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Abstract

Hardware access often brings implementation details into

a control application, which are subsequently published to

the control system. Experience at DESY has shown that it

is beneficial for the software quality to use a high level of

abstraction from the beginning of a project. Some hardware

registers for instance can immediately be treated as process

variables if an appropriate library is taking care of most of

the error handling. Other parts of the hardware need an addi-

tional layer to match the abstraction level of the application.

Like this development cycles can be shortened and the code

is easier to read and maintain because the logic focuses on

what is done, not how it is done.

We present the abstraction concept we are using, which is

not only unifying the access to hardware but also how process

variables are published via the control system middleware.

INTRODUCTION

With the advent of the MicroTCA.4 standard it was possi-

ble to combine powerful, FPGA based computations with

precise analogue electronics on comparatively large rear tran-

sition modules. [1] This allowed to implement a compact,

fully digital control of the low level radio frequency signals

(LLRF) at the FLASH accelerator. [2] The new, modular

hardware platform had the need for a user space library to

access the individual boards in the crate. Starting with PCI

Express, which is used in MicroTCA.4, the DeviceAccess

library became the basis of the MicroTCA.4 User tool kit

(MTCA4U). With its modern C++ interface, which abstracts

the details of hardware access, the library was soon extended

to Ethernet-based protocols and outgrew the original scope

of only being used in MicroTCA crates. Consequently the

software suite was renamed to ChimeraTK (Control sys-

tem and Hardware Interface with Mapped and Extensible

Register-based device Abstraction Tool Kit).

The digital LLRF at FLASH was very successful and

other facilities also started to use MicroTCA based systems

for the accelerator controls. This brought the challenge that

the complex device server has to be supported for multiple

control system and middleware frameworks. The Control-

SystemAdapter was introduced to decouple the application
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logic from the specifics of a particular control system and

improve code reusability and maintainability.

Although starting as two separate libraries, the abstrac-

tion concepts for the DeviceAccess library and the Control-

SystemAdapter were very similar. In the past year, their

interfaces were unified and a new library called Applica-

tionCore was created. It is the consistent continuation of

the abstraction process and facilitates the creation of device

server applications in a control system independent way.

THE DeviceAccess LIBRARY

One of the main concepts of the DeviceAccess interface

is the introduction of so called register accessors. These

objects behave like a scalar integer or floating point variable

in the user code, or an iterable one or two dimensional con-

tainer of these data types, with additional functions to read

from and write to the device. The accessor automatically al-

locates a data buffer of the correct size, does necessary data

type conversions and takes care of implementation details

like handshakes with the hardware.

An important abstraction step is the identification of reg-

isters by name. When creating the register accessor, the

application is using a functional name instead of the numeri-

cal address in the I/O memory. This allows to not only access

numerically addressed registers, but also process variables

on another device servers, like a DOOCS property or an

EPICS channel. Numerically addressed device backends

require a name mapping table, which can also contain addi-

tional information like conversion parameters from a fixed

point data format used on the hardware to floating point

data types used on the CPU running the device server. For

the firmware used at DESY this mapping is automatically

generated. Register names can have a tree structure by sepa-

rating hierarchy levels with a slash (’/’). Like this registers

can be grouped into directories like in a (UNIX) file system.

Firmware can now be implemented in a modular way with

each functional block providing registers in a directory, and

placing the same module twice does not cause naming con-

flicts, while the software accessing each block still finds all

the register it needs in one directory. The Device interface

provides a catalogue which lists all registers it can access.
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Figure 1: Overview over the DeviceAccess library with the most important backends, the available language bindings and

the graphical user interface.

It turns out that it is an advantage to not only access reg-

isters by a functional name, but also use alias names when

opening the hardware device itself. Like this direct hardware

access can easily be replaced with a proxy though another

device server or a dummy for testing without the need to

modify the source code. A “device mapping” configuration

file provides information which backend type and which con-

nection parameters to use, and maps it to an alias name. The

config file is read at run time whenever a device is opened,

so it is possible to even change the backend in a running

application if need be.

DeviceAccess as the basic library for hardware-accessing

device servers comes with set of tools which allow direct,

interactive communication to the hardware. There are lan-

guage bindings for Python, Matlab and the Linux command

line, as well as a graphical user interface (Fig. 1).

THE ControlSystemAdapter LIBRARY

The ControlSystemAdapter was developed out of the need

for a low level RF control application for accelerators to be

operated at several facilities with different control system

infrastructure. At DESY, Hamburg, where the application is

developed, the DOOCS [3] framework is used at FLASH [2]

and the European XFEL [4]. Flute [5] at KIT in Karlsruhe

is using EPICS 3 [6]. The control system of the ELBE

accelerator [7] at HZDR in Dresden is based on WinCC, and

OPC UA [8] [9] will be used as an interface. TARLA [10]

in Ankara will use EPICS 4.

