
S. Jensen, J-C Bau, A. Dworak, M. Gourber-Pace, F. Hoguin, J. Lauener, F. Locci, K. Sigerud,
W. Sliwinski, CERN, Geneva, Switzerland

Author
e-mail: steen.jensen@cern.ch
CERN BE-CO

SIP4C/C++ @ CERN – STATUS & LESSONS LEARNED

Uptake: Limited due to time constraints
Pros: Value lies in the longer term. Improves 
architecture/design. Promotes knowledge 
sharing leading to less single-point-of-
failures.Helps newcomers assimilate code.
Cons: Time-consuming and risk of personal 
conflicts.

Uptake: Limited due to cons below
Pros: Detects slower forms of memory leaks 
not found in unit tests.
Cons: Many false-positives related to shared-
memory use and self-induced timeouts.

Uptake: Limited due to pre-existing solutions 
as well as cons below
Pros: Helps understand certain run-time 
problems.
Cons: Problems resolving symbolic links. 
Lack of notification-on-conflict. Non-standard.

Uptake: Strong due to automation and pros 
below. Weak due to lack of time to implement
Pros: Automatic on-commit execution allows 
pre-deploy error detection, preventing post-
deployment issues. Helps detect transient, 
environment-related problems.
Cons: Implementation and maintenance is 
time-consuming

Project team

Uptake: None due to cons below
Pros: Helps clean up existing code. Appealing 
reports
Cons: Not yet well integrated. Requires 
project-specific configuration. Produces many 
false-positives in existing code base.

Developer

Code reviews, Crucible Static Code Analysis, SonarQube

Memory debugging, Valgrind

Dependencies, Manifest file

Continuous Integration, Bamboo

Metrics, CMX

Source code
repository

Uptake: Limited due to cons below
Pros: Provides non-intrusive diagnostic on 
running process. Particularly valuable in 
libraries used by external users.
Cons: Lacks integration into control system 
stack to see metric trends over time. Lack 
command/reset functionality.

Uptake

Uptake

Uptake

Uptake

Uptake

Uptake

Common Build Tool, Makefile.generic

Uptake

Uptake: Strong due to high value-to-
effort ratio
Pros: Extensive feature set. Ease of 
use once adopted. Standardizes 
procedures, facilitating cross-project 
development tasks. Easy adoption of 
new target platforms
Cons: Complex to use and time-
consuming to adopt. Non-standard and 
depends resources located on network.

Unit tests, Google test

Uptake: Limited due to time constraints
Pros: It makes developers think in terms of 
testable cases. Tests often ramify, thereby 
solidifying code. Helps prevent regression and 
detect bugs. Appeals to younger developers.
Cons: Time-consuming to implement (~1:1 
ratio LOC). Risk of over-confidence if tests 
pass.

Uptake

CERN accelerator complex

Objectives
Establish best software 

quality practices and integrate 
chosen tools in the software 

development process

= Medium
= Strong

= Weak
= None

4 participating 
projects

Results
We show the uptake of tools in 

our development process, 
along with findings reported by 

4 different software projects

Legend

Pros: Values as reported by projects
Cons: Challenges as reported by projects

Conclusions
4 years of applying SIP4C/C++ at CERN 
shows increased code robustness and 

developer cross-project knowledge.

Future plans
Decrease barriers to adopting 

tools and procedures. 
Specifically, improve the 

build/release chain in terms of 
usability and feature set – in 

particular with respect to 
dependency management


