
BLISS - EXPERIMENTS CONTROL FOR ESRF EBS BEAMLINES
M. Guijarro∗, A. Beteva, T. Coutinho, M. C. Dominguez, C. Guilloud,
A. Homs, J. Meyer, V. Michel, E. Papillon, M. Perez, S. Petitdemange,

ESRF The European Synchrotron, Grenoble, France France

Abstract

BLISS is the new ESRF control system for running ex-
periments, with full deployment aimed for the end of the
EBS upgrade program in 2020. BLISS provides a global ap-
proach to run synchrotron experiments, thanks to hardware
integration, Python sequences and an advanced scanning en-
gine. As a Python package, BLISS can be easily embedded
into any Python application and data management features
enable online data analysis. In addition, BLISS ships with
tools to enhance scientists user experience and can easily be
integrated into TANGO based environments, with generic
TANGO servers on top of BLISS controllers. BLISS con-
figuration facility can be used as an alternative TANGO
database. Delineating all aspects of the BLISS project from
beamline device configuration up to the integrated user in-
terface, this paper will present the technical choices that
drove BLISS design and will describe the BLISS software
architecture and technology stack in depth.

RATIONALE

Over the last 26 years, Spec [1] has been the main experi-
ments control system at ESRF.

Spec is a software package for instrument control and data
acquisition featuring a command line interface (CLI) with
a read-eval-print-loop (REPL). Users can immediately call
commands and more complicated sequences, written in the
Spec macro language inspired by awk [2]. Spec has built-in
step-by-step scans support, and features a long list of natively
supported devices, from motor controllers to detectors. Spec
can also communicate with beamline control systems like
EPICS or TANGO, to extend the range of supported hard-
ware. Last but not least, Spec features a client/server mode,
to be able to control a Spec session from a remote process.

Spec success within the Beamline Control Unit (BCU) at
ESRF, and among the synchrotron users community in gen-
eral, is a vibrant example of a well-crafted piece of software,
which has a limited, yet sufficient, set of features that sat-
isfy users in their day-to-day activity, while offering enough
flexibility for more advanced use cases. There is certainly a
lesson to learn for any new software project.

However, at some point a limit was reached and tons of
workarounds to circumvent Spec limitations have been im-
plemented to be able to do continuous scans and to support
multiple, fast detectors data acquisition, or to deal with Spec
single-task execution model. The lack of extensibility of the
∗ guijarro@esrf.fr

Spec macros language combined with other limitations like
the absence of debugging tools lead to the implementation
of time-consuming, hard to maintain solutions.

Nowadays, with the perspective of the Extremely Brilliant
Source (EBS) [3] program, new beamlines and new kinds of
experiments require cutting-edge tools to support the more
complex data acquisition protocols. This is the ambition
for the BLISS project, that was started in December, 2015.
Other drivers for the BLISS project include the PaNdata [4]
initiative, to add metadata about all data produced at ESRF,
that would benefit from more advanced data management
from the experiment control software. Finally, beamline
control can greatly benefit from latest advances in IT industry
and one of the main goals of BLISS is to make the newest
technology available for synchrotron experiments.

BLISS PROJECT SCOPE

The BLISS project brings a holistic approach to syn-
chrotron beamline control. The scope of the BLISS project
goes from hardware control up to the end-user interface.
BLISS does not include data analysis, which is devoted to
another software package at ESRF called silx. [5]

TECHNICAL CHOICES

BLISS is a software package composed of a Python library
and a set of tools.

Python Library

Python is a de facto standard in the scientific commu-
nity, and is very popular with a huge ecosystem. Python
is a multi-paradigm, dynamic language, with a clear syn-
tax. Python ships with an extensive standard library, and
features advanced debugging and profiling capabilities. The
interpreted nature of Python makes it very well suited as a
programming language for running beamline experiments
scripts in comparison with compiled languages. Last but
not least, another essential asset of Python in the context
of BLISS is that it can easily interface C or C++ libraries,
which makes it really unavoidable as a glue language be-
tween low-level hardware control and BLISS library.

The idea of having BLISS as a Python extension package
at the first place allows to embed BLISS into existing Python
applications, and is also a very flexible way of writing tools
around core functionalities for the BLISS project. A similar

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL05

WEBPL05
1060

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

approach was taken by the ESRF Lima project [6] for area
detectors control, and proved to be very successful.

