

AUTOMATING OPERATION STATISTICS AT PETRA-3

P. Duval, M. Lomperski, H. Ehrlichmann, D. Haupt, R. Bacher, DESY, Hamburg,
Germany

J. Bobnar, Cosylab, Ljubljana, Slovenia

Abstract

The quoted machine availability of a particle
accelerator over some time range is usually hand-
generated by a machine coordinator, who pores over
archived operations parameters and logbook entries for
the time period in question. When the machine is deemed
unavailable for operations, 'blame' is typically assigned to
one or more machine sub-systems. With a 'perfect'
representation of all possible machine states and all
possible fatal alarms it is possible to calculate machine
availability and assign blame automatically and thereby
remove any bias and uncertainty that might creep in when
a human is involved. Any system which attempts to do
this must nevertheless recognize the de-facto
impossibility of achieving perfection and allow for
'corrections' by a machine coordinator. Such a system for
automated availability statistics was recently presented
[1] and we now report on results and improvements
following a half year in operation at PETRA-3 and its
accelerator chain.

INTRODUCTION

A particle accelerator facility has an operations
schedule (potentially 24/7) where the facility is obligated
to supply users or experiments with beam. Any
unanticipated deviation from this operations schedule is
regarded as non-availability. Quite naturally, machine
coordinators strive to present a perfect score of 100%
availability at the weekly operations meeting.
Traditionally a machine coordinator will scour the
machine data, spreadsheets, logbook entries, etc. to obtain
the official availability of the facility over the period in
question.

We are motivated to generate this availability number
automatically for several reasons. First and foremost, we
can remove the human element entirely if the official
availability is generated entirely automatically. Secondly,
we can free up a significant amount of time spent by the
coordinator calculating such a number by hand. Finally,
we can monitor the availability on-line during operations.

Furthermore, the information at our fingertips will also
allow us to automatically calculate the meantime between
failures (MTBF) for any chosen time range.

Finally, the online information goes a long way in
helping those parties responsible for a particular
subsystem to identify and repair operations issues in the
context of the whole machine.

REQUIRED SERVICES
Automatically calculating machine availability over a

selected time range requires three central services. There
must be a machine state server which correctly defines all
possible declared states of a facility. There must be a
central alarm system with a clear definition of what
constitutes a fatal alarm. There must also be an archive
system which keeps a history of the state and fatal-alarm
information. The criteria which identify which states
designate official operations (as opposed to, say, machine
studies) should also be in place. For example, a fatal
alarm of the RF system during machine studies does not
constitute a failure of the accelerator facility, which
tacitly suggests that the circumstances under which a fatal
alarm does in fact lead to a failure of the facility must be
established. Only then can we calculate a meaningful
value for the meantime between failures.

Machine State Server and Periphery
The possible states of an accelerator facility are defined

by the machine coordinators and the facility itself will be
in some state at any given time. Theoretically the choice
might be as simple as running or not running, but is
generally more complicated. The state of a machine will
be declared to the state server and the machine will be
assumed to be in that state until another state declaration
is made. The set of all possible machine states is
completely configurable.

An additional declared state problems is used to
identify real failures of the machine. Thus, there must be
some service which officially declares this state.

 In practice, the actual declaration of a machine state is
governed by the following schema:

 The de-facto state is entered into a calendar
well in advance (i.e. machine studies, test run,
user run, maintenance, etc.)

 The real state is declared by the afore-
mentioned service, which also makes use of a
set of predefined rules. These rules make use
of the de-facto state as well as the current
machine conditions (e.g. preparing, out-of-
specs, problems, etc.)

 The operators can manually intervene and set
the declared state to whatever is deemed
appropriate.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA189

TUPHA189
876

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Alarm System
The principal ansatz concerning availability is that “if

the machine is not available then there must be at least
one fatal alarm in one of its subsystems.” And if we are
treating problems as a declared state then a corollary to
this ansatz is that “if we are in the problems state then
there must be at least one fatal alarm”.

It’s now easy to discern a number of consistency
checks which must be made to ensure a robust system. If
the state is problems and there are no fatal alarms then
this is by definition wrong and needs to be investigated
and fixed. Furthermore, if there is a fatal alarm then the
state must be problems. If this is not true, then this is
likewise wrong.

