
Cumbia is a new library that offers a carefree approach to multi-threaded application design and implementation. It can be seen as the evolution of the QTango library. It offers a more flexible
and object oriented multi-threaded programming style. Less concern about locking techniques and synchronization, and well defined design patterns stand for more focus on the work to be
performed inside cumbia activities and reliable and reusable software as a result. The user writes activities and decides when their instances are started and to which thread they belong. A token
is used to register an activity, and activities with the same token are run in the same thread. Computed results can be forwarded to the main execution thread, where a GUI can be updated. In
conjunction with the cumbia-tango module, this framework serves the developer willing to connect an application to the TANGO control system. The integration is possible both on the client
and the server side. An example of a TANGO device using cumbia to do work in background has already been developed, as well as simple QT graphical clients relying on the framework.

CUMBIA: A NEW LIBRARY FOR MULTI-
THREADED APPLICATION DESIGN AND

IMPLEMENTATION

Giacomo Strangolino, Elettra, Trieste, Italy

CUMBIA MODULES
Cumbia is a set of distinct modules; from lower to higher level:
● cumbia: defines the Activities, the multi thread implementation and the format of the data exchanged

between them;
● cumbia-tango: integrates cumbia with the TANGO control system framework, providing specialised

Activities to read, write attributes and impart commands;
● cumbia-epics: integrates cumbia with the EPICS control system framework. Currently, only variable

monitoring is implemented;
● cumbia-qtcontrols: offers a set of QT control widgets to build graphical user interfaces inspired by the

QTango’s qtcontrols components. The module is aware of the cumbia data structures though not linked to
any specific engine such as cumbia-tango or cumbia-epics.

● qumbia-tango-controls: written in QT, is the layer that sticks cumbia-tango together with cumbia-
qtcontrols;

● qumbia-epics-controls: written in QT, the component pairs cumbia-epics to cumbia-qtcontrols.
● qumbia-apps: a set of applications written in QT that provide elementary tools to read and write values to

the TANGO and EPICS control systems.

ACTIVITIES
CuActivity is an interface to let subclasses do work within three specific methods: init, execute and onExit. Therein, the
code is run in a separate thread. The publishProgress and publishResult methods hand data to the main thread. To
accomplish all this, an event loop must be running.

A token can be used to group several activities by a smaller number of threads. Activities with the same token run in the
same thread.

Data transfer is realised with the aid of the CuData and CuVariant classes. The former is a bundle pairing keys to values.
The latter memorises data and implements several methods to store, extract and convert it to different types and formats.

CUMBIA-TANGO

The CumbiaTango extends Cumbia base and manages the so
called actions. An action represents a task associated to
either a TANGO device attribute or a command (called
source). Read, write, configure are the main sort of jobs an
action can accomplish. CuTangoActionI defines the interface
of an action. Operations include adding or removing data
listeners, starting and stopping an action, sending and
getting data to and from the underlying thread (for example
retrieve or change the polling period of a source).

CuTReader implements CuTangoActionI and holds a
reference to either an activity intended to receive events
from TANGO or another one designed to poll a source.

Activities is where the TANGO connection is setup, database
is accessed for configuration, events are subscribed, a poller
is started or a write operation is performed. This is done
inside the thread safe init, execute and onExit methods,
invoked from another thread. Progress and results are
forwarded by the publishProgress and publishResult
methods in the activity and received in the onProgress and
onResult implemented by the action. Therein,
CuDataListener’s onUpdate method is invoked with the new
data. Reception safely occurs in the main thread. cumbia-
tango groups threads by TANGO device name.

CUMBIA-QTCONTROLS

Combining cumbia and the QT cross platform software
framework, it offers graphical control system
components. Labels, gauges and advanced graphs are
supplied, as well as buttons and boxes to set values.
Elementary data representation is provided: the
components are unaware of the cumbia engine lying
beneath. In order to display real data on the controls, you
have to combine different building blocks at the moment
of setting up each reader or writer.

CuControlsReaderA and CuControlsWriterA define an
interface to readers and writers. They have to provide
methods to set and remove sources and targets of
execution, as well as means to send and receive messages
to and from actions. They hold references to the currently
active Cumbia and data listener instances.

QUMBIA-TANGO-CONTROLS

Written in QT, qumbia-tango-controls component combines cumbia-tango with cumbia-qtcontrols.
CuTControlsReader and CuTControlsWriter are the implementors of the previously discussed CuControlsReaderA and
CuControlsWriterA abstract classes. Their sources and targets are TANGO attribute and command names, written with the
same syntax as that adopted by QTango. They operate on a CumbiaTango instance (Cumbia’s subclass), which is in charge
of creating and registering actions, finding actions already in use and managing installation and removal of
CuDataListeners.

CUMBIA-APPS

qumbia-apps module provides a set of base applications
to perform elementary actions on sources, such as
readings and writings. The generic_client tool is a
graphical panel able to read and write from both TANGO
and EPICS, using labels and plots to show the trend over
time or the present values, if the format is a vector. The
screenshot on the right represents the generic_client
reading a TANGO scalar attribute, a TANGO spectrum
attribute and an EPICS analog input.

WHY REPLACE QTANGO
● Lots of features not required daily
● Some useful features not easy to implement (e.g. multiple serialized
readings)
● Tightly bound to Tango
● Has been stable for years, the architecture is somehow complicated
● Code is not modular nor reusable enough

Giacomo Strangolino, Elettra, Trieste, Italy
E-mail: giacomo.strangolino@elettra.eu

	Slide 1

