
WEB AND MULTI-PLATFORM MOBILE APP AT ELETTRA

L. Zambon*, A. I. Bogani, S. Cleva, E. Coghetto, F. Lauro, Elettra-Sincrotrone Trieste S.C.p.A.,

Trieste, Italy

M. De Bernardi, University of Trieste, Trieste, Italy

Abstract
A few apps have been recently developed at Elettra

Sincrotrone Trieste. The main requirements are the

compatibility with the main mobile device platforms and

with the web, as well as the "mobile-first" user interface

approach. We abandoned the possibility of developing

native apps for the main mobile OSs. There are plenty of

libraries and frameworks for the development of modern

cross platform web/mobile applications. In this scenario

the choice of a particular set of libraries is crucial. In this

paper we will discuss the motivation of our choice trying

to compare it with the other possibilities in regard to our

particular use cases, as well as the first applications

developed.

INTRODUCTION

In late 2016 we developed a hybrid app called

elettrApp, this app was based mainly on Apache Cordova

and jQuery. In May 2017 started a 12 months project

called PWMA (Platform for Web and Mobile

Applications) based mainly on WebSockets and React

Native. Although we are still at the beginning, the results

already obtained are very encouraging and we are

confident to reach much better results in the near future.

ELETTRAPP

Requirements

• Multiplatform We considered the possibility to

build a hybrid app more attractive than a native app

for Android because hybrid apps can run on all the

main mobile platforms and on the web.

• Fast development Most of the development was

done by a bachelor's degree student as his thesis. The

time available wasn't much longer than two months.

We expected to develop an app equivalent to a single

synoptic panel already implemented as a native GUI

(Graphic User Interface) written in C++ and Qt,

but hybrid apps development was so quick that

allowed to include a few other screens, one of them

much more complicated.

• All in one application Our users asked explicitly for

a unique mobile app as an interface for all tasks.

Technology

• Apache Cordova allows to develop hybrid apps that

is: "Hybrid apps embed a mobile web site inside a

native app. [...] This allows development using web

technologies [...] while also retaining certain

advantages of native apps (e.g. direct access to

device hardware, offline operation, app store

visibility)."[1]. We used an excellent documentation

[2] which allowed us to be productive almost

immediately. Apache Cordova runs on the mobile

browser, but the browser is hidden to the user so that

the application looks like a native application. The

browser implies some inefficiency in comparison to

native apps, but the only sector interdicted is

interactive gaming. An other important feature of

hybrid apps is the possibility to download from the

web not only data but also templates (in form of

HTML (HyperText Markup Language) and

JavaScript files). This makes an app much more

expandable and flexible [3].

• jQuery is a cross-platform JavaScript library

designed to simplify the client-side scripting of

HTML [4]. jQuery contributed significantly to speed

up the development time in respect to vanilla

JavaScript [5]. jQuery is responsible of connecting

asynchronously to a REST (REpresentational State

Transfer) server. We used only client to server

connections (polling).

• Bootstrap is a free and open-source front-end web

framework for designing websites and web

applications. It contains HTML- and CSS-based

(Cascading Style Sheet) design templates [6].

Bootstrap implements a “mobile first” design [7].

From the developer point of view, using Bootstrap

requires little more effort than writing basic HTML,

but the user experience is greatly improved.

• Ionic We tried to use Ionic [8] but the benefits from

this framework didn't come quickly enough, so we

aborted this part of our development. This was due to

the fact that Ionic require AngularJS [9] which is a

JavaScript framework completely different from

jQuery.

Architecture

The first screen is a basic starter composed by a button

for each task plus a tick which makes the task chosen the

default.

The tasks are: synoptic status (for 2 accelerators and a

complex system), cAstor, a starter administration tool

similar to TANGO Astor (for 3 accelerator domains) and a

shift calendar (for 2 groups).

• Synoptic status A common pattern is shared by all

synoptic status. Each synoptic screen is composed by

one or two charts. The charts are always on top

because our users asked to put them in evidence.

