
Performance Evaluation

 Initial testing was done in sending thousands of MQTT

data and/or Channel Access data per seconds
 Several computers were involved (all in the local

network, some in different subnet)
 EPICS IOC host computers
 More than one IOC computers were used for testing
 Computer running MQTT bridge programs
 MQTT data sender/receiver computer running simple

MQTT publisher/subscriber programs
 MQTT broker (Apache Apollo) computer in different

subnet
 It appears to withstand both directions at least up to about

1000 messages/second or so — more that what STAR
needs

 Not very quantitative measure, as we had no idea how
to quantify the number easily, as there are many
different factors involved (computer performance,
network speed, etc)

 For the system used for production currently, it can
withstand around 5000 messages/second at peak with
around 1000 messages/second average

Development of MQTT-Channel Access Bridge

Jiro Fujita, Michael Cherney, Creighton University, Omaha, Nebraska
Dmitry Arkhipkin, Jerome Lauret, Brookhaven National Laboratory, Upton, New York

Abstract

The integration of the Data Acquisition, Offline Processing
and Hardware Controls using MQTT has been proposed for
the STAR Experiment at Brookhaven National Laboratory.
Since the majority of the Control System for the STAR
Experiment uses EPICS, this created the need to develop a
way to bridge MQTT and Channel Access bidirectionally.
Using CAFE C++ Channel Access library from PSI/SLS, we
were able to develop such a MQTT-Channel Access bridge
fairly easily. The prototype development for MQTT-Channel
Access bridge is discussed here.

STAR Detector

Most of the STAR (Solenoidal Tracker At RHIC) Experiment
Control System has been based upon the EPICS
(Experimental Physics and Industrial Control System) from
the beginning. Currently roughly 60,000 parameters are
controlled and monitored with EPICS.

RHIC

AGS

STAR

PHENIX

BRAHMS

OPPIS

LINAC

AGS Booster
AtR

Blue
Yellow

6

4

2

12

10

8

PHOBOS

200m

Siberian Snakes

Partial Snake

Figure 1: Relativistic Heavy Ion Collider & STAR Detector at
Brookhaven National Laboratory, Upton, NY, USA

Figure 2: Schematic Drawing of the STAR Detector

MQTT Concept

Message Broker
 Acts as a communication point
 Can be authenticated
 Quality of Service (QoS)

 QoS0 — no checking
 Fast delivery, but no guarantee

 QoS1 — guarantees to deliver at least once
 Safe delivery, but slow

 QoS2 — guarantees to deliver once and once only
 Safest delivery, but slowest

 Message
 The “data” that clients publish/subscribes
 Only in ASCII format
 payload agnostic; MQTT does not enforce the format

of the message it is carrying
 Grouped by topic

 Topic
 Routing information to the broker (e.g. “Status”,

“Voltage”, “TPC”, “Beamline1”)

Clients
 Publish

 Devices publish specific message grouped by topic
 Subscribe

 Devices could also subscribe to specific message by
topic

MQTT [2]

 Originally developed by IBM and Eurotech in 1999

 IBM & Eurotech donated MQTT to Eclipse project in 2011
 MQTT v3.1.1 is ISO standard as of 2016 (ISO/IEC PRF 20922)

 Runs on top of TCP/IP (as well as UDP and ZigBee)
 Relatively simple and easy to write/work with
 Low overhead & easy to work with
 Quality of Service
 Widely used by Internet of Things (IoT) and other places
 MQTT can easily handle very large volume of data

(beyond 100M/sec)
 Very different from Channel Access

Motivation

 STAR had adapted DAQ/Offline/Slow Control integration
based on MQTT [1]

 Current Slow Control is based mostly on EPICS since the
beginning of the Experiment

 Bridge EPICS Channel Access and MQTT in both
direction

 EPICS stays as it is for the existing control systems
 General concept of what has been proposed at STAR

Experiment
 Send/Receive MQTT messages in JSON
 Receive/Send Control Data in Channel Access

 It is planned to use MQTT natively for new detector
subsystems.