BLISS Architecture

BLISS library has a modular architecture, composed of 5
distinct entities (cf. figure 1):

• configuration
• communication helpers
• hardware control
• scanning
• data management

The Configuration entity, called Beacon (Beamline Con-
figuration), traverses the entire project. It constitutes the cor-
ner stone of BLISS, as it provides entry points for all others
BLISS components. In particular, Beacon is also responsible
for settings management and data channels (cf. Configura-
tion).

Communication helpers provide an uniform way to ac-
cess equipments interfaced via serial line, gpib, modbus or
tcp/udp. The communication entity can also give access to
TANGO [7] device proxies thanks to the PyTango [8] Python
module.

Hardware controllers are effectively interacting with the
experiment devices (cf. Hardware Control).

The scanning entity is responsible for executing scans,
using hardware control layer devices (cf. Scanning).

The data management entity publishes and stores scan
data (cf. Data Management).

se
tt

in
g
s

d
at

a
ch

an
n
el

s

configuration (Beacon)

communication

data management

sh
e
ll (b

liss C
LI)

scanning

PyTangogpibtcp/udpserialmodbuszerorpc

hardware controllers
Axis MCA

XiaMotors: IcePAP,galil, PI... Keithley

Counter

Acq.Channel Acq.Master

Acq.DeviceAcq.Chain

Lima (2D)

Image

Eurotherm,
Oxford

Figure 1: Bliss architecture.

Cooperative Multitasking

Multitasking is the ability of executing multiple tasks con-
currently. In the case of one CPU, the way to run multiple
tasks is to rapidly switch between them. In the case of mul-
tiple CPUs, parallel processing can happen ; however, if the
number of tasks exceeds the number of CPU, then each CPU
also multitasks. All tasks execute by alternating between
CPU processing and I/O handling. For I/O, tasks might
wait - behind the scenes, the underlying system will carry

out the I/O operation and wake the task when it is finished
(cf. figure 2).

Blocking system calls

run
Task

runwait wait

Figure 2: Task execution.

There are different models for concurrency:

• multithreading (MT), OS threads, common memory
space

• actor model [9], multiple processes, messaging
• asynchronous I/O, event loops and callback chains

Data acquisition is an I/O bound activity: in many cases,
a data acquisition process is waiting for an I/O operation
to complete. Multiple CPUs does not really help with I/O,
since the resources are exclusive: parallel processing would
not happen in anyways. Moreover, it comes with a whole set
of issues that makes writing MT programs utterly difficult.
As stated by P. Hintjens in the ZeroMQ guide [10]:

[. . .] one lesson we’ve learned from 30+ years of
concurrent programming, it is: just don’t share
state. It’s like two drunkards trying to share a beer.
It doesn’t matter if they’re good buddies. Sooner
or later, they’re going to get into a fight. And the
more drunkards you add to the table, the more they
fight each other over the beer. The tragic majority
of MT applications look like drunken bar fights.

The second model can be implemented in Python thanks
to the multiprocessing module. Independent copies of the
Python interpreter can get to communicate through message
passing (IPC) using pipes, FIFOs, memory mapped regions
or sockets. Messaging implies serialization: Python objects
need to be converted to a byte stream, this can be done
through the standard pickle module. However, it is quite
heavy in term of memory consumption does not scale well.

Therefore, BLISS implements the third concurrency
model. Asynchronous I/O is one of the main function of
operating systems: it permits processing to continue before
an I/O operation has completed. Basically this is the select
system call (and more efficient variants) in Unix or Windows
systems. An event loop runs within the main process, that get
notified of the state of I/O operations (can do a non-blocking
read, can do a non-blocking write). This usually gives great
response times, low latency and CPU usage, and brings all
the advantages of one single main thread.

Gevent BLISS is built on top of gevent [11], a coroutine-
based Python networking library. It features a fast event loop
based on libev, [12] and introduces lightweight execution
units (tasks) based on greenlet. [13] greenlet encapsulates
the concept of micro-thread with no implicit scheduling,

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL05

Experiment Control
WEBPL05

1061

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

which is the definition of a coroutine [14]. A coroutine is
like a normal subroutine, except that it has yielding points
instead of a single return exit. Scheduling comes from the
event loop of gevent: while I/O operations occur in a task,
gevent yields automatically to execute another task.