The idea of the control system adapter is to provide an

abstraction layer which facilitates writing an application that

can natively run with all these middlewares. The LLRF

control server for instance provides hundreds of process

variables and control plots, and has complex algorithms like

adaptive feed forward calculations and control table genera-

tions. To provide a source code fork for each target control

system is not maintainable. As a solution one could develop

the application server within one main middleware frame-

work and have a gateway server for the others. Although a

viable option, this solution has many disadvantages:

• Lower performance as data is always copied and con-

verted to a different data format

• Possible incompatibilities and problems to reproduce a

certain feature in the other middleware

• Extra maintenance because the application has to be

configured in two environments, and both environments

have to be set up, incl. brokers, central databases etc.

• Expertise on both platforms is required, which espe-

cially for not widely used systems like DOOCS is prob-

lematic

The ControlSystemAdapter avoids these problems be-

cause the resulting executable is a genuine device server

in the particular middleware. In order for this to work, the

adapter has to ensure a lock free, multi-threaded implemen-

tation of process variable which are published inside the

application code. This was the result when studying the

locking schemes of several middleware frameworks. The

adapter implements this through lock-free queues and a ded-

icated main thread for the application itself, which basically

replaces the main routine of a regular C++ application. More
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Figure 2: The LLRF server developed at DESY, Hamburg, has been integrated into the WinCC-based ELBE control system

at HZDR, Dresden-Rossendorf. The ControlSystemAdapter, which has mainly been developed by DESY and aquenos

GmbH, is paired with the OPC UA adapter, developed at TU Dresden. The control system integration and operation is done

by HZDR.

detailed information on the implementation of process vari-

ables in the ControlSystemAdapter can be found in [11].

Each application using the control system adapter is de-

rived from the ApplicationBase class. This is a singleton

with the application being the only implementation. The

application is instantiated in the object code of a library,

which is then linked against the ControlSystemAdapter and

one of its middleware-specific adapter backends, which cur-

rently are available for DOOCS [12], EPICS 3 [13] and

OPC UA [14].

Application Development and System Integration

To really make an application control system independent

one has to identify which parts of the required functionality

are in the application proper, and which have to happen in

the system integration step. For the application we have

identified the following tasks:

• Define the process variables which are to be published

in the control system

• Implement the algorithms

• Access the hardware

A number of features which are provided by a device

server are middleware dependent and have to happen during

system integration:

• Publish process variables via the middleware’s commu-

nication protocol

• Define the variable name visible in the control system

• Define middleware dependent features and data types

– Data persistency for setpoints

– Aggregated data types, e.g. for plotting

– Server-side histories

The middleware dependent features might or might not

be available in the target control system. In a DOOCS envi-

ronment for instance data histories are stored on the device

server, while in EPICS a separate data archiver is collect-

ing the data, and the IOC1 does not know about histories.

Hence, this cannot be part of the control system independent

application but has to happen during system integration.

At first sight it might seem unnecessary to rename the

variables which are defined in an application. If the system

integration is happening in the application code in a clas-

sical device server the renaming step is indeed not needed.

Here the application is already becoming dependent on the

naming scheme of the control system. So even if the same

middleware is used, an application designed for one facility

might not be directly usable in another environment, simply

because the names do not match. Hence a name mapper is

required for an application to really become control system

independent.

Experience showed that the code defining the middleware-

specific features causes many lines of repetitive code in C++,

especially if each variable has to be touched at least three

1 Input/Output Controller
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times: At the definition in the header file, during initialisa-

tion in the constructor and when the values are assigned or

read out in the application logic. This kind of code makes it

difficult to port the application and should be avoided. How-

ever, this step has to happen for a proper system integration.

It mainly consists of configuring and renaming variables

which have been defined in the application part. It turns out

that this task can efficiently be handled by a configuration

file, for instance in XML. Especially the renaming should

not be coded in C++. This led to the decision that the Con-

trolSystemAdapter plugin for each target middleware needs

a configuration file.

The system integration step is the only part which is ap-

plication and control system/middleware dependent. This

kind of source code is expensive because it has to be re-

peated/rewritten for each device and control system. Not

having to implement it in C++ at all has several advantages:

• The executable does not have to be recompiled, pack-

aged and distributed

• No C++ expertise is required to do the configuration

• It is planned to have graphical tools which help to create

the config files (dedicated tools for each target middle-

ware)

Figure 2 gives an overview of the integration step for the

LLRF server at the ELBE accelerator at HZDR in Dresden-

Rossendorf.

THE ApplicationCore LIBRARY

The goal of the ApplicationCore library is to provide

a tool for writing intrinsically control-system-independent

applications. The main focus is on the abstraction of process

variables. The starting point were the DeviceAccess and

the ControlSystemAdapter library. In the beginning, they

were two separate libraries with different interfaces. But

the abstraction of registers accessors and process variables

were so similar that they were unified and they now have a

common interface.

The main idea of ApplicationCore is that an application

only knows about input and output variables. If it is ab-

stracted away whether the variable is coming from the hard-

ware, another part of the software or the control system, it is

unlikely that the application will be sensitive to specifics of

a control system middleware.

Furthermore, ApplicationCore should encourage a modu-

lar design and provide an easy to use interface which avoids

boiler plate code as much as possible in C++11.

