KEY CONCEPTS

TYPED STREAM DISCOVERY

ARCHITECTURE

PoOL OF SHARED STREAMS

STREAMING PooL - MANAGING LoNG-LI1VING REACTIVE

STREAMS FOR JAVA

A. Calia, K. Fuchsberger, M. Gabriel, M.-A. Galilée, J.-C. Garnier, G.-H. Hemelsoet,
M. Hostettler, M. Hruska, D. Jacquet, J. Makai, T. Martins Ribeiro, A. Stanisz

(CERN, Geneva, Switzerland)

ERROR HANDLING

L.AZY STREAM CREATION

»
-«

ERROR DEFLECTION

REUSABLE GUI COMPONENTS

The goal of the Streamingpool API is to provide an
abstraction over the management of reactive streams 1n a
software application. It provides mechanisms to discover,
provide and create reactive streams. It focuses on sharing
the streams and creating long-living data flows for online
analysis or any business logic.

The key components 1n this mechanism are:

e StreamId: It uniquely identifies a reactive stream
in the Streamingpool 1n a typesate way.

e DiscoveryService: Through this interface a stream
can be looked up ("discovered’).

e StreamingPool: This 1s the central component,
which manages the available streams. Whenever
the user discovers a StreamId, the Streamingpool
checks 1f it already has the corresponding reactive
stream 1n the pool of streams, reusing the existing
ones. If this 1s not the case, the creation (material-
1zation) 1s performed and a reactive stream 1s cre-
ated from the information carried by the StreamId.

e StreamFactory: Through this extension point, users
of the library can describe how streams for certain
stream 1ds will be created.

Architectural Overview:

| Discovery }

[Lazy creation | { Already available?

N Stream Factory Stream ID | Publisher

STREAM IDS

In order to identify a stream, Streamingpool uses the
concept of StreamlId.

The fact that a Streamld identifies a specific stream,
means 1t can carry information and 1t can be
parametrized. For example, for accessing the hard-
ware publication of a device, one could create a
DeviceStreamId<T> and then parametrize it with the de-
vice 1dentifier, Listing 3:

DeviceStreamId streamlId =
DeviceStreamId.ofDevice("LHC.TUNE.BEAM1");

STREAM DISCOVERY

The mechanism that allows a user to get streams from the
Streamingpool 1s called DiscoveryService. When 1nitial-
1zing the Streamingpool using Spring, a DiscoveryService
bean becomes available for injection.

The API of the DiscoveryService consists of a sin-
gle method: discover(StreamId<T> id) which returns a
Publisher<T>.

Usually, in the Streamingpool streams are created lazily,
at discovery time. Practically, it means that when the user
discovers a StreamId, the Streamingpool triggers its cre-
ation 1f 1t 1s not present in the system. Therefore, a call to
the method DiscoveryService.discover(...) 1s blocking.

Errors are handled gracefully (1.e. without collapsing any
streams). This requires that the involved stream factories
are implemented such that they deflect the errors onto a
dedicated error stream:

Whenever a stream factory creates a StreamId it returns
an ErrorStreamPair of a Publisher<T> for the data and the
corresponding Publisher<Throwable> for any errors that
may Occur.

Both the data and the error streams are then registered in
the Streamingpool for future lookups. The error stream
for any StreamId can be looked up by resolving the asso-
ciated ErrorStreamId (Listing 1).

DiscoveryService discoveryService = ... ;

DeviceStreamId deviceld = DeviceStreamlId.
fromName ("LHC.TUNE.BEAM1") ;

ErrorStreamId deviceErrorsId =
.0f(devicelId);

ErrorStreamId

Publisher<DeviceData> dataStream =
discoveryService.discover (devicelId);

Publisher<Throwable> errorStream =
discoveryService.discover/(
deviceErrorsId) ;

It 1s also possible to subscribe for the error streams of all
streams created by the pool. This 1s useful e.g. to create
a dashboard showing all exceptions that have recently
occurred and allows monitoring the health status of the
application or system 1n question.

APPLICATIONS

e Mainly developed along a new LHC injection
diagnostics [6] application. Here it 1s used to-
gether with the tensorics library [7, 8] to provide
a reusable analysis framework [9].

Control room applications: e.g. displays the re-
maining time for LHC injection kicker soft-start
or the graphical user interfaces that control chro-
maticity [10] and coupling [11] of the LHC.