Direct Hardware Control

BLISS is based on the idea of direct hardware control,
inspired by Spec. Whenever it is possible, controlling hard-
ware directly is beneficial:

• easier debugging
• efficient data transfers
• no external control process

Several BLISS instances will establish their own connec-
tions in order to control beamline equipments. Of course,
most of the time concurrent access is not permitted: only
one task at a time can access a beamline hardware resource.
As a consequence, BLISS implements a protocol in order to
deal with objects resources sharing (cf. Distributed control
objects).

When direct hardware control is not possible, because
the equipment does not support multiple connections or if
the equipment has to be controlled from another computer,
BLISS uses a proxy to the control logic deported on the
equipment side, for example with a TANGO [7] device server.

Distributed Control Objects

Control objects defined in several BLISS instances are
supposed to be identical objects (from the same class). Two
similar objects controlling the same hardware are called
peers. BLISS introduces the concept of distributed peer-to-
peer control:

• each peer has direct hardware control
• lazy initialization: initialization of a control object
does not imply communication with the hardware

• when accessing hardware, a peer asks for permission
• hardware initialization is done only once, by the first
peer

• when a peer state changes, for example the position of
an Axis object, other peers are informed and updated
accordingly via Data Channels

The transfer of control between peers is based on a proto-
col: peers are all connected to the Distributed Lock Man-
ager service of Beacon (cf. figure 3).

Redis

BLISS uses redis [15] to implement essential features of
the project:

• settings cache (cf. Configuration)
• data channels communication broker
• ephemeral data store (cf. Data management)

BLISS shell A BLISS shell BDistributed Lock Manager

m0
axis

.move(1)

acquire lock

ok!

Hardware controller

move command

m0axis

state update {MOVING, position}

.move(1.5)
acquire lock

refused!

state update {MOVING, position}

Figure 3: Distributed control objects example.

BLISS data channels relies on the PUB/SUB facility of
redis to support message passing between BLISS sessions.

The redis server is started, and monitored, by the configu-
ration layer of BLISS.

CONFIGURATION

The BLISS configuration entity, a.k.a Beacon, aims to
provide a complete and centralized description of the entire
beamline. BLISS distinguishes between 2 kinds of configu-
ration information: either configuration is static, as a stepper
motor axis steps per unit, ie. the configuration information
will not change over time once the object is configured ; or
the configuration is subject to change, like a motor velocity
for example. In this case, this is called a setting and settings
are all backed up within the redis database.

Static Configuration

The static configuration consists of a centralized directory
structure of text based files, which provides a simple, yet
flexiblemechanism to describe BLISS software initialization.
The YAML [16] format has been chosen because of its human
readability (cf. figure 4).

ID00

EH

OH

temperature

motion.yml

sessions

tomo.py
tomo.yml

...

Figure 4: YAML tree example.

BLISS is an object oriented library and its configuration
follows the same model. Objects are identified in the system
by a unique name. BLISS reserves the YAML key name as
the entry point for an object configuration.

Each particular BLISS class may choose to profit from the
BLISS configuration system. The BLISS configuration is
powerful enough to describe not only control objects like

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL05

WEBPL05
1062

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

motors, counter cards or detectors but also user interface
objects like sessions or procedures.

The following YAML lines exemplify motor and session
configurations:

motion.yml
class: IcePAP
host: iceid311
plugin: emotion
axes:
- name: rotY

address: 3
steps_per_unit: 100
acceleration: 16.0
velocity: 2.0

tomo.yml
class: Session
name: tomo
config-objects: [rotY, pilatus, I, I0]
setup-file: ./tomo.py
measurement-groups:
- name: sensors

counters: [I, I0]

Settings

Beacon relies on Redis to store settings, ie. configura-
tion values that change over time, and that needs to be ap-
plied to hardware equipments at initialization time. This
allows to be persistent across executions. Taking again
the motor example, if a motor velocity is set to a certain
amount from a BLISS session, when it is restarted the
last known velocity is applied to the axis. Settings values
use Redis structures: settings can be hashes (mapped to a
Python dictionary), lists, and scalar values. BLISS offers a
bliss.config.settings helper submodule to deal with
Beacon settings directly from the host Python program.

