
A.P. Rashed Ahmed, M.C. Browne, D.L. Flath, K.L. Gumerlock,
T.K. Johnson, L. Lee, Z. Lentz, T.H. Rendahl, H. Shi, H.H.

Slepicka, Y. Sun, T.A. Wallace, D. Zhu

Automated Controls

Abstract
The hard x-ray split and delay (HXRSnD) system
at the Linear Coherent Light Source (LCLS) was
designed to allow for experiments requiring two-
pulse based x-ray photon correlation
spectroscopy. The system consists of eight silicon
crystals split between two optical branches, with
over 30 degrees of freedom. To maintain system
stability and safety while easing system
operation, we expand the LCLS Skywalker
software suite to provide a python-based
automation scheme that handles alignment,
operations and engineer notification. Core safety
systems such as collision avoidance are handled
at the controller and Experimental Physics and
Industrial Control System (EPICS) layer. Higher
level functionality is implemented using a stack of
open-source python packages (ophyd, bluesky,
transitions) which provide a comprehensive and
robust operational environment consisting of
virtual motors, plans and finite state machines
(FSM).

for the Hard X-Ray Split &
Delay System at LCLS

References
• Zhu, D. et al., "Development of a hard x-ray

split-delay system at the Linac Coherent Light
Source", Proc. SPIE 10237, Advances in X-ray
Free-Electron Lasers Instrumentation IV,
102370R (June 2017)

• M.L. Gibbs et al., “PyDM: A Python-Based
Framework for Control System Graphical User
Interfaces”, ICALEPCS 2017, Barcelona
(October 2017)

• T.H. Rendahl et al., “Skywalker: Python Suite
for Automated Photon Alignment at LCLS”,
ICALEPCS 2017, Barcelona (October 2017)

• N. W. Brown, et al., “Developing EASE, A
remote EPICS monitoring tool”, SLAC National
Laboratories (2016).

• National Synchrotron Light Source II, Ophyd
v0.7.0 [Python Package]. Retrieved from
http://nsls-ii.github.io/ophyd/ (December 2014)

• National Synchrotron Light Source II , Bluesky
Data Collection Framework v0.10.0 [Python
Package]. Retrieved from http://nsls-
ii.github.io/bluesky (June 2015)

• T. Yarkoni, A. Neumann, et al., Transitions
v0.6.1 [Python Package]. Retrieved from
https://github.com/pytransitions/transitions
(October 2014)

System Design and Hardware
• Consists of four towers, an assortment of

diagnostics and pneumatics.
• Towers 1 and 4 and diagnostic dd comprise the

delay branch.
• Towers 2 and 3 and diagnostics dci, dcc and

dco comprise the channel cut branch.

Virtual Motors

Rocking-Curve Maximization
• Begin a linear scan with desired crystal.
• At each step record upstream and downstream

beam intensity.
• Fit Lorentzian curve to the ratio of downstream to

upstream intensity.
• Move to maximum position, and repeat.
Alignment Procedure
• Insert the delay and channel cut branches.

• Adjust t1.th1 to cut the beam in half.
• Move the delay branch to the desired energy and

delay using the virtual motors.
• Perform a rocking curve maximization through the

delay line.
• Move the channel cut branch to the desired energy

using the virtual motor.
• Perform a rocking curve maximization through the

channel cut line.

Automatic Alignment

Acknowledgments
Use of the Linac Coherent Light Source (LCLS),
SLAC National Accelerator Laboratory, is
supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy
Sciences under Contract No. DE-AC02-
76SF00515.

Finite State Machines
• Normal Operation – Delay towers “flying”,

primarily using virtual motors.
• Parked System – Delay towers in “Parked”, all

motors disabled.
• Online Calibration – Delay towers “flying”,

alignment and homing procedures available.

Software Stack
• Aerotech Controller - Motor controller that

handles low-level safety to prevent collisions.
• EPICS - Hardware communications layer that

implements some higher level safety interlocks.
• Ophyd - Python interface for hardware.

Implements low and high-level devices.
• Bluesky - Python package that implements

system state transitions and procedures.
• Transitions - Python package for creating

finite state machines (FSMs).

http://nsls-ii.github.io/ophyd/
http://nsls-ii.github.io/bluesky
https://github.com/pytransitions/transitions