Ensuring that the control system alarms reflect the true
state of the machine is a painstaking procedure and is a
task which generally falls on the machine coordinator to
undertake and complete.

Archive System and Bean Counting
Our goal is to be able to specify any particular time

range and obtain state and availability information as well
as failure statistics. This is in principle easy to realize.
As we are never interested in a time granularity smaller
than a second or two we need only count the seconds
spent in any one state and archive this number. In a
similar fashion, we count the seconds where an alarm
subsystem has at least one fatal alarm and archive this
number. To determine the MTBF over a time range we
need to count the time we are officially in an operations
mode as well as the time we are in a failure state. The
difference in the archived values at the end points
specified by the selected time range provides us with all
we need to know. As the archived data represent nothing
more than counts (the cumulative number of seconds in a
state) we often refer to this as bean-counting, a moniker
which effectively represents its inherent simplicity.

The calculation of the total time spent in a state is in
fact just that simple. The MTBF over a time range is
likewise simply the total time spent in officially declared
operations mode divided by the total number of failures
(plus 1). In addition to these simple numbers we would
also like to know, for instance, the duration of a failure.
This includes of course the time spent in the original
problems state which identifies the beginning of the
failure as well as any subsequent time spent in preparing
for the next operations, etc.

The Operation History Viewer shown below in Figure 1
and available in the TINE Studio suite [2] in fact makes
use of such archived bean counts and allows the user to
select any time range and examine the machine state and
availability history.

Figure 1: Operation History for the PETRA-3 showing
data from August 22, 2017.

In addition to the traditional pie-chart display of the

total amount of time spent in each machine state, any
subsystem of the facility which was not 100 % available
over the selected time is noted and presented in a trend
chart where periods of non-availability are easily
recognized. The fatal alarms (the blame) at any given
time are likewise easily viewed. In the above figure, we
also see that two corrections were made on this day, as
indicated by the ‘i’ annotation icons in the machine
history plot. Clicking on an annotation icon will display
the nature of the correction.

RESULTS
The devil, however, is always in the details. The

simplicity of the above technique is muddled by the sheer
complexity of ensuring the validity of the alarm
information. As long as the problems state accurately
reflects a failure of the facility, the availability of the
machine itself is deduced from the archived state counts.
However, the availability of a particular subsystem will
depend on the ability of the alarm system to identify fatal
alarms.

Generating the meantime between failures for the
machine as a whole likewise depends exclusively on the
state information, whereas the MTBF for individual
subsystems is once again tied to the alarm system.
Furthermore, we also need to address the possibility of
false starts and irrelevant failures, where the brief
appearance of either an apparent operational run or of a
fatal alarm is automatically withheld from the
calculations.

Corrections
The trial-and-error period involved in ensuring that the

availability statistics are correct is expected to be long and
drawn out. To this end it is important to be able to correct
the raw statistics displayed by the Operation History
Viewer above. We do not correct the actual stored state
data (the bean counts). Instead we provide a corrections
database for both the machine states and the subsystem

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA189

User Interfaces and User eXperience (UX)
TUPHA189

877

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

availability, which is then optionally applied to the
statistics displayed in the application.

A machine coordinator can use the same application to
correct known false information, for instance if the state
change trigger declaring problems was somehow missed,
etc. An operator can select a region in the state bar (lower
right side in Fig. 1), or double click on a colored area to
select the entire colored area, and then apply a state
correction to the selected region.

Correcting a state to or from problems brings up the
issue of correcting the availability. Since the problems
state automatically implies that the machine was not
available so long as it is in this state, then there is likely to
be incorrect stored alarm information as well. Namely,
we perhaps missed a fatal alarm somewhere (e.g. we
know from the logbook that there was unscheduled
downtime even though the declared state claimed we
were in a user run) or perhaps we recorded a fatal alarm
when there wasn’t one (e.g. we had a happy user run even
though the RF system claimed a fatal alarm). If on the
other hand the stored alarm information is correct then the
declaration of problems was itself somewhere in error.

Figure 2 below shows the application of one of the
corrections noted in Figure 1. The pie chart shows
uncorrected data and the region of the initial correction is
marked. In addition the annotation associated with the
correction has been expanded (by clicking on the ‘i’ icon):

Figure 2: Applying a correction to the data shown in
Figure 1.

