CERN What i1s special about PLC software model checking?

\ THPHA159

D. Darvas, E. Blanco Vinuela, CERN, Geneva, Switzerland
l. Majzik, BME, Budapest, Hungary
daniel.darvas@cern.ch - enrique.blanco@cern.ch - majzike@mit.ome.hu

What is software model checking?

4 4
Source code p ~ 0
\. Model checker \. y

The requirement describes 4 \ tOOl Counter- A Counterexamples

an expected property with Q eq U | reme nt demonstrate the violation
mathematical precision | Model checkers will rigorously L eXxXamp le) of the given requirement

checR the requirement for each
Input combination

/s model checking of PLC programs easier than of general-purpose programs?

Yes! No!

PLC programs typically have simpler control logic Different background knowledge of developers
PLC programs are often more critical, thus there is more motivation Many different PLC languages and vendor-specific flavours
Simpler data structures in PLCs, less data Complex syntax of PLC programming languages

Environment model is crucial for complete program verification

Specialities of PLC software for model checking

Syntax Semantics

No precise syntax definition No dynamic memory allocation

Systematic experiments are needed to figure out the exact syntax. All memory has to be allocated at compilation-time, which eases the formal verification.
Mixing absolute and symbolic addressing permitted Special semantics

%Mo .o and boolLVar may refer to the same bit. The cyclic execution semantics or the concept of function blocks is different from the

semantics of typical general-purpose programming languages.

Permissive grammars
M4.1, %MX4.1, MX[4, 1] mean the same thing, so do 3 other ways. Imprecise and incomplete semantics definition
Many corner cases or details of semantics (esp. in case of Siemens STL) are not defined.

Context-dependent grammars _ _
In the STL statement ‘A A’, the first A is an instruction, the second is a variable. Timed behaviour

Incaseof A L 0.0, L refers to a part of the memory, butin A L' the L is a variable. Timing is an essential part of PLC programs, support for timers is crucial.

Low-level memory manipulation
Variables may overlap each other and there are rich data conversion features.

What can we do?

| | |
o PLC . Hidina details of Easier integration of More feasible f l
P Prog g . 9 >>> general-purpose >>>
| | | |
language infrastructure PLC languages i~ ati tool verification of PLC pPrograms
PLCverif — Verification report
t Fri Feb 06 09:31:49 CET 2015 | FLCverifv2.0.1 | (C) CERN EN-ICE-PLC | Showhide expert defails
PLCverif BTN ID: INTLCK-01
u Filens SetfingsmHelp Name: Restart disallowed if interlock is not acknowledged
H @ & T (3 Generate All Models Description: |If the interlock is not acknowledged and restarting the object is not allowed in
i Verification case presence of an interlock, then the "restart allowed" output should be false.
[Project Explorer = 0 g “InterlockHandling scl 22
B sCLSource File.. B Verific = FUNCTION_BLOCK InterlockHandling ~ General See the documentation: http://example.com/documentation/Interlock/#Section2
=VAR_INPUT G : I.' f ti bout the current verification case, Describe here the name of the case and explain its
E 9 r] E 9 I rT] EE . . I n ~ m E; %FCZTEPP?JS;; ?n—ACkHOWIEdge : BOOL; motaten Source file: | InterlockHandling.scl
r I C a O r O r V r I I Ca I O O O ra ‘ k,j-L_, generated .1n_Inter‘locl.(; BO?L‘; I INTLCK-01 Requirement:| 1. out RestartAllowed = false is always true at the end of the PLC cycle, if
& InterlockHandling.scl in_Restart : BOOL;) MName: Restart disallowed if interlock is not acknowledged out InterlockNotAcknowledged=true AND PRestartAllowedDuringlnterlock=false is
ES INTLCK-DLve PRestartAllowedDuringlnterlock : BOOL; : : : — : true at the end of the same cycle.
END VAR If the interlock is not acknowledged and restarting the object is not allowed in presence of an
[] - —
T out_InterlockNotAcknowledged : BOOL; Description: |See the documentation: http://example.com/documentation/Interlock/#Section2 Tool: nuxmy
u r r L L I V out_AlarmUnacknowledged : BOOL; : — Total runtime (until getting the verification results): 552 ms
T out RestartAllowed : B|; Source coder | InterlockHandling sl = | | Refresh variabl
~ END_VAR; &=800L e Counterexample
= ByTE hereqm * .
=2 _ S—) End of End of
eV e O e o IF in Acknowledge THE equire attern: | 1. {1} is always true at the end of the PLC cycle, if {2} is true at the end of the same cycle, Variable Cycle 1 Cycle 2
<‘ i = out_InterlockNotAcknowledged := FALSE; Pattern params: [1] | out_RestartAllowed = false Input | in_Acknowledge FALSE FALSE
t AlarmUnacknowledged := FALSE; -
ELSI?U s Iﬁ;erl]ggkn?I:I'E: ge ’ [2] | out_InterlockMotAcknowledged=true AND PRestartAllowedDuringlnterlock=false Input | in_Interlock TRUE FALSE
AlarmUnacknowledged 1. out_RestartAllowed = false is always true at the end of the PLC cycle, if out_InterlockNotAcknowledged=tr{ /19Ut |in_Restart FALSE |TRUE
| i AND PRestartAllowedDuringInterlock="false is true at the end of the same cycle. input | PRestartAllowedDuringinterlock| FALSE FALSE
nnnnn Outout| out_InterlockNotAcknowledged | TRUE TRUE
Advanced c ration Output out_RestartAllowed FALSE TRUE
Verification . .
The verification can be started in this section. Also, the result can be seen here. Show/hide more details
Tool: nuXmy |
Werify

You can find this poster, the paper and more information at

http://go.cern.ch/9ZjF

http://cern.ch/plcverif -
lcons: Google Material design icons, licensed under Apache v2
. _ .

§ ICALEPCS2017

Barcelona - Spain, October 8-13

CERN Beams Department

Industrial Controls and Safety Systems Group (ICS)

	icalepcs_mc_poster.vsdx
	Page-1

