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With an unknown input estimator the input to the 
system, in this context the beam current, is modeled as a 
disturbance d(t)

             

             

The estimator has a state space structure as follows. 

                 

                

To complete the estimator we need to derive time 
invariant matrices F, K, and H

 Initially this type of simple RLC sensor actually appears 
to be problematic
 Pervasive noise 

 physically co-resident with the sensor 

 System identification complications
 Sensitivity to sensor parasitic elements 

 

 System with two internal states
 Only one output port for use by an auxiliary state-estimator 

to view them

 Beam-current is the sole driving input
 It must be modelled as a disturbance because it isn’t directly

available to an auxiliary state-estimator as is typically 
required to obtain state-observability

Any linear time-invariant multi-input multi-output system might be represented 
in a so-called state-space representation 
                 
                 

Where:
x(t) is a vector of dynamical system states
u(t) is a vector of system inputs
d(t) is a vector of system disturbances
y(t) is a vector of system outputs
       

 

  

 
    

A is a system dynamics matrix
B is an input scaling matrix
C is an output scaling matrix
D is an input feedthrough scaling matrix
E is a disturbance scaling matrix
  is a disturbance feedthrough scaling matrix

In control-theory a state-estimator is an auxiliary system providing 
approximate values for internal variables of the target system using only 
measurements of inputs to, and outputs from, the target system.

                       
            

We can obtain the error of the estimator, and its first derivative

         
         

Target system observability requires rank of O is the same as rank of A

  

 
  
   

 
     

 

• The Kalman Filter is a famous model-based state-estimator algorithm 
providing optimized iterative estimates of system states in the presence of 
noise, and in the presence of other uncertainties such as imprecise target 
system model identification. 

• Its algorithm is proven to provide mathematically optimal state estimates 
when errors have known Gaussian stochastic distribution. 

• The filter is implemented in two steps; first it produces current system state 
estimates along with their uncertainties, and second it updates iterative 
system state estimates using weighted averaging. 

• The optimized K matrix for the Kalman filter is designed when solving the 
Algebraic Riccati Equation.

 A passive pulsed-beam current transformer has a 
parallel RLC simplified equivalent circuit with a band-
pass behaviour transfer function

 There are two system internal states
 Capacitive and inductive

 In the schematic we consider some additional details 
with Csp, Rscp, and Rslp modelling the parasitic 
elements of transformer secondary Inductor Ls

After designing the estimator then the next step is to 
produce an estimation of the unknown disturbance 
input d(t), in this context the beam current, from the 
state estimates. This must be approached carefully so 
that we obtain a meaningful and accurate result.

                 

       

          
        
             

The Octave pole placement or lqr functions can be used 
to solve for a K matrix producing a stable estimator 
feedback         

Unfortunately, with this approach we can obtain stable 
feedback, and can also adjust estimator performance for 
various metrics, but in contrast to the famous Kalman
algorithm, mathematical error reduction optimality for 
noise and or system errors with known Guassian
statistics can no-longer be guaranteed

A fundamental assertion of UIE design is that the error 
e(t) is defined to approach zero asymptotically 
independent of the presence of an unknown input d(t), 
and that the estimation process can be decoupled from 
the disturbance

The estimator system state-space matrices can be solved 
for algebraically based on the dual conditions that the 
error approaches zero asymptotically, and the estimator 
structure requires            

The sensor has two internal states, one input, and one output
• The voltage across Csp
• The current in Ls
• The sensor input is Ib
• The sensor output is across Rt

Obtaining sufficient observability for the beam current transformer sensor 
requires modelling some additional parasitic components
• In particular, Rslp and Rscp

Considering these components ensures that our model for the circuit output 
voltage is based on both of the internal states of the sensor, inductive and 
capacitive

 Initially, the Kalman Estimator’s optimal noise 
reduction and system component variability error 
reduction appear to be quite promising for addressing 
at least two of the previously identified challenges, 
associated with current transformer sensors

 With conventional Kalman filter design state-
observability is also contingent upon driving input 
history being known to the state-estimator
 Therefore, a specialized algorithm, the so-called 

Unknown Input Observer, is required

• First, a simulated beam current source was created by removing the 
negative excursions of a sine function, next imposing a LANSCE mini-
pulse time structure, and finally adding Gaussian distribution noise. 

• Second, the target beam current transformer sensor system was 
simulated, using the simulated beam current source as its input, and 
capturing its output. 

• Third, Gaussian distribution noise was added also to the target beam 
current transformer sensor system simulated output. 

• Fourth, the UIE system was simulated, using the simulated sensor system 
output plus added noise as its input, and capturing its output. 

• Initial simulation results are positive with the estimator appearing to exhibit 
good performance removing sensor and process noise as anticipated.

• At this time, mismatching the UIE’s knowledge of the target sensor 
components and the target sensor simulation’s knowledge of sensor 
components has not been tried. This would require some substantial 
modifications to the simulation script.

• Modern tools exist for converting Octave (MATLAB) models into a physical 
FPGA-based signal processing system, and the next step would be to test 
the algorithm on a physical system.

• Initial results appear to indicate that we could do more to eliminate droop 
distortion possibly by resetting the UIE initial conditions at the end of each 
mini pulse, or possibly implementing d(t) estimation enhancements

• The current transformer sensor was characterized in SPICE considering 
additional parasitic component values. 

• A novel approach for beam current transformer data acquisition was 
designed and simulated. 

• The specific Kalman algorithm was found to be incompatible with this 
context and instead a related estimator algorithm, the so-called the 
Unknown Input Estimator (UIE), was evaluated, for beam current 
transformer sensor systems. 

• Initial Octave simulation results are positive with this estimator appearing to 
exhibit good performance reducing sensor and process noise. 

• We hope to test the UIE based data acquisition on a physical system in the 
near future. 

• The UIE implementation also appears to have potential for removing droop 
distortion.