Beacon-server

A client can access the remote configuration through a
service provided by the beacon-server which, on request,
provides a complete or partial YAML configuration. The
BLISS library provides a simple API for clients to retrieve
the configuration from the server as a singleton Config ob-
ject:

>>> from bliss.config.static import get_config
>>> config = get_config()
>>> rotY = config.get('rotY')
>>> rotY.position()
23.45

The beacon-server is also responsible of managing a Redis
server instance and optionally a configuration web appli-
cation (cf. figure 5).

Figure 5: Beacon configuration tool.

TANGO Database

Additionally, Beacon can also provide an alternative im-
plementation of the TANGO Database service based on the
same YAML configuration structure.

HARDWARE CONTROL

To the hardware control point of view, challenging points
are to support an increasing number of devices to fit the
experimental needs of scientists and to be able to deal with
increasing complexity of devices (synchronization or com-
munication protocols for example)

Generic Controllers

To achieve these goals, BLISS provides generic con-
trollers which implement the complex, logical part of the
control for each main class of devices encountered and leave
to the developers the task to implement only the specific part
of the control.

This approach is very efficient for instruments with a great
variety of models. The price to pay is an increase of the com-
plexity of the generic controllers. But this strategy is not
exclusive: some controllers are, at least for now, not generic;
either because we have no common behavior between differ-
ent models or because it is much simpler to have a dedicated
control. We can mention: Keithley electrometers or some
ESRF cards like OPIOM or MUSST.

The first generic controllers we provide are dealing with:

• Motors Controllers
• Multichannel Analyzers (for fluorescence detectors)
• Temperature Controllers

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL05

Experiment Control
WEBPL05

1063

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

• 2D detectors (via Lima)

Motors

Motor controllers are based on five fundamental classes
(Controller, Axis, Group, Encoder and Shutter). The
generic motor controller objects, and derivative devices,
provide management of:

• typical basic parameters: velocity, acceleration, limits,
steps per unit

• state, motion hooks, encoders reading, backlash, limits,
offsets

• typical actions: homing, jog, synchronized movements
of groups of motors

The minimal coding part to support a new controller
consist, for the developer, in providing implementation
of elementary functions like: read_position(),
read_veolcity(), set_velocity(), state(),
start_one() and stop().

A Calculation Controller is also proposed to build vir-
tual axes on top of real ones.

The list of motor controllers already implemented in
BLISS, in use at ESRF, includes (but is not limited to) con-
trollers like Aerotech, FlexDC, Galil, IcePap, Newfocus, PI
piezo or Piezomotor PMD206.

Multichannel Analyzer Controllers

The principle is very similar for MCA electronics. An
interesting detail of the implementation is the usage or ze-
roRPC [17], to deport control from a windows computer to
the workstation where BLISS is running. This behavior al-
lows to cohere with the direct hardware control principle.

First targeted MCA are XIA devices: Xmap, Mercury
and FalconX. They will be followed by Maya2000 from
OceanOptics and Hamamatsu.

Simulators

For each type of generic controller, we have built “simula-
tion devices” to test our own code and to provide test devices
to help users with the creation of their control sequences.

A simulator like the mockup motor controller is used
to test the logical part of the motor controller within the
frame of a collection of unit tests executed in a continuous-
integration process.

SCANNING

BLISS implements a general scanning engine to run all
kinds of scans, that emancipates from the dichotomy of
step-by-step or continuous scans. Indeed, BLISS introduces

the concepts of acquisition chain, acquisition master and
acquisition device to be able to perform any kind of scan.

Acquisition Chain

The representation of the acquisition chain is a tree. The
hierarchical nature of the acquisition chain allows to formal-
ize the dependencies between nodes. There are 2 kinds of
nodes:

• master nodes, that trigger data acquisition
• device nodes (leaves), that acquire data

Acquisition chain objects expose 3 methods corresponding
to the 3 phases of a scan:

• prepare()
• start()
• stop()

During the preparation phase, the acquisition chain tree
is traversed in reversed level order (reversed Breadth-first
search [18]) in order to prepare the device nodes first, then
masters and so on until the tree root ; on each element,
.prepare() is called. Preparation is decoupled from start
in order to make sure minimum latency will happen when
starting the scan. Indeed, during preparation each equip-
ment is programmed or configured for the scan. By default,
preparation of all equipments is done in parallel.