Charts are embedded in an <iframe> tag using
__

* email address lucio.zambon@elettra.eu

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH103

TUSH103
984

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

eGiga2m, a tool already used at Elettra [10]. This is a

trivial way to use other applications as a component

in a new one. This technique reduced dramatically

the development time. The price to pay is a certain

inefficiency at run time, but in our case it was

acceptable. Below the charts there are a few boxes

which are by default aligned vertically and closed on

small devices; on large devices the same boxes are

opened by default and are inserted in 2 or 4 columns.

Each box contains a few data, each with its label.

These data was retrieved periodically from the REST

server. During the development, a few tests have

been carried out to find the best way to group the

data together and find the optimal period of the timer

used to poll them.

• cAstor is a modified version of TANGO Astor [11].

The tree structure of Astor was implemented but

most menus were neglected or simplified. When a

device server is switched on or off, a modal

containing an <iframe> is opened. In this <iframe>

there is an authentication form provided by an

external service secured with TLS (Transport Layer

Security). We created a new view which allows to

monitor only the stopped device servers. Another

extension consisted in browsing up to the attribute

level and installing an alarm when crossing a

configurable threshold. But this feature was aborted

because it was based on a very consuming polling

system.

• Shift calendars are simple adaptive tables

configured for our operators and for our machine

physicists.

PWMA

PWMA started as a mini project of Elettra Sincrotrone

Trieste aimed to obtain a unified web and app platform

for our institute. Anyway we are open to possible

extensions and collaborations. All source code is hosted at

https://gitlab.com/PWMA/

Requirements

• Multiplatform PWMA must support the main

evergreen browsers and the main mobile app

systems.

It is acceptable that some old version of browsers

and of mobile OS or negligible market-share

browsers are not supported. It is almost not

acceptable to depend on any configuration of

browsers. Mobile app should perform as much as

possible like native app.

• Event driven The client-server communication is

not driven by a periodic refresh triggered by the

client, but it is asynchronous on both sides. This

should minimize the traffic on the web and minimize

the latency. SSE (Server-sent events) [12] with

HTTP/2 (Hypertext Transfer Protocol) offers auto-

reconnect, multiplexing on the same TCP/IP

(Transmission Control Protocol / Internet Protocol)

connection and unidirectionality; this feature

together with a REST interface allows a strategy of

type CQRS (Command Query Separation) [13]; on

the other hand WebSockets [14] are supported by

more libraries, among which React Native.

The high efficiency provided by event driven data

transfer is a stimulus for performing technology on

client side.

• Components should facilitate the automation of

composition of a large number of pages, the

composition of new pages should be eased by a

designer. WebComponents are a standard provided

by W3C (World Wide Web Consortium) and as such

it will be natively supported by all evergreen

browsers. There are other implementations of

components which should be considered as a trade-

off with high efficiency.

• All in one application the number of screens till

now is about one hundred, but in future it may be

much larger. Our goal is to have the possibility to

scale up to several thousands screens. We suppose

that the only data structure fit to manage these

numbers is a tree-like structure. A tree is very

uncommon on mobile apps, but we opted for it also

because our users are accustomed to it.

Technology

Some libraries/frameworks had been evaluated but

proved not satisfactory.

• AngularJS doesn't support components [15]

• Polymer isn’t fully supported by browsers and it has

low efficiency with polyfill.

React and React Native looked to us as the best

compromise available.

• React [16] is a JavaScript library created at

Facebook in 2011 and open-sourced in 2013. React

implements a state machine with well defined state

transitions. React is declarative and comes with a

custom language JSX (JavaScript Syntax eXtension).

React doesn't support WebComponents, but

proprietary components and Virtual DOM

(Document Object Model) instead of Shadow DOM.

• React Native [17] shares the same architecture of

React but creates native iOS, Android and UWP

(Universal Windows Platform) applications. In React

Native JavaScript code runs in a separated thread and

generates elements by calling asynchronously

platform native procedures. So most of the

computation time is managed by native high

efficiency procedures. React Native supports

WebSockets and doesn't support SSE (Server Sent

Events) over HTTP/2. This is not ideal for us, we

would prefer standard components and standard

language but React and React Native have

encountered a huge success which translates into

large support (for instance several books [18, 19]

even for advanced developers [20], many pages on

github.com and stackoverflow.com). React Native

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH103

User Interfaces and User eXperience (UX)
TUSH103

985

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

shares with React almost everything except the

DOM. React Native is growing quickly, every

month there is a new release with exciting new

features, but occasionally with a few compatibility

problems which take time to be solved.

