
Multi-criteria partitioning on distributed file systems for
efficient accelerator data analysis and performance

optimization
S. Boychenko, M.A. Galilee, J.C. Garnier, M. Zerlauth, CERN, Switzerland

M.Z. Rela CISUC, University of Coimbra, Portugal

Motivation
In order to collect the requirements for the next generation storage
solution, a detailed analysis of the CERN Accelerator Logging and Post
Mortem systems was conducted. Despite the fact that modern distributed
storage solutions can solve most of the identified issues, there are a few
which require an individual approach in order to allow the infrastructure
to reach its maximum potential:

• The storage and processing solution must be optimized for
heterogeneous workloads, as different users are interested in
different analysis.

• The solution should be able to cope with seasonality in the executed
query profiles, as the operations vary according to the accelerator
state.

• The solution must be resilient to workload deviations, as constant
upgrades of the LHC hardware systems can render an once efficient
approach obsolete.

Mixed Partitioning Scheme Replication
To overcome the identified challenges, a novel approach for distributed
storage and processing solutions was developed - Mixed Partitioning
Scheme Replication (MPSR). The core functionalities of the proposed
approach are presented below:

• The user requests executed on the system are classified based on the
stored object attributes and grouped into several categories (which
should be consistent with the storage replication factor).

• The data partitioning criteria are optimized for the previously
determined workload categories, allowing multiple representations
to be distributed throughout the cluster.

• Unlike in traditional solutions, the replication is performed using
different data representations, rather than distributing the identical
scheme on each of the replica groups.

• The elastic replica management temporary boosts the performance
of the system for determined workload categories.

MPSR Hadoop Prototype

Namenode
FSNamesystem FSDirectory

MPSR File System
Disk Management

Module

MPSRINode
MPSRDirectory

MPSRFile

MPSRMeta
Service

BlockManager
Node Allocation

Module

MPSR File System
In-Memory Management

Module

root
2016
2017

January
February
March

01
02

TCLA
BLMQI
DCBA

root
2016
2017

January
February
March

01
02

TCLA
BLMQI
DCBA

edit filesfs image

Datanode mapping

Datanode Datanode Datanode

Local Storage

Blk_1 Blk_5

Blk_8

Blk_2 Blk_7 Blk_3 Blk_4

Blk_6

0011010011 001110

1100111101 110111

0111101110 111011

1101110111 101110

1101110111 000101

1001110110 011101

RAM

0110111000 011011

1001100001 101101

1101110111 011110

Average Query Execution Time
We started by conducting benchmarks to study
and compare the average query execution time
of the traditional Hadoop deployments and
the MPSR prototype. This metric is absolutely
critical for assessing the usefulness of the
proposed approach.

 0

 20

 40

 60

 80

 100

4-nodes 7-nodes 10-nodes

Av
er

ag
e

Ap
pl

ic
at

io
n

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Cluster Configuration

Traditional Hadoop
MPSR Prototype

It can be also observed that the performance
gains of the MPSR prototype were higher in
larger clusters, leading to a reduction in the
average execution time by 21-42% on a 10-node
infrastructure, respectively 19-35% on 7-node
and 15-34% on 4-node infrastructures.

Average Queue Size
Despite the fact that the average execution
time is a good measure to determine the
performance of the system, the queue size
cannot be neglected, as the request pile-up
can render the infrastructure unusable at
some point and therefore severely impact the
application waiting time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

N
um

be
r

of
 t

he
 R

eq
ue

st
s

in
 t

he
 Q

ue
ue

Submitted Applications

Traditional Hadoop
MPSR Prototype

The MPSR approach was able to maintain the
queue size close to zero throughout the entire
runtime of the experiment, with the exception
of a successive submission of a few applications
with large input size.

Namenode Memory
The analysis of the heap memory revealed
that the final data scheme of the standard
Hadoop installation was represented by a total
of 5342 files, requiring 5512 blocks to store
its actual contents, while the MPSR prototype
namespace is represented by 18577 files, which
require 25128 blocks to store the contents

 0

 1000

 2000

 3000

 4000

 5000

Traditional Hadoop MPSR Prototype

Si
ze

 (
Ki

lo
by

te
s)

Files
Blocks

Directories

The size calculations were based on the
estimations discussed by the Hadoop
architects, where each of the Java objects
(taking into account the Hadoop configuration)
was assigned on approximate size.

1