At start, the same tree traversal procedure is applied
as within the preparation phase ; on each chain element,
.start() is called ; device nodes will begin to wait for a
trigger whereas master nodes will start to produce trigger
events. It is important to note that devices are always started
before masters, and that trigger events can be hardware or
software. A scan can be seen as an iterative sequence ; after
.start() method is executed, the acquisition chain enters
the first iteration.

It continues until the first master signals acquisition is
finished, or in case of error, or if the scan is interrupted.
Then, .stop() methods are called on each tree element.

Monitoring ScanExample The following chain (cf. fig-
ure 6) describes a scan with one timer master, triggering 3
diode counters.

Timer

diode1

diode2

diode3

Figure 6: Monitoring scan chain.

Basic Scan Example This chain (cf. figure 7) describes
a scan with one motor master, triggering a timer master,
that triggers in turn 3 diode counters. This is typically the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL05

WEBPL05
1064

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

kind of scan Spec does with the ascan or dscan macros,
except that in the case of BLISS the step-by-step or contin-
uous nature of the scan does not depend on the acquisition
chain, but on the type of master and device nodes.

Timer

diode1

diode2

diode3

Motor

Figure 7: Basic scan example.

Associating Basic Scan and Monitoring This chain
(cf. figure 8) describes a scan with 2 top masters: one motor
and one timer. The branch with the motor is like the basic
scan above, except that a 2D detector is taking images at
predefined motor positions, and for each image it acquires
X and Y beam position. On the second branch, there is a
simple temperature monitoring. The two top masters run in
parallel.

Root

Motor

Timer

temperature2

Lima

beamX

beamY

Figure 8: Associating basic scan and monitoring.

Base Acquisition Chain Classes

AcquisitionMaster is the base class for master nodes
in an acquisition chain. AcquisitionDevice is the base
class for device nodes in an acquisition chain. Both ob-
jects wrap existing BLISS control objects, in order to be in-
cluded in a scan. There are as many AcquisitionMaster
and AcquisitionDevice classes as BLISS control ob-
jects and ways to do the scan sequence. For exam-
ple, LinearStepTriggerMaster can take 2 BLISS Axis
objects, to produce triggers at linear motor positions ;
MeshStepTriggerMaster can take the same 2 objects to
produce triggers to form a grid.

Similarly to AcquisitionChain objects,
AcquisitionMaster and AcquisitionDevice also
have .prepare(), .start() and .stop() methods. In
addition, the .trigger() method is called from master
nodes to children whenever a trigger event is generated from
hardware or software. The trigger event starts the reading
on device nodes. As soon as data is read, it is pushed to the
data writing module.

DATA MANAGEMENT

BLISS has built-in data management facilities as a first-
class citizen. Each node object in the chain has a name,
which clearly identifies data sources. Associated with the
tree view of the acquisition chain, BLISS creates a data
model from the bottom-up that closely follows experiments.

Acquisition Channels

Acquisition chain objects, being masters or devices, define
zero or more AcquisitionChannel objects which have:

• a name
• a type
• a shape

Acquisition channels describe the kind of data produced
by the underlying BLISS control objects.

Data Writing and Publishing

During scans, data is placed in the appropriate acquisition
channels; then, the scanning engine temporarly publishes
the channels to the Redis database, either as plain values for
scalars or as references to data files for bigger data. Con-
currently, channel data is written by the active data writer
object. By default, BLISS saves data in HDF5 format.

Any external process can monitor Redis to get notified of
on-going acquisitions.and to explore acquired data. This
facilitates online data analysis. Scan data is kept in redis for
a configurable amount of time (set to one day by default).

BLISS provides a Python helper module to iterate over
produced data.

TRANSITION FROM SPEC TO BLISS

The migration to full BLISS-controlled experiments, will
face the refactoring of a huge quantity of existing procedures
developed on ESRF beamlines in Spec.

