
A BUNCH-SYNCHRONIZED DATA ACQUISITION SYSTEM FOR THE

EUROPEAN XFEL ACCELERATOR

T. Wilksen, A. Aghababyan, L. Froehlich, O. Hensler, R. Kammering, K. Rehlich, V. Rybnikov,

Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

Abstract
The linear, super-conducting accelerator at the new Eu-

ropean XFEL facility will be able to produce up to 2700

electron bunches for each shot at a repetition rate of 10

Hz. The bunch repetition rate might vary initially between

100 kHz and 4.5 MHz to accommodate the various needs

of experiments at three different SASE beam lines. A

solution, which is able to provide bunch-resolved data of

multiple data sources together in one place for each shot,

has been implemented at the European XFEL as an inte-

gral part of the accelerator control system. This will serve

as a framework for high-level control applications, in-

cluding online monitoring and slow feedback services. A

similar system has been successfully run at the FLASH

facility at DESY for more than a decade now. This paper

presents design, implementation and first experiences

from commissioning the XFEL control system data acqui-

sition.

INTRODUCTION

The idea of a shot-synchronized bunch-resolved data

acquisition originates at DESY in the project for the su-

perconducting TESLA test facility (TTF) and its succes-

sor, the Free-Electron Laser in Hamburg (FLASH). With

TTF as a prototype for a superconducting linear accelera-

tor and FLASH being the first free–electron laser linear

accelerator it became imminent to record the data from

beam diagnostics and RF devices for analysis purposes.

Since this type of linear accelerator is operated in a

pulsed mode, it is desirable to collect the data at its pulse

or shot repetition rate. This enables bunch-resolved stud-

ies of individual shot data. If all the data of interest for a

given shot is made available in a single data structure,

analysis will be quite simplified. Since this task is very

similar compared to how high-energy physics experi-

ments structure their data and perform subsequent pro-

cessing and analysis on it, some of their concepts have

been re-used to design an accelerator data acquisition

type.

One of the conceptual key elements is the event record.

It combines all data required for an analysis from various

triggered data sources together in one data structure and

stamps it with a unique event identification number. This

event number is essentially the shot or pulse number of

the linear accelerator RF pulse. The shot number attached

to the data allows for an easy synchronization after acqui-

sition and does not require the classic approach of retriev-

ing parameters individually and then subsequently syn-

chronize it via timestamps to make correlations e.g.

With the upcoming European XFEL project and its

similarity to its smaller colleague FLASH, such a shot-

synchronized and bunch-resolved data acquisition was

chosen to be a central part of the accelerator control sys-

tem. Running this kind of acquisition system for more

than a decade at the FLASH facility provided a great deal

of experience for designing and creating the new acquisi-

tion.

The following sections will briefly illustrate the design

of the data acquisition system and its parts, present the

implementation at the European XFEL linear accelerator

control system and show some statistics of current opera-

tion.

DESIGN AND LAYOUT

The overall layout of the data acquisition as used for

the European XFEL accelerator control system is shown

in Fig. 1. It is based on the DOOCS control system

framework [1].

Figure 1: Schematic layout of a single data acquisition

instance as used for acquiring shot-synchronized data from

MicroTCA systems at the European XFEL linear accelera-

tor control system.

On the device layer MicroTCA-based ADC modules,

camera devices as well as PLC and other embedded de-

vices are sending data to collector processes. A fast col-

lector acquires data at the bunch repetition rate from trig-

gered devices and a slow collector polling the data at rates

of about 1 Hz from other hardware. The data has been

stamped on the front-ends with a unique shot number

provided by the timing system. Both collector processes

are feeding the received data into a buffer manager using

shared memory for storing the data. The distributor pro-

cess functions as buffer manager and is in charge of man-

aging the shared memory structure. Middle layer process-

es can connect to the buffer manager and read and/or

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA210

TUPHA210
958

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

write back to it. Once all data for a given shot number has

been acquired in shared memory it is sent to the event

builder and –writer processes. They will write the data as

compressed files to disk. To tape it eventually the dCache

[2] facility at DESY is being utilized. Several applications

interfaces exist to read the data files and extract data for

individual control system parameters (i.e. DOOCS chan-

nels on the front-end server). Middle layer server can

provide data for other applications including graphical

user interfaces for online monitoring purposes.

The following sections will explain the individual com-

ponents of this design.