We used a lint checker with AirBnB configuration, but

we did some exceptions to this set of rules [21].

Architecture

There are two main parts: a pool of servers which are

mainly event driven except for a few secondary tasks are

traditional servers (green in Fig. 1) and clients which

interact mainly asynchronously with servers (light blue in

Fig. 1).

Figure 1: Layout of PWMA. All servers developed by us

are in light green, external servers are in dark green,

clients are in light blue, parts included in dashed lines are

not jet implemented.

Servers

Two main servers connect PWMA with Tango and

EPICS on one side and to WebSocket through a JSON

(JavaScript Object Notation) [22] API (Application

Programming Interface) on the other side. This API was

designed to be as generic as to give the possibility to

switch Control System and communication protocol from

WebSocket to SSE.

The first server is written in C++ and connects

asynchronously to Tango, it performs decoupling of the

requests, i.e. if two clients subscribe to the same variable

the control system will receive only one subscription.

Attributes not configured to support events are polled

very slowly. There is a limited implementation of alarms,

only very simple formulae are evaluated and each

generated alarm is passed to FCM (Firebase Cloud

Messaging) [23].

The second server borrows a Python library [24]. It

connects asynchronously to EPICS by using monitors and

to the rest of PWMA by adapting a WebSocket library

[25]. It is still a proof of concept, but it is complete,

except the error management.

The variables coming from both control systems can be

mixed because we use FQDN (Fully Qualified Domain

Name) and we plan to merge the two main servers in a

unique server supporting both EPICS and Tango and any

other control system which will be supported in the

future.

Clients

The client part is structured in three levels:

Components, Screens and Starter.

Components

Components are the bricks of PWMA architecture.

Almost every component was implemented in two

versions: one for the web (using React) and the other for

mobile (React Native). Components depends only from

React or React Native, they don't depend on WebSockets

or on the control system. In order to avoid the duplication

of many components and to depend on other parts, our

effort was to keep the number of components as little as

possible. So our aim was to made the components as

generic as possible. The components are:

• PwmaScalar, used for any scalar value (i.e. a

number or a string) the value can be preceded by a

label or followed by a unit. User can see extra data

tapping or leaving the mouse pointer on the value

• PwmaEncodedArray, a set of values can be

encoded as integer or boolean

• PwmaLedArray, a set of boolean values displayed

through red and green leds

• PwmaChart, shows an historical chart of a scalar

numeric value

• PwmaContiner, a group of components with a title

that can be hidden

• PwmaCredentials, a modal for entering user's

credentials

• PwmaInput, for entering data, either a button or

some scalar value

• PwmaMain, a frame for all other components

• PwmaModal, opens a modal (used also by

PwmaCredentials)

• PwmaStorage, save data in local storage

• PwmaTree, show a series of options organized as a

tree

• PwmaLabel, a text with a style

Screens

Screens are made of components like rooms are made

of bricks. Normally they are made only of PWMA

components, because if a PWMA component behaviour is

independent on DOM or React Native components; this

allows the same screen to work both on web and mobile

version.

There are two kind of screens: dynamically loaded and

static (or custom). Dynamically loaded screens are

downloaded from a web server at runtime and instantly

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH103

TUSH103
986

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

rendered. The advantage is to choose from a potentially

unlimited list of screens and the user can easily make

custom screens. Dynamic screens are built using a

designer (available only on PwmaWeb). Variables can be

selected from some external GUIs and dropped onto the

designer. Also components can be dragged and dropped

inside the designer thanks to a specific module [26].

Dynamically loaded screens can do only a limited set of

operations and display patterns. Static screens are

compiled and embedded in the app (Fig. 2). Their purpose

is to implement more complex tasks. A complex task may

be split in more then one screen. The static screens

already implemented are cAstor and machine status

(which are similar to the elettrApp version), a new screen

was implemented for the PSS (Personal Safety System),

from this screen user can reach about 70 dynamic screens,

each monitoring the passivation of a few input/output

channels.

Figure 2: screenshot of the starter, shot from iOS emulator

(Xcode) on the left and screenshot of a custom screen

(Elettra Status), shot from Android Emulator on the right.

