
SOFTWARE QUALITY ASSURANCE FOR THE DANIEL K.
INOUYE SOLAR TELESCOPE CONTROL SOFTWARE

A. Greer, A. Yoshimura, Observatory Sciences Ltd
B. Goodrich, S. Guzzo, C. Mayer, DKIST

Development And Test Setup
The DKIST project offices in Tucson, Arizona
and Boulder, Colorado are equipped with the
necessary control hardware to be capable of
running the entire control software stack.
This includes the Data Handling System
(DHS) servers, the Camera System Software
(CSS) servers, the CSF, TCS and subsystem
servers, as well as UPS and an additional
network hub. The diagram to the right
shows the basic layout. Below is a photo of
the rack.

This hardware installation is called the End To End (E2E) simulator.
It is possible to either run the whole DKIST software (in simulation)
natively on the hardware or virtual machines can be spawned to
execute subsystems in isolation. For the QA a utility known as the
E2E Test Executor (ETE) was developed. This utility coordinates
execution of virtual machines and manages TAF instances to
execute tests, compile reports and notify people of the results.

Enhancements
Benchmark Tests:
Recently the QA software was updated to
allow a test to be marked as a benchmark
test. Once marked in this way the TAF will
execute the test a number of times,
collecting the results. Instead of the
results being treated as separate they are
combined and benchmark statistics are
calculated.

Enhancements Awaiting Implementation:

• Ignoring specific (and understood)
failures.
• Disk space monitoring.
• Permanent storage of benchmarks to
raise warnings for significant changes.
• Standard test templates constructed to
simplify creation of similar tests.

Software Quality Assurance
The Problem:
• DKIST Control Software supported in
three languages.
• Middleware independent infrastructure
developed in-house.
• Many TCS subsystems developed by
external commercial companies.
• Any change to in-house software may
impact delivered subsystems.
• Test matrix is large.

The Solution:
Existing test frameworks were used for C++
and Java (CxxTest and Junit). The framework
test runners were extended to provide a
consistent report style for all tests. An XML
layout was selected for the test reports to
make the reports human readable but also
easily digested into larger reports. For
python no unit testing was required, and so
test classes were created to assist with
system tests and to produce the same report
format. For installation of the software and
management of test execution and reporting
the Testing Automation Framework (TAF)
was developed. The TAF reads a
configuration file, installs all necessary
software, executes tests or groups of tests
and supervises reporting of tests. VMWare
is used for execution of isolated test suites
within virtual environments as this product
was already used at DKIST. An API provides
full control of the virtual machine from the
host, which allows automated testing and
monitoring of the tests to take place.
Detailed reports are compiled from the
reports produced by individual virtual
machines.

The Requirements:
• Consistent test reports for each language.
• Unit test framework for each framework.
• Use existing tools and frameworks where
possible.
• Use existing virtual machine software
approved by DKIST.
• Provide a simple method for installing
software infrastructure, systems and
subsystems.
• Provide the ability to group test types
and languages.
• Continuous execution of tests.
• Notification of test results.

Conclusion
DKIST have fully invested in the software QA programme for project control software.
As a result of this investment, a QA infrastructure tailored to the needs of the DKIST
project has been developed, leveraging on the power and flexibility of existing
virtualisation and testing tools. Many hundreds of tests are automatically executed on
DKIST servers throughout every day, with key project members receiving detailed email
reports of the results. DKIST control software developers can commit new features with
the confidence that all existing requirements will be re-verified and that any failures will
be reported.

Screen shot taken from the E2E simulator

Introduction To DKIST Software
During construction DKIST elected to
use a Common Services model as a
basis for the standard distributed
software infrastructure used to build
the control subsystems. The Common
Services Framework (CSF) was
developed as a result of this decision,
providing a standard framework
supported in three programming
languages (Java, C++ and Python).

Services offered by the CSF Framework:

• Deployment Support
• Communications Support
• Persistence Support
• Application Support
• Utility Libraries

Systems built on top of the CSF:

• Observatory Control System
(OCS)
• Instrument Control System (ICS)
• Data Handling System (DHS)
• Telescope Control System (TCS)
• TCS Subsystems

Ensuring the quality of such a
large software project requires
dedicated resource, which DKIST
have committed to providing by
running a Quality Assurance (QA)
program, re-using existing and
developing additional tools as
required.