Front-End Devices

Providing a unique identification of individual pulses or

shots is achieved by sending timing system information

i.e. clock signals, trigger events etc. including a unique

number created by the timing system master to all front-

end devices. For the European XFEL accelerator control

system this has been implemented using a timing system

based on the MTCA.4 standard [3]. Since all front-ends

for beam diagnostics, RF- and LLRF-controls are using

the MicroTCA hardware platform a MTCA.4 module has

been developed at DESY together with the University of

Stockholm. This module is installed in every MicroTCA

system. It receives the timing system information from

the master via a fibre optic link at the shot repetition rate

of 10 Hz. Clocks, event trigger and shot number are then

provided to the MicroTCA system components via back-

plane as a PCIe interrupt or via M-LVDS lines. A timer

server program on every MicroTCA system provides the

timing system information also via ZeroMQ [4] to other

applications as shown in Fig. 2.

Figure 2: Standard read-out scheme for a beam diagnos-

tics application on a MicroTCA system using the XFEL

timing system to send data to the data acquisition system.

The sender is represented here as the black box labeled

DAQ.

 The stamped data is sent via a push-type protocol

based on Multicast UDP to all subscribers. That way

multiple clients can connect to front-end devices without

creating an additional load to the front-end systems. The

instance on the front-end to subscribe to is called a “send-

er”.

Collector

A collector process is running on a dedicated server

node, usually a multi-core server with sufficient memory
1
.

It subscribes to all front-end senders via Multicast, which

are capable of acquiring data at bunch repetition rates.

Hardware offering control system parameters of the ac-

celerator control system without being connected to the

XFEL timing system are retrieved via standard DOOCS

RPC calls and stamped with the current shot number.

The data from an individual Multicast UDP sender is

packed up into a so called “sender block” which combines

all its DOOCS channels to be sent to the data acquisition

system with a server block header. The header contains

name, length, timestamp, number of channels, status and

shot number to identify it. The collector allows for several

retries until it would mark this specific server block as

missing for this shot.

The collector process is registered as a client to the

buffer manager and permitted to write to the shared

memory area to store the server blocks.

The number of collector processes is not restricted.

Several collector instances can connect to the same buffer

manager. One individual collector process may have

different locations for separating the received channels

into smaller subsets.

Buffer Manager

The buffer manager [5] is the master of managing the

shared memory area. It allocates the overall memory

structure separated into a “client segment” for keeping all

the client information subscribed to the buffer manager

and an “event segment” for tracking the information

about current shot data available in the shared memory.

The data section itself holds all server blocks in memory

for a couple of shots. These control and data segments are

being set up according to a run control configuration. This

configuration is aware of all sender locations of which

data is to be expected and acquired.

Clients can subscribe for reading to all server blocks

managed by the buffer manager or by specifying just a

subset of what they are interested in. Clients can also

write to the buffer manager like the collector processes do

when filling the shared memory with received server

blocks. Whenever expected server blocks for a given shot

number are stored interested clients are being notified that

the data is now available. DOOCS middle layer server

with an interface to the buffer manager can subscribe to

specific server blocks available in shared memory, too.

Examples for this case are server processing shot-

synchronous data of several front-end sender locations for

displays e.g. the electron beam orbit derived from all

BPM devices; or the energy measurement of the overall

beam energy using LLRF data from all the RF stations.

These middle layer servers can even write back the results

of their computations to shared memory, e.g. the energy,

and add it to the current shot data still in memory. The

shot data is considered to be complete only if every one of

 1 Currently at minimum 128 GB up to 512 GB RAM

is used for DAQ

nodes.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA210

Experiment Control
TUPHA210

959

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

the subscribed clients has been notified about the availa-

bility of the data. Every client must signal having re-

ceived the data and all potential producers must have

written back their data. Subsequently, the event record

will be released from the shared memory after a waiting

time. There are several mechanisms in place in case one

of the clients is not present anymore, server blocks are

missing or sender and clients are just very late in provid-

ing data. It is guaranteed that for every shot number an

event record is created even if individual sender blocks

are missing i.e. are potentially empty.

The distributor which hosts the buffer manager is fur-

thermore able to group selected server blocks together to

various event records and distribute them into data sets or

so-called “streams”. The configuration which server

blocks form an event record and correspondingly a stream

is defined by the run control configuration.

Event Builder and -writer

The event builder process connects to the distributor

and receives the stream data via a dedicated TCP data

link. This stream data is then distributed further to one

event writer process per stream, which writes eventually

the data files to disk. Data to be taped is written to the

dCache facility. All other data is being kept for two days

on online disks easily accessible by user nodes for analy-

sis, then moved to an external disk space where it is

stored for about one week.