We note in passing that the appearance of state

corrections has become the exception rather than the rule.
Most time ranges shown in the operation history viewer
do not in fact show any state corrections.

Failure Statistics
Most recently we have added the ability to determine

the meantime between failures to the operation history
system. The MTBF is closely related to the machine
availability and to a large extent involves making use of
the same stored data that is used in calculating the
availability. There are, however, other considerations at
play here. In addition to the MTBF we would also like to
see the duration of a failure as well as the number of

failures within any selected time range. A number of
possible machine states are precluded from either
availability or MTFB calculations (e.g. machine studies,
test run). For the remaining states however, a distinction
sometimes needs to be made as to the reason the machine
is in a particular state. For instance, ‘preparing for
operations’ is not yet ‘officially operating’ and will count
in the duration of a failure state if it follows on the tail of
a failure state. Yet, it is not itself a failure state.
Furthermore, in order to avoid false starts or irrelevant
failures, a configurable window (default = 60 seconds) of
applicability is applied to both operations states and the
problems state. Namely, a declared operations state or
problems state must be active for at least the applicability
window or the state change is not allowed into the
statistics.

Figure 3 below shows the failure statistics pertaining to
the same time range shown in Figures 1 and 2, above.

Figure 3: The Failure Statistics Breakdown for PETRA on
August 22, 2017.

Currently, the failure statistics display does not
incorporate corrections. This issue is currently being
addressed.

CONCLUSIONS
The ability to automatically display operation and

availability statistics for a facility over any particular time
interval and/or monitor the same on line is worthwhile
and relatively easy to implement to first order. We have
shown here a technique for providing these statistics not
only for the facility at large but for its component
subsystems as well. In addition, the failure statistics can
also be automatically determined and provided to the
machine operators and subsystem managers. The
techniques described here hinge on the proper
identification of fatal alarms and assigning them to the
reason(s) for the non-availability. The operation history
depends as well on the absolute correct declaration of the
proper state of the facility, including a declaration of the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA189

TUPHA189
878

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

failure state, problems. If these two points are met then
the rest is simple bean counting and archiving.

We cannot understate how difficult it sometimes is to
ensure that the identification of fatal alarms is in fact
correct. This is often an iterative process spanning
months if not years. Realizing this, we have added the
ability to post-correct the raw data providing the
automated statistics. Thus a machine coordinator can
ensure that the displayed statistics for any time period is
officially correct and at the same time do his part in
iterating the system toward perfection.

We expect this to remain an ongoing project for some
time. To be useful, this system absolutely requires an
engaged machine coordinator who not only knows the
systematics of machine operations but is willing to
identify inconsistencies, both in the state declaration and
in the setting of fatal alarms, and trace them back to their
source.

The system presented here has been in use in the
PETRA 3 accelerator complex since the early part of this
year (2017). As might be expected, a number of issues
were encountered and dealt with. Some issues involved
improper state identification. Others involved applying
corrections. The official state declaration has now been
fine-tuned to meet the machine coordinators’
expectations, and as operators have gained intuition using
the Operations History Viewer, the number of reported
issues concerning the latter has substantially declined.

The most recent addition to the operation history
system, i.e. that of calculating and presenting the failure
statistics, is currently being commissioned, but is also
showing every sign of coming to fruition.

If we are persistent in our efforts, then the automated
availability calculation can not only be trusted but can be
monitored on-line, for example at the beginning and end
of a shift. Once the automatic calculation can be trusted,
then we can regard the official availability as an honest
assessment, as we have effectively removed any human
element in the calculation which might subconsciously
exaggerate or minimize downtime (and with the side-
effect that the human involved is free to engage in other
activities).

REFERENCES

[1] P. Duval, M. Lomperski, H. Ehrlichmann, J. Bobnar,
“Automated Availability Statistics”, in Proc.
PCaPAC 2016, Campinas, Brazil, October 2016,
paper WEPOPRPO18.

[2] P. Duval, M. Lomperski, and J. Bobnar, “TINE
Studio, Making Life Easy for Administrators,
Operators and Developers”, in Proc. ICALEPCS
2015, Melbourne, Australia, October 2015, paper
WEPGF133.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA189

User Interfaces and User eXperience (UX)
TUPHA189

879

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