Figure 3 shows the layout of a device server written with

ApplicationCore. The example application provides access

to a controller which is implemented in hardware. It is con-

nected to the software using a DeviceAccess module. The

application itself consists of two modules called “tableGener-

ation”, which is generating input tables for the controller, and

“automation”, which is changing the setpoint. A central part

of the application is the connection code (middle left block

in Fig. 3). It describes which module inputs and outputs are

connected to control system variables, the hardware or other

application modules. To have efficient code, Application-

Core uses inversion of control to populate process variables.

An application module only defines that it requires an input

or output variable, and the instantiation of the particular type

is done when connecting the module. The “setPointTable”

output of the “tableGeneration” module for instance is di-

rectly connected to a DeviceAccess module. In this case the

output variable will directly be a register accessor of the De-

viceAccess library, which eliminates unnecessary copying

of data from one module to another.

Application Modules

Application modules are the building blocks of each ap-

plication. Each module has input and output variables and a

thread which is executing the algorithm. Process variables

can have two different update modes: Push type (orange in

Fig. 3) and poll type (green). For poll type variables the

sender is passive and expects the receiver to query the latest

value, which it will deliver without blocking. Reading a

sensor value from the hardware through the DeviceAccess

interface usually is such a poll type variable. For push-type

variables new data is send when it is available, usually into

a queue. The receiver can now work in three modes.

1. Non blocking read: Get the next element in the queue.

If no new data is available the last received value stays

in the buffer and the function returns immediately.

2. Read latest: The queue is emptied and the receiver

gets the latest value. This behaviour is equivalent to a

poll-type receiver.

3. Blocking read: If the queue is empty, the read function

blocks until new data has been received.

The blocking read can be used to synchronise a module

with other threads or the hardware. In the example Fig. 3 the

“trigger” in the “automation” module is such a blocking input.

Also “pulseLength” and “setpoint” of the “tableGeneration”

module are push-type inputs, but they are combined in a

variable group called “tableParameters”. This allows the

module thread to block until either all parameters have been

updated (readAll), or until any of the parameters has new

data (readAny).

The Connection Code

The main challenges of the connection code are to have

an intuitive syntax and to minimise the number of code lines

needed to describe the connection.

As an example, the “currentSetPoint” output of the “au-

tomation” module is connected to the “setpoint” input of the

“tableGeneration” module and the “currentSetpoint” of the

ControlSystemAdapter module using a fan out, indicated

by the orange circle. Connections are defined using the »

operator:

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA178

Software Technology Evolution
TUPHA178

843

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: Example of a device server using the ApplicationCore library. The application modules “tableGeneration”

and “automation” are written by the application programmer, as well as the connection code. The DeviceAccess and the

ControlSystemAdapter modules are provided by the library. Note that the “timerSystem” is also a DeviceAccess module.

automation.curentSetpoint >>

tableGeneration.tableParameters.setpoint >>

controlSystem("currentSetpoint");

This single line of code automatically creates a fan-out

module and the connections. When connecting a variable

to the control system module it is automatically instantiated

in the ControlSystemAdapter. The data type is determined

from the variable which is being connected.

If every variable had to be mentioned explicitly in the

connection code, this would result in many lines of code. To

avoid this, modules and variable groups have a “connectTo()”

function which allows to automatically connect all variables

with the same name. Both tables of the “outputTables” group

for instance can be connected to the “controller” module with

a single command. The connection command works for

inputs as well as outputs and also recursively for sub-groups.

Further modelling is possible by adding arbitrary tags to

process variables. All variables tagged for instance with

“CS” in a module group could be connected to the control

system module with one command, including variables from

all included modules and variable groups.

To improve the use of generic modules it is possible to

rename variables by adding meta data, and to eliminate hier-

archy levels. A generic limiter module with three variables

“input”, “output” and “maximum” would be an example

where you don’t want to publish a variable named “lim-

iter/output” to the control system, but rather something like

“temperatureSetpoint”.

CONCLUSION

ChimeraTK ApplicationCore is a tool which helps to de-

sign control applications in a middleware independent way.

It is based on the DeviceAccess library and the ControlSys-

temAdapter, which provide abstracted access to hardware

and control system middleware, respectively. Application-

Core’s hierarchical data model helps to write modular soft-

ware, which improves the maintainability and facilitates to

achieve the required abstraction to keep the application con-

trol system independent. Tools like the automatic generation

of an XML file with the variable content of an application

or plotting the variable hierarchy tree simplify the system

integration.

An LLRF server which was developed at DESY, Hamburg,

using ApplicationCore and the DOOCS adapter was tested

successfully at the ELBE accelerator at HZDR, Dresden,

using the OPC UA adapter. [15] The ApplicationCore-based

server will be easier to maintain than the original server di-

rectly implemented in DOOCS, not only due to the improved

modularity but also because of the significantly reduced num-

ber of code lines. Currently other DOOCS servers are being

ported to ApplicationCore to profit from the abstraction and

the multi-threading, even though not all of them will have

to run at several facilities.

The ChimeraTK suite is open source software which is

published under GNU General Public License or the GNU

Lesser General Public License (depending on the software

component). It is available under [16].
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