\)

C

e
«
pa
)
m
&

A. Greer, A. Yoshimura, Observatory Sciences Ltd
B. Goodrich, S. Guzzo, C. Mayer, DKIST

During construction DKIST elected to

use a Common Services model as a

Observatory Control System

T
basis for the standard distributed B
software infrastructure used to build
the control subsystems. The Common f
Services Framework (CSF) was Tpmsv”:mgmjt
developed as a result of this decision, e
providing a standard framework f
supported in three programming Sysem Hanagemen
languages (Java, C++ and Python). —_—
—

Component Parame ters
l Property DB Instrument Scripts
Script DB Parameter Sefs
Instrument ParamSet DBZ

Adapter

Observation Mgmi

User Interfaces

Instrument

Instrument
Controller ul

ICS

Instrument Components
and Devices

Systems built on top of the CSF:

* Observatory Control System

(OCS)

* Instrument Control System (ICS)
* Data Handling System (DHS)
* Telescope Control System (TCS)

DHS

Data Flow
Quick Look
Data Store

Mot Ctrl HW
Devs Devices

Timing Camera Camera
Boards HW HW

SPEC-0084

TRADS

Services offered by the CSF Framework:

* Deployment Support
* Communications Support
* Persistence Support

1l

EnvironmentEnclosure Ctl
TMA Control
Optics Control

AGCS [FOCS | ECS | MCS

e Application Support
e Utility Libraries

</ CED

Facility Operations Tasks
Facility Operations Tasks
Startup/Shutdown ‘
= | Facility Startup

2

H

|l g

-4 3

a2

9 el 2

s 8 2

s =
8
H

22

s || = 2

o 8 2

7] @ o

m

B

Stop TCS-Ephem

&&&&&&

OBJECT NAME: Dmd
TARGET: X 0.000
SITION: 0.003

MODE: tracking ID
Y 0.000 Z 1.000 UTC: 21:35:03.74
-0.001 1.000 WLENGTH

COSYS:

cccccccccccccc

sssssss

nnnnnnn

History

oooooooooooooooo
nnnnnnnnnnnnn

sssssssss

eeeeeeeeeeeeeee

M1CS

WCS M2CS

* TCS Sub m
ubsystems
m High-speed instrument data m Large volume data processing
m High-speed data storage m Permanent store in Digital Archive
m High-speed quick look display m Connection to virtual observatory
Processing Array
| bk I M I st |]m‘,l Reduction
‘ ‘ ‘ ‘ ‘:"6;;": :l Calibration
‘Siorage s Dalabases
ST Pipeline
—— Data Control |
Realtime|

Storage |

Ensuring the quality of such a
large software project requires
dedicated resource, which DKIST
have committed to providing by
running a Quality Assurance (QA)
program, re-using existing and
developing additional tools as

required.

Solar Monitor and Target Selection

SOFTWARE QUALITY ASSURANCE FOR THE DANIEL K.
INOUYE SOLAR TELESCOPE CONTROL SOFTWARE

DKIST

DANIEL K. INOUYE SOLAR TELESCOPE

Software Quality Assurance

The Problem:

* DKIST Control Software supported
three languages.

* Middleware independent infrastructure
developed in-house.

* Many TCS subsystems developed by
external commercial companies.

* Any change to in-house software may
impact delivered subsystems.

* Test matrix is large.

in

The Requirements:

 Consistent test reports for each language.
e Unit test framework for each framework.

* Use existing tools and frameworks where
possible.

e Use existing virtual machine software
approved by DKIST.

* Provide a simple method for installing
software infrastructure, systems and
subsystems.

* Provide the ability to group test types
and languages.

e Continuous execution of tests.

* Notification of test results.

The Solution:

Existing test frameworks were used for C++
and Java (CxxTest and Junit). The framework
test runners were extended to provide a
consistent report style for all tests. An XML
layout was selected for the test reports to
make the reports human readable but also
easily digested into larger reports. For
python no unit testing was required, and so
test classes were created to assist with
system tests and to produce the same report
format. For installation of the software and
management of test execution and reporting
the Testing Automation Framework (TAF)
was developed. The TAF reads a
configuration file, installs all necessary
software, executes tests or groups of tests
and supervises reporting of tests. VMWare
is used for execution of isolated test suites
within virtual environments as this product
was already used at DKIST. An API provides
full control of the virtual machine from the
host, which allows automated testing and
monitoring of the tests to take place.

Detailed reports are compiled from the
reports produced by individual virtual
machines.

wwwwwww

sssssssssssss

ssssssssssss

nnnnnnnnnn

nnnnnnnnnnnnn

sssssssssss

Heliocentric

CCCCC

11111111111

DKIST Observing Program Execution

Observing Control

[Browse Lists

[Moniter | List | Experiment

t [Observing Program

[Instruments | Telescope | PAC | DHS | FCS | GIS

ccccc

Observing Program Summary Experiment: TEST_ASI ASI_1

Name: Demo Observe

eeeeeeeeeeee

AAAAAAAAA

Operation Transfer Queue Engineering

uuuuuuuuuuuuuuuuuuuuuuuuu

Solar Disk

eeeee

Development And Test Setup

The DKIST project offices in Tucson, Arizona
and Boulder, Colorado are equipped with the
necessary control hardware to be capable of
running the entire control software stack.
This includes the Data Handling System
(DHS) servers, the Camera System Software
(CSS) servers, the CSF, TCS and subsystem
servers, as well as UPS and an additional
network hub. The diagram to the right
shows the basic layout. Below is a photo of
the rack.

b A
g
| N

e S
- 5

.
L LT

\)
-a !
Pisr
a
ey
—_ =

. SRS

Network Router

1 Gb Switch

10 Gb Switch

Ethernet Patch Panel

Cable Space

Ethernet Patch Panel

Cable Space

Fiber Patch Panel

Cable Space

FDR Switch

DHS Transfer Node

DHS Processing Node

DHS Storage Node

DHS Storage Disks

CSS Computer

CSS Computer

CSS Computer

Instrument Computer

OCS Server

TCS Server

CSF Log Server

CSF Header Server

CSF ICE Server

UPS

Computer Room

OCS Display 1

OCS Display 2

DHS Display

DHS Display

OCS
Display

Operations Room

DHS
Quality

This hardware installation is called the End To End (E2E) simulator.
It is possible to either run the whole DKIST software (in simulation)
natively on the hardware or virtual machines can be spawned to
execute subsystems in isolation. For the QA a utility known as the
E2E Test Executor (ETE) was developed. This utility coordinates
execution of virtual machines and manages TAF instances to
execute tests, compile reports and notify people of the results.

Enhancements

Benchmark Tests:

Recently the QA software was updated to
allow a test to be marked as a benchmark
test. Once marked in this way the TAF will
execute the test a number of times,
collecting the results. Instead of the
results being treated as separate they are
combined and benchmark statistics are
calculated.

Enhancements Awaiting Implementation:

e lgnoring specific (and understood)
failures.

* Disk space monitoring.

* Permanent storage of benchmarks to
raise warnings for significant changes.

e Standard test templates constructed to

simplify creation of similar tests.

Conclusion

DKIST have fully invested in the software QA programme for project control software.
As a result of this investment, a QA infrastructure tailored to the needs of the DKIST
project has been developed, leveraging on the power and flexibility of existing
virtualisation and testing tools. Many hundreds of tests are automatically executed on
DKIST servers throughout every day, with key project members receiving detailed email
reports of the results. DKIST control software developers can commit new features with
the confidence that all existing requirements will be re-verified and that any failures will

be reported.