TESTING

Streamingpool 1s designed with unit testing in mind.
The fact that the DiscoveryService does not materialize a
stream 1f already present in the Streamingpool makes it
easy to provide dedicated streams for testing.

Through this mechanism, the logic under test can be
1solated even 1n complex applications that use different
layers of streams; a portion of a chain of processing
can be 1solated by providing the mocked input streams
through the ProvidingService.

Listing 2 shows an example of the discovery of a StreamId
and a subscription to 1t using RxJava.

DiscoveryService discoveryService = ...;
AnyStreamId streamId = new AnyStreamId();

Publisher<Any> stream =
discoveryService.discover (streamlId) ;

Flowable. fromPublisher(stream)
.subscribe(System.out::println) ;

Exception Error details

orgstreamingpool. care.domain.ErrorStrea... org.streamingpool.core.domain.ErrorStreamE xc eption

First Occurrenc e 2017-07-03 05:40:30.373

All occurrence
2017-07-03 05:53:12.146
2017-07-03 05:53:10.961
2017-07-03 05:53:09.960
2017-07-03 05:53:08.964
2017-07-03 05:53:07.960
2017-07-03 05:53:06.961
2017-07-03 05:53:05.961
2017-07-02 05:53:04.961
2017-07-03 05:53:03.961
2017-07-02 05:53:02.960
2017-07-03 05:53:01.961

eamsConfiguration$%Lambdas396/2113235476@76082411. Incoming value: java.lang.RuntimeException: STREAM ERF

r ector.java:133)

onditionalSubscriber.onNex l
onditionalSubscriber.onNext{FlowableMap.java)
2 Flowablelnterval$intervalSubscriber.run(Flowablelnterval. java:9
uledDirect Period icTask.run{Scheduled DirectPeriodic Task java
apter.call(Executors.java:511)
eset(FutureTask.java:308)
il hreadPoolExecutorsScheduledFutureTask.access$301(ScheduledThreadPoolEx
adPoolExecutorsScheduledFutureTask. runiScheduledThread PoolExecutor.java:294
ker{ThreadPoolExecutor.java:1142)

FUTURE DEVELOPMENTS

It 1s clear that the current state of Streamingpool 1s only
a first step and further effort has to go into several direc-
tions:

e Network streams: From the early days this step
was foreseen. At that time, the reactive streams
technology was still quite young, so 1t was decided
to postpone the choice of technology for this and
focus on the functionality described in the above
sections. Meanwhile, the technology evolved and
several options are available. For example, the
Spring project included reactive controllers 1n their
version 5.0. Using gRPC [12] as network layer 1s
another option.

More diagnostics and debugging functionali-
ties: Due to the standardized approach in Stream-
ingpool, generic components (e.g. graphical user
interfaces) can be built which e.g. can show the
relations between the streams or the time struc-
ture of the related items. One example of such a
generic GUI component which already exists, 1s
a JavaFx panel that shows the exceptions of all
error streams provided by a pool, which can be
included in any application using Streamingpool
as a backend.

REFERENCES

1] https://github.com/streamingpool

2] http://www.reactive-streams.org/

3] https://projectreactor.io/

4] https://github.com/ReactiveX/RxJava

5] A. Calia, K. Fuchsberger, M. Hostettler, “Testing the untestable: A
realistic vision of fearless testing (almost) every single accelerator

component without beam and continuous deployment thereof”,
IBIC16, Barcelona, Spain (2016).

K. Fuchsberger et al., “Development of a new system for detailed
LHC filling diagnostics and statistics”, IPAC17, Copenhagen,
Denmark (2017).

[7] K. Fuchsberger et al., “Tensorics - a Java Library for Manipu-
lating Multi-Dimensional Data With Pleasure”, ICALEPCS17,
Barcelona, Spain (2017).

[8] https://github.com/tensorics

[9] K. Fuchsberger et al., “A Framework for Online Analysis Based
on Tensorics Expressions and Streaming Pool”, ICALEPCS17,
Barcelona, Spain (2017).

[10] K. Fuchsberger, G. H. Hemelsoet, “LHC Online Chromatic-
ity Measurement - Experience After One Year of Operation”,
IBIC2016, Barcelona, Spain (2016).

[11] G.H. Hemelsoet et al., “Online coupling measurement and cor-
rection throughout the LHC Cycle”, ICALEPCS17, Barcelona,
Spain (2017).

[12] https://grpc.1o0