Applications and Tools

To access the data file on disk several interfaces exist.

There are API libraries available for C/C++, Java and

MATLAB. A Python-enabled interface will be available

soon. Several tools written in C/C++ and Java exist to just

browse available data on disk and display it quickly e.g.

the DAQ data GUI. Tools for extracting only a subset of

the data help reducing the amount of data collected in a

given file. An example of the DAQ data GUI is shown in

Fig. 3.

Figure 3: DAQ data GUI showing a histogram of a to-

roid charge channel and its time series.

The DOOCS-based JDDD client is able to read the data

via a farm of data servers providing easy access to all data

files. This is done by sending an XML-type request con-

taining the time range for the desired data, the stream and

the names of the DOOCS channels. In general, all above

client interfaces can make use of data servers, too.

STATUS AND EXPERIENCES

The data acquisition system has been a central part of

the conceptual design for the European XFEL accelerator

control system from the beginning. The most important

feature sought after is to provide shot-synchronous bunch-

resolved data. But not only for archiving and later analy-

sis but even more for online monitoring and computation

of derived parameters relevant to accelerator operations.

This had become evident in the 10 years of operation of

several DOOCS data acquisition instances at the FLASH

facility and the FLASH photon beam user experiments.

With two API implementations available to access the

shared memory and hence the shot-synchronous data from

a DOOCS middle layer server many applications have

been meanwhile put into operation. One of the standard

applications is to combine several front-end data sources

to hand it over as one entity to the operation and status

display. E.g. the orbit derived from the individual beam-

position monitor data, the charge from individual toroid

charge measurements, beam loss monitor data etc.

Higher-level physics applications e.g. beam energy

measurement derived from the RF module data, beam

power measurements, statistics on SASE production but

also slow feedbacks have been meanwhile implemented

as middle layer server. About a dozen server programs are

running continuously on the main DAQ instance working

in production mode. An example is shown in Fig. 4.

Figure 4: Transmission display for the European XFEL

accelerator as derived from a DAQ middle layer server.

The first accelerator data acquisition instance has been

taken into operation for the RF gun conditioning in De-

cember 2013. At the same time the Virtual XFEL was set

up as a second DAQ instance. With the start of the injec-

tor operations and commissioning a third instance serving

the RF- and LLRF-sender had been added. These instanc-

es already proved to be of value not only for beam opera-

tions of the injector part but also to analyze failure modes

e.g. of individual cavities or RF modules. For commis-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA210

TUPHA210
960

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Experiment Control

sioning the full linear accelerator four instances in total

had been set up. With the first user runs now in full swing

all three “real” instances are operating 24/7.

Together all instances collect data at a sustained input

rate of 1.5 GB/s from about 3.3 k of DAQ channels. The-

se translate roughly into 13 k of DOOCS channels or

control system parameters.

They can produce up to 30 TB per day of compressed

data which is kept on local disk storage only for a few

days but at least for one week on a dedicated storage area

hosted in the DESY IT-Center.

CONCLUSION

The DOOCS-based shot-synchronous and bunch-

resolved data acquisition system is a well-established

solution, which has been proven to work quite well in the

past for the FLASH accelerator and various FLASH pho-

ton beam user experiments. For the European XFEL ac-

celerator control system this solution had been imple-

mented from day one of the commissioning phase and so

far demonstrated to be an essential and very useful part of

the overall control system architecture as well as accelera-

tor operations.

REFERENCES

[1] Distributed Object-Oriented Control System, DOOCS,
http://doocs.desy.de/.

[2] dCache, http://dCache.desy.de/.

[3] H. Schlarb et al., “The case of MTCA.4: Managing the

introduction of a new crate standard at large scale facilities

and beyond”, in Proc. 14th Int. Conf. on Accelerator and

Large Experimental Physics Control System

(ICALEPCS’13), San Francisco, U.S.A., Oct. 2013, paper

FMOPPC081
[4] ZeroMQ, http://zeromq.org/.

[5] V. Rybnikov et al., “Buffer manager implementation for

the FLASH data acquisition”, in Proc. PCaPAC’08,

Ljubljana, Slovenia, Oct. 2008, paper TUP010

Figure 3: Overview of all accelerator data acquisition instances in operation for the European XFEL accelerator control

system. Shown are input rates in the left green column of plots, output rates on the righ hand side.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA210

Experiment Control
TUPHA210

961

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