Starter

The starter (Fig. 2) allows to reach the main screen of

all tasks and provides the tools for connecting to the

PWMA server through a web socket. Each task is

launched with an optional parameter; this parameter is a

string that can be a JSON encoded complex type reduced

to a string. The PwmaMobile starter utilize the react-

navigation module, which substituted the previous

navigation tools in late spring 2017; we plan to use it also

for the PwmaWeb starter.

CONCLUSION

We implemented most of the ideas discussed on the

Tango mailing list on May 2015 [27] and even some from

a paper published in 2007 [28]. We tested some different

web/app technologies. Our concerns weren't only

efficiency, scalability and learning curve, but also

independence from specific technologies; we recognize

that we still have some heavy dependencies, but we

constantly try to minimize them. Particularly in the

JavaScript community, there are so many libraries, tools,

loaders, etc. and almost each of them are constantly and

quickly developing so that the expression “JavaScript

fatigue” [20] was invented.

Another effort has been taken to grant the user a wide

range of possible customizations. New screens and alarms

can be created easily. We plan to add many more

customization options (e.g. formulae).

We are evaluating the possibility to connect other

control systems or to interface to completely new fields

such as augmented reality. This technology can allow to

detect physical devices and give to operators informations

about the state of devices and procedures to be operated

locally (e.g. how to reset a power supply).

ACKNOWLEDGEMENT

We would like to thank Giulio Gaio for some smart

ideas.

REFERENCES

[1] Web Application,
https://en.wikipedia.org/wiki/Web_application

[2] R. K. Camden, Apache Cordova in Action. Greenwich, CT,

USA: Manning Publications, 2015.

[3] a proof of concept of dynamic templates can be found at
https://github.com/luciozambon/ProgressiveHy
bridApp

[4] JQuery, http://jquery.com

[5] Vanilla JavaScript,
https://stackoverflow.com/questions/20435653
/what-is-vanillajs

[6] Bootstrap, http://getbootstrap.com

[7] Mobile first,
https://en.wikipedia.org/wiki/Responsive_web
_design

[8] Ionic, http://ionicframework.com

[9] AngularJS, https://angularjs.org

[10] eGiga2m,
https://github.com/luciozambon/eGiga2m

[11] Astor,
http://www.esrf.eu/computing/cs/tango/tango_
doc/tools_doc/astor_doc/index.html

[12] SSE,
https://html.spec.whatwg.org/multipage/serve
r-sent-events.html

[13] CQRS, https://en.wikipedia.org/wiki/Command
%E2%80%93query_separation

[14] WebSocket, https://www.w3.org/TR/websockets

[15] AngularJS and web components,
https://pascalprecht.github.io/2014/10/25/in
tegrating-web-components-with-angularjs

[16] React, https://facebook.github.io/react

[17] React Native, https://facebook.github.io/react-
native

[18] A. Boduch, React and React Native. Birmingham, UK:

Packt Publishing, 2017.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH103

User Interfaces and User eXperience (UX)
TUSH103

987

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[19] E. Masiello, J. Friedmann, Mastering React Native.

Birmingham, UK: Packt Publishing, 2017

[20] M. Bertoli, React Design Patterns and Best Practices.

Birmingham, UK: Packt Publishing, 2017

[21] AirBnB lint configurations
https://www.npmjs.com/package/eslint-config-
airbnb

[22] JSON, http://www.json.org/

[23] FCM, https://firebase.google.com/docs/cloud-
messaging/

[24] PyEpics, https://github.com/pyepics/pyepics

[25] Python WebSocket server,
https://github.com/Pithikos/python-
websocket-server

[26] React DnD, https://react-dnd.github.io/react-
dnd/

[27] Message in Tango mailing list, https://lists.tango-
controls.org/wws/arc/info/2015-
05/msg00048.html

[28] M. Pelko, K. Zagar, L. Zambon, and A. J. Green, “Canone -

A Highly-Interactive Web-Based Control System

Interface”, in Proc. ICALEPCS’07, Knoxville, TN, USA,

Oct. 2007, paper TPPA20, pp. 129-131.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUSH103

TUSH103
988

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

