
ABSTRACT

REFERENCES

Interface Between EPICS and ADO
Andrei Sukhanov, James Jamilkowski

Brookhaven National Laboratory, Upton, NY, USA

EPICS is widely used software infrastructure to control Particle
Accelerators, its Channel Access (CA) network protocol for
communication with Input/Output Controllers (IOCs) is easy to
implement in hardware. Many vendors provide CA support for
their devices. The control systems of the Collider-Accelerator
Department (C-AD) at Brookhaven National Laboratory (BNL) is
a complex system consisting of approximately 1.5 million control
points. The control of all devices is unified using an Accelerator
Device Objects (ADO) software abstraction layer. In this paper we
present software solutions for cross-communication between two
different platforms. They were implemented for the integration of a
NSLS II Power Supply Controller hardware into the RHIC
Controls System.

1)http://slideplayer.com/slide/6537483/
2)http://www.c-ad.bnl.gov/esfd/LE_RHICeCooling_Project/LEReC
.htm#Reviews

SUMMARY

If a device, provided with the EPICS support needs to be used in
the RHIC Control environment then the most optimal solution is
Option 2: Python-based ADO manager, using camonitor method
from pyepics Python library.

This approach was implemented to control a 180
degree bend magnet for Low Energy RHIC
electron Cooling Project1, controlled by an
EPICS-based NSLS-II power supply control
system2.

The inverted task, when the device is delivered with the RHIC
Control support, needs to be used in EPICS environment, that
solution is described on fig.5.

●Sites: Over 100 independent projects around the globe.
●Number of controlled parameters: from 1K to 300K.
●Base Source Code: Open Source. Language: C since

1989.
●Client-Server Model: Device is controlled by IOC

which provide support for 'records'. Records provide
access and control to process variables (PV).

●Client-sever protocol: EPICS Channel Access protocol.
●Transport layer: TCPIP.
●Name service: No central name service.
●Number of lines of the Base Code: 200K of C code.

Fig.1 EPICS Client – Server Model

Option 1: Two-way translation

ApplicationsRecords

PV
PV
PV

Device

TCPIP

IOC

Channel Access

ApplicationsDevice ADO
Manager

PV
PV
PV

RPC

CNS

Name Service

RPC

EPICS DEVICE in RHIC ENVIRONMENT

Fig 2. RHIC Controls Client-Server Model

Option 2: Python-based ADO
manager & pyepics

ADO-managed Device
in EPICS Environment

Create dict of
monitored ADO PVs

 for pv in dictOfPVs:
 pyado.getAsync(pv,callback)

def callback():
translate_ADO_to_PV()
caput()

ADOADO

RHIC Controls
supported
device

Manager

PV
PV
PV

record(ao, "PV1") {
 field(SCAN, "Passive")
 field(VAL, "0")
 field(OUT, "PV1 VAL PP")}

Soft IOC with recordsLocal CNS
Name Service

EPICS
 ca_pend_
event loop

epics2adoepics2ado

AdoIf.
Set()

RHIC
ADO

input
 PVs

EPICS
ca_put()

ado2epicsado2epics
AdoIf
event
loop

output
 PVs

PVsiocshelliocshell
EPICS-supported
device

EPICS
IOC

PV
PV
PV

Create dict of
monitored PVs

for pv in dictOfPVs:
 epics.camonitor(pv,callback)

def callback():
translate_PV_to_ADO()
update_ADO()

iocshelliocshell
EPICS-supported
device

EPICS
IOC

PV
PV
PV

RHIC ADO Manager

Add ADO parameters

EPICS

●Site: RHIC Collider complex at BNL, Upton, NY, USA.
●Number of controlled parameters: ~1.5 million.
●Base Source Code: Proprietary. Language: C++ since

1995, Python since 2016.
●Client-Server Model: Device is controlled by ADO

manager, which provides the process variables.
●Client-sever protocol: RPC.
●Transport layer: TCPIP.
●Name service: RPC server program, connected to DB

(Sybase).
●The character set of PV naming is more limited than

in EPICS, name translation is necessary.
●Number of lines of the Base Code: 5K for Python

implementation.

RHIC Controls

Fig 3. Two-way software bridge

Prerequisites:
Device is provided with EPICS support.
The target ADO already exists at RHIC Controls.
The host computer has all EPICS Base libraries installed.
Two processes on the host are compiled and linked with ADO and
EPICS libraries:
(1) epic2ado: EPICS to ADO translator, runs ca_pend_event loop to
monitor changes in all EPICS PVs, the ADO parameters are updated
using adoif.Set()
(2) ado2epics: ADO to EPICS translator, runs adoIf event loop to
monitor changes in ADO parameters, the EPICS PVs updated using
caput().
Both programs are using the same translation table of PV names.

Disadvantages:
●Complicated linking
●Number of code lines: 1200 in (1) + 1000 in (2)

Prerequisites:
Device is provided with EPICS support.
Device is not behind the firewall.
Python package PyEpics is installed on the host.
The EPICS shared library libca.so exists on the host.

Advantages:
●Only libca.so is needed.
●Number of source code lines: 300
●PV access time: ~ 1ms

Fig 3. Two-way software bridge

Fig 4. Python-based ADO manager & pyepics

Option 3: Python-based ADO manager
ssh access to EPICS PVs

Prerequisites:
Same as option 2 but using subprocess.Popen() to execute camonitor
and caget program on the server.

Advantages:
●Device can be behind the firewall.
●No EPICS components installed on the host.
●Number of source code lines: 300
Disadvantage:
●PV access time: ~ 400 ms

Fig 5. Control of an ADO-managed device
in EPICS environment

Prerequisites:
Device is provided with the python-based ADO manager.
Python package pyado is installed on the host.
The cns.py module is modified to use a local table of name to
RPC-ID translation.

Methods:
The soft IOC program is using pyado.getAsync(), which is the
ADO equivalent of epics.camonitor().
The soft IOC is hosting database of records. The 'ai' records are
handled in the callback function of the pyado.getAsync() and they
are set using caput(), The 'ao' records are handled in the callback of
the epics.camonitor() and they are passed to pyepics.set().

ACKNOWLEDGMENTS

Work supported by Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy.

Paper ID: TUPHA146

	Slide 1