In order to ensure a smooth transition from Spec to BLISS,
some tools are provided with BLISS to be able to interact
more easily with our actual control system:

• A generic counter to use any TANGO attribute as a
BLISS counter

• BlissAxisManager TANGO server, that makes BLISS
Axis objects available as TANGO devices

• A Spec ‘macro motor’ on top of BlissAxisManager
to be able to configure Spec motors with BLISS (via
TANGO)

• A generic TANGO server that gives access to anyBLISS
object

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL05

Experiment Control
WEBPL05

1065

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

BLISS USER INTERFACES

On top of the BLISS library, two user interfaces have been
developed in order to provide an entry point for users on
beamlines to get access to BLISS functionalities.

BLISS Command Line Interface (CLI)

The bliss command line interface is based on ptpython
[19]. It provides a Python interpreter enhanced with BLISS-
specific features. Most notably, the interpreter input loop is
replaced to include gevent events processing.

bliss can load BLISS sessions, via a -s command line
switch. The command line interface automatically loads
session objects, and executes an optional setup script. All
globals are exported to the bliss.setup_globals names-
pace, in order to allow users to import session objects in
their own scripts.

BLISS Shell Web Application

BLISS ships with an ‘experimental’ version of a web-
based command line interface similar to bliss (cf. figure
9), offering more graphical display possibilities thanks to
the web platform.

Figure 9: BLISS web shell.

CONCLUSION

This document presented the context for the launch of the
BLISS project, and went through a technical review of all
aspects of the development currently conducted at ESRF
to renew the beamline experiments control system in the
perspective of the EBS.

At the moment, BLISS is in an active development phase.
Middle term goals include the development of new hardware
controllers, the port of Spec-based experiment protocols

to BLISS with the collaboration of ESRF scientists, and
the improvement of BLISS user interfaces to provide data
visualization capabilities using the ESRF silx toolkit.
BLISS has already been deployed on Macromolecular

Crystallography beamlines, and more ESRF beamlines will
benefit from BLISS before the end of the year: Materials
Chemistry and Engineering (ID15A), High-Energy Mate-
rials Processing (ID31), Materials Science (ID11). BLISS
takes up the challenge of deploying a complete new sys-
tem while the former one is still in production and while
beamlines stay in user operation. The BLISS project main
objective is to have all ESRF beamlines equiped with BLISS
in 2020.

BLISS opens new perspectives in term of beamline exper-
iments control, to bring advanced scanning techniques and
enhanced data management to all ESRF beamlines.

REFERENCES
[1] Certified Scientific Software, http://certif.com

[2] awk, http://www.linuxcertif.com/man/1/awk/

[3] J.M. Chaize et al., "The ESRF’s Extremely Brilliant Source -
a 4th Generation Light Source", ICALEPCS 2017, Barcelona,
Spain, 2017, FRAPL07, this conference.

[4] PANdata, http://pan-data.eu/

[5] silx-kit, http://www.silx.org

[6] A. Homs et al., "LIMA: A Generic Library for High Through-
put Image Acquisition", in Proc. of ICALEPS 2011, Grenoble,
France, WEMAU011, 676-679, (2011)

[7] TANGO, http://www.tango-controls.org

[8] pytango, https://github.com/tango-controls/pytango

[9] dtic, https://www.dtic.mil/dtic/tr/fulltext/u2/a260196.pdf

[10] zguide, http://zguide.zeromq.org/page:all

[11] gevent, http://www.gevent.org

[12] libev, http://libev.schmorp.de

[13] greenlet, https://greenlet.readthedocs.io

[14] ACM Digital Library, https://dl.acm.org/citation.cfm?id=
366704

[15] redis, http://redis.io

[16] yaml, http://yaml.org

[17] zerorpc, http://www.zerorpc.io/

[18] Moore, Edward F., "The shortest path through a maze", Pro-
ceedings of the International Symposium on the Theory of
Switching. Harvard University Press, pp. 285–292, As cited
by Cormen, Leiserson, Rivest, and Stein. (1959)

[19] ptpython, https://github.com/jonathanslenders/ptpython

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-WEBPL05

WEBPL05
1066

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