<<Subsystem>>
Hardware

<<Subsystem>>
Hardware

<<Service>>
EPICS IOC

<<Subsystem>>
Channel Access-

MQ
Publisher

<<Subsystem>>
MQ-Channel Access

Subscriber

<<Service>>
ActiveMQ Broker

Channel Access

MQTT

MQT
T

STAR DAQ Local Network

STAR
Protected
Network

To STAR Generic Network

Figure 3: Schematic Drawing of the STAR Integration Plan

Requirement & Tools Used

 C (or C++)
 This was a request from the DAQ expert to the control

group
 CAFE library was chosen over standard portable

Channel Access Library
 Paho [3] MQTT Library

 Appears to support C/C++ well
http://www.eclipse.org/paho

 Apache ActiveMQ Apollo [4] for the message broker
 The Offline/DAQ integration has already been using

Apollo as the message broker
https://activemq.apache.org/apollo

Publisher Component

 Publishes Channel Access data to MQTT broker
 Written in C using Portable Channel Access library
 Sends Channel Access data in MQTT in JSON

 { "PV": "PVname", "Host": "Hostname", "data": "PV
value"}

Subscriber Component

 Subscribes data from MQTT broker to EPICS IOC
 Written in C using Portable Channel Access library
 Receives MQTT in JSON, broadcasts in Channel Access

 { "PV": "PVname", "Host": "Hostname", "data": "PV
value"}

CAFE Library

 Modern C++ Interface for Channel Access from PSI [5]

 Easy to write compared to Standard Channel Access
Library

 Making it easy for students to participate in the project
 Hope for synergy and increased acceptance within the

EPICS community...

#include <stdio.h>

#include <cafe.h>

int main(int argc,char **argv)
{

 using namespace std;
 CAFE * cafe = new CAFE();
 int status;
 CAFEStatus cstat;
 try {
 status=cafe->init();
 }
 catch (CAFEException_init &e) {
 cout << e.what() << endl;

 exit(1);
 }

 if(argc != 2) {
fprintf(stderr,"usage: cafeExample pvname\n");
exit(1);

 }

 status=cafe->set(argv[1], 100);
 if (status!=ICAFE_NORMAL) {
 cstat.report(status);
 }
 cafe->printStatusIfError(cafe->getInfo().getHandleFromPV(argv[1]),status);

 double d;
 status=cafe->get(argv[1], d);
 if (status==ICAFE_NORMAL) {
 cout << argv[1] << " has value= " << d << endl;
 }
 else {
 cafe->printStatusIfError(cafe->getInfo().getHandleFromPV(argv[1]),status);
 }
 return(0);

}

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "cadef.h"

int main(int argc,char **argv)
{
 double data;
 chid mychid;

 if(argc != 2) {
fprintf(stderr,"usage: caExample pvname\n");
exit(1);

 }

SEVCHK(ca_context_create(ca_disable_preemptive_callback),"ca_context_c
reate");

SEVCHK(ca_create_channel(argv[1],NULL,NULL,10,&mychid),"ca_create_c
hannel failure");
 SEVCHK(ca_pend_io(5.0),"ca_pend_io failure");
 SEVCHK(ca_get(DBR_DOUBLE,mychid,(void *)&data),"ca_get failure");
 SEVCHK(ca_pend_io(5.0),"ca_pend_io failure");
 printf("%s %f\n",argv[1],data);
 return(0);
}

Figure 7: Comparison of a simple caget equivalent in CAFE and
Standard Channel Access library. While CAFE code is longer, it is
much easier to understand.

Figure 4: MQTT Concept Diagram
MQTT Broker acts as the Central Hub to all the clients

Figure 5: MQTT QoS 0, 1, and 2 comparison
Image from: http://www.hivemq.com/blog/mqtt-essentials-part-6-

mqtt-quality-of-service-levels

Acknowledgements

 US Department of Energy Office of Science
 STAR Collaboration
 Creighton University College of Arts & Science
 Dr. Jan Chrin for CAFE
 EPICS Community

Future Plan

● More stability testing
● Integration with the rest of the STAR MQTT project

MQTT-Channel Access Bridge

 Written in about 2 weeks, including setting up the broker
and MQTT test programs

 No prior knowledge/experience of MQTT
 Fairly easy to write a program using MQTT
 First Portable Channel Access Application written by the

STAR Control Group
 Two different components

 Publisher — Channel Access to MQTT
 Subscriber — MQTT to Channel Access

Figure 6: Schematic Diagram of MQTT-CA Publisher and Subscriber

References

[1] D Arkhipkin and J Lauret, “STAR Online Framework: from Metadata
Collection to Event Analysis and System Control” 2015 J. Phys.: Conf.
Ser. 608 012036 https://doi.org/10.1088/1742-6596/608/1/012036
[2] MQTT: http://mqtt.org/
[3] Paho: http://www.eclipse.org/paho/
[4] Apache ActiveMQ Apollo: https://activemq.apache.org/apollo/
[5] CAFE: https://ados.web.psi.ch/cafe/index.html

	Slide 1

