
T. Cobb, M. Basham, G. Knap, C. Mita, M. Taylor, G. D. Yendell, Diamond Light Source Ltd, Oxfordshire, UK,

A. Greer, Observatory Sciences, Cambridge, UK

Malcolm: A Middlelayer Framework for

Generic Continuous Scanning

For more information please contact
tom.cobb@diamond.ac.uk

.

What is Continuous Scanning?

This technique increases the efficiency of an experiment by reducing the

number of times a motor has to decelerate, settle and accelerate,

effectively decreasing the scan dead-time

configure()

run()

caput

camonitor

data

motion

trajectory

Malcolm

data

Continuous scanning is where motors are moved in a continuous

trajectory while a detector takes a number of data frames synchronized

with hardware trigger pulses.

What is Malcolm?

Detector

Frame

Encoder

Capture

Motor performing

“snake” trajectory

Malcolm provides an

abstraction layer on top of

EPICS that wraps up groups

of PVs and presents a higher

level scanning interface to

GDA via pvAccess.

This means that it can take

care of the variations in

triggering schemes between

different beamlines, and

GDA only needs to pass high

level scan parameters such as

motion trajectory and

exposure time down, rather

than needing to know how

all the underlying devices are

wired up.

Blocks, Methods and Attributes

Communicating with Malcolm

Hardware Layer

Device Layer

Scan Layer Scan1

Detector1

Detector
Driver

HDF
Writer

Motion
Controller

Sample X
Motor

Device
Detector1 Block

Hardware

Drv Part

Drv Block

Stats Part

Stats Block

HDF Part

HDF Block

Serializing Malcolm Data

Block :=

malcolm:core/Block:1.0
 BlockMeta meta
 Attribute health
 {Attribute <attribute-name>}0+
 {Method <method-name>}0+

Attribute := Scalar | ScalarArray | …

Scalar :=

epics:nt/NTScalar:1.0
 scalar_t value
 alarm_t alarm :opt
 time_t timeStamp :opt
 ScalarMeta meta :opt

ScalarMeta := NumberMeta | StringMeta …

NumberMeta :=

malcolm:core/NumberMeta:1.0
 string dtype
 string description
 string[] tags :opt
 bool writeable :opt
 string label :opt
 display_t display :opt
 control_t control :opt

Malcolm is a middlelayer framework that implements high level configure/run behaviour of control system components like those used in continuous scans. It was created as part of the Mapping project at Diamond

Light Source to improve the performance of continuous scanning and make it easier to share code between beamlines. It takes the form of a Python framework which wraps up groups of EPICS PVs into modular

"Blocks". A hierarchy of these can be created, with the Blocks at the top of the tree providing a higher level scanning interface to GDA, Diamond's Generic Data Acquisition software. The framework can be used as a

library in continuous scanning scripts, or can act as a server via pluggable communications modules. It currently has server and client support for both pvData over pvAccess and JSON over websockets. When

running as a webserver this allows a web GUI to be used to visualize the connections between these blocks (like the wiring of EPICS areaDetector plugins).

Malcolm defines layers of Blocks, each with a series of Methods and

Attributes, much like instances of classes in an object oriented language.

• The Hardware Layer contains Blocks that are just a collection of

Attributes. They correspond to EPICS devices like a single motor, or

the areaDetector HDF writer plugin.

• The Device Layer contains Blocks that represent a whole Detector or

Motor Controller. They have configure() and run() Methods. When

these methods are called they co-ordinate their child Hardware Blocks

to perform a scan according to the parameters they are passed.

• The Scan Layer at the top exposes a scanning interface to GDA.

Blocks in this layer also have configure and run Methods that again

co-ordinate their child Device Blocks to perform a scan.

Each element in the areaDetector driver and plugin chain is defined by a

Block in the Hardware Layer that defines the PVs it exports. The Device

Block is then formed by composition from a single Controller and one

Part for each child Block which contains the logic that shows how to use

that Hardware Block within the current scan. This allows the external

interface provided by PVs to be separated from small self-contained

pieces of code that implement one particular type of logic.

Blocks are assembled from YAML and Parts can be activated and

deactivated at run-time to change the components of a scan.

Websocket communications

expose the structure of

Malcolm Blocks via a JSON

protocol over websockets.

There is a client MalcolmJS

library that is used to create

a web GUI to allow

configuration/load/save of

Blocks from a web browser,

like in a PandABox.

pvAccess communications allow GDA to communicate with the top level

scan Block, configuring it with a set of parameters then telling it to run.

These are done using the pvaPy Python bindings to pvAccess in Malcolm,

and the pvAccessJava bindings on the GDA side.

Attributes are conformant to an

NTScalar because the value, alarm

and timeStamp are present, but the

metadata like descriptor, display and

control have been moved to a Meta

object so the same Meta objects can

be used to specify arguments that

should be passed to a Method.

Block structures can be serialized to

allow the web GUI to introspect

Attributes and GDA to introspect

configure arguments.

Meta objects contain some of the

meta information that would

normally appear in the NTScalar,

with some additions for specific

Meta objects like the dtype (e.g.

uint32) for the NumberMeta.

Although Malcolm can be run standalone as a library, the most common use

case is to add some communications modules to it to allow it to be

communicated with from the outside.

