> chartPane = new X artPane<>(chart);
therefore we implemented NumericAxis that provides the necessary enhancements. In Al - {;33;5 S i e emnina) s (oo 7 1o HuehaztRasec (ehes0

addition, it can be further customized via dedicated properties:
* autoRangePadding — fraction of the range to be applied as padding on both sides of o ® a ® e ® e mw o w

X Values

the axis. Figure 2: Decorations and annotations drawn on top of XYChart
* autoRangeRounding — determines if the automatically calculated range should be
extended to the next major tick value. Every plugin can listen for mouse and keyboard events generated on the XYChartPane
* tickUnitSupplier — strategy (TickUnitSupplier) responsible for calculation of major and react on them accordingly. For instance Crosshairindicator listens for mouse move
tick units. events, changing location of horizontal and vertical line (following the cursor), and
We implemented also LogarithmicAxis with a configurable logarithm base and minor updating text label that displays current coordinates.

tick count (see Fig. 3). \ j
\\\

NumericAxis xAxis = new NumericAxis(): ///'
LogarithmicAxis yAxis = new LogarithmicAxis(): PIOtting Large Data Sets
vAxis.setLowerBound(0.1); _ _ _ —
vAxis.setUpperBound (1000) ; The JavaF X charting package performs well with series containing up to a few
FEAS S SSESULOSARI g fSatss) & thousands data points. However drawing series containing tens of thousands points
LineChart<Number, Number> lineChart = takes it several seconds, efficiently blocking the FX thread and making the application
1 lineChart.setCreateSymbols (false); L . . L
/ To address this issue, we developed DataReducingObservablelList, a specialized
lineChart.getData () .add {generatePowl0{}): implementation of the ObservableList interface, performing data reduction to the
lineChart.getData() .add (generatelLine()) _
lineChart.getData () .add (generateln ()) : specified number of most significant points. It is a wrapper over a source list (containing
Figure 3: NumericAxis (X) and LogarithmicAxis (Y) all points) that triggers execution of the reduction algorithm on every change of the

-

/ source data or X-axis range, exposing to the chart Series reduced number of points from
~ the current range. This allows users to see the entire signal and zoom-in to the

(4 iInteresting segments to see more details (see Fig. 5 and 6).
Heat Map Chart

By default, DataReducingObservableList uses Ramer-Douglas-Peucker reduction

HeatMapChart is a specialised chart that uses colours to represent data values algorithm that is fast and suitable for vast majority of cases. The reduction of 100,000
contained in a matrix. At CERN, it is typically used by applications displaying beam points to 500 takes around 50-60ms, preserving the original shape of the signal. Usage
iImages like on Figure 4. of other algorithms is possible by providing its implementation via dedicated property.

HeatMapChart<Number, Number> chart =
new HeatMapChart<>(xAxis, vAxXis); 30
chart.setTitle ("Beam Image”):; 150 20

100 AN A\ |

chart.getZAxis () .setRutoRanging (false) ; W f's \ W LMMW%& AN AN LT A

chart.getZhxis () .setUpperBound (1500) ; ik » e VY um; UV JC aﬁ'hﬁ'-

. chart.getZAxis () .setLowerBound(0): B \ , ?;ulw‘) S | |

chart.getZAxis () .setTickUnit (100); -50 IWMAM%%.r m - AW, I | 'Jﬁ wwwmﬁ Rﬁ
W \,rfﬁ , 40 et W ”“' iy ' - “1‘(,"‘.‘\ | "

Number[] xValues = getXValues|(): - N wvw&ﬂﬁ Uu Ll ' Wy

Number[] vValues = getYValues(): o fc’ | Agmwﬂw A\l A

double[][] zValues = getZValues(): -200 f HrﬁﬁW'fn

DefaultData<Number, Number> imageData = '
new DefaultData<> (xValues, yValues, zValues):;

100 chart.setData (imageData);

chart.setLegendVisible (true); =

o chart.setlLegendSide (Side.RIGHT);
X Position O Series 1 O Series 2 O Series 1 © Series 2

Figure 4: Heat Map Chart with LHC beam image

-300 -100

-110

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000 27,000

Figure 5: Chart with two series (100,000 points each) and Figure 6: Zoomed part of the chart

K / \\ zoom-in rectangle /
r R

Conclusion

The implemented extension fulfils the substantial set of features missing in the JavaF X charting package, enabling its usage for all controls applications. All added components follow
JavaF X design principles and API style, making their usage simple and intuitive.
The application of data reduction algorithm addresses the performance issues, allowing visualisation of large data sets flawlessly.

N ~/
L

ICALE PCS2017

Barcelona - Spain, October 8-13 - Palau de Congressos de Catalunya

';l ~STEYN BRI

Grzegorz Kruk
e-mail: grzegorz.kruk@cern.ch
CERN BE/CO :

