
 IMPROVING THROUGHPUT AND LATENCY OF TO MEET

THE REQUIREMENTS OF THE FAIR CONTROL SYSTEM

Dominic Day, Alexander Hahn, Cesar Prados, Michael Reese,
GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany

Abstract
In developing the control system for the FAIR

accelerator complex we encountered strict latency and

throughput constraints on the timely supply of data to

devices controlling ramped magnets. In addition, the

timing hardware that interfaces to the White Rabbit

timing network may be shared by multiple processes on a

single front-end computer. This paper describes the

interprocess communication and resource-sharing system,

and the consequences of using the D-Bus message bus.

Then our experience of improving latency and throughput

performance to meet the realtime requirements of the

control system is discussed. Work is also presented on

prioritisation techniques to allow time-critical services to

share the bus with other components.

INTRODUCTION

The White Rabbit based FAIR Timing System

developed at GSI [1] provides FPGA-based Timing

Receiver hardware for frontend computers. The SAFTlib

project (Simplified API for Timing) was designed to share

the resources of the Timing Receivers and provide a

stable interface that abstracts software clients from the

complexity of the timing system. The design goals are to:

• Share the Timing Receiver hardware resources

• Unify different underlying hardware.

• Prevent applications creating conflicting events

• Isolate applications from failures in other clients

• Monitor hardware status

 Interprocess communication between clients and the

SAFTlib process (saftd) is via the d-bus shared message

bus.

This paper describes the hardware and software

environment in which it is used and experiences in using

SAFTlib in a production environment. The primary focus

is on achieving the throughput and latency necessary to

operate the FAIR accelerators whilst maintaining the

flexibility and compatibility of the original SAFTlib

design.

FAIR ACCELERATOR ENVIRONMENT

The FAIR project will include a complex of

accelerators and a new control system is under

development [2]. The CRYRING low-energy storage ring

is being used to test and evaluate the control system

before retrofitting the existing GSI infrastructure and

equipping the new FAIR accelerators.

Timing Network

The FAIR timing system uses White Rabbit to

distribute high precision timing events over a dedicated

Ethernet-based network. The complexities of clock

synchronization, signal latencies and network topology

are abstracted from the users of the timing system. The

high-level applications interact with the Data Master,

which maintains a schedule of events and distributes them

to Timing Receivers. Low-level applications interact with

the Timing Receivers located close to the equipment.

Equipment that controls a logically related set of

accelerator components is collected into a Timing Group.

Frontend Controllers

The standard environment for the FAIR control system

is the Scalable Control Unit [3]. It provides an Intel 64-bit

CPU, Linux Operating System with realtime patches, an

FPGA Timing Receiver connected via PCI-express and

Wishbone. The timing software is also required to run on

other systems with greater processing power for Beam

Diagnostics, systems interfacing to hardware using a

VME Bus, and systems with USB-connected Timing

Receivers. The SAFTlib software aims to provide a

standard interface across multiple platforms.

Timing Receivers

The Data Master sends event messages over the White

Rabbit network shortly in advance of their planned

execution time. The Timing Receiver hardware matches

events against a set of conditions. The Event-Condition-

Action (ECA) unit is responsible for generating actions

from incoming Timing Events. For equipment with hard

real-time requirements, hardware actions are used. These

send signals over a variety of bus interfaces directly to

equipment. An example is the trigger synchronization

event that is used to start waveform generators. For events

that can tolerate higher latency software actions can be

used. For example, sequence start events signal that a

device should be prepared for a new cycle and load data

for a later hardware trigger, a gap event can signal that

software has a period in which it may freely read the

status of equipment.

Function Generators

Central to the performance investigation is the

anticipated load from Function Generator units. These

generate arbitrary waveforms from a set of polynomial

coefficients and after D/A conversion control a variety of

magnet power supplies. The polynomials describe the

waveform in segments starting as 1ms in length. This

D-Bus

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA168

Software Technology Evolution
TUPHA168

809

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

representation was chosen over a value sequence or

coordinate representation to reduce the bandwidth

requirements. The requirement to support existing

equipment operating via MIL-bus forces the use of a

lower bandwidth representation.

The polynomial sequence is checked to ensure it will

result in a valid waveform before being sent to the

function generator. The function generator hardware has a

limited amount of memory and requires streaming from

the saftd driver during longer output ramps. The driver

must load a sufficient quantity of data into the function

generator and arm it before the trigger event is received.

The goals during initial testing were to supply 800

coefficient sets, 12 Function Generator channels in 25 ms.

This beam preparation time is acceptable for the

CRYRING tests. Further development will be required

to make more use of the streaming mode of operation.

Pre-loading the entire segment is however a good test of

the data delivery system.

SOFTWARE ENVIRONMENT

The FAIR accelerators are controlled by custom Java-

based applications using the LSA (LHC Software

Architecture) framework [4] to manage the settings for

individual devices to fulfil the needs of experiments. This

upper layer generates settings for each device and a

Timing Schedule that specifies to the Data Master when

settings are to be applied. Applications may also receive

feedback by polling or subscribing to devices.

Software on the front-end computers is developed using

the Front End Support Architecture (FESA) – a

framework developed in collaboration with CERN [5] for

the development of C++ software. FESA software is

developed to a set of guidelines that provide a standard

interface that applications use to control and monitor

various types of hardware. An executable FESA binary

contains instances of a FESA class representing specific

devices and exposing settings and acquisition values to

applications. The details of which computer the software

is running on and how many devices that computer is

responsible for is largely hidden.

A typical FESA application might have:

• Software Event on Beam Preparation Event to load

settings

• An equipment-specific Hardware Event to trigger

pre-loaded settings

• A Software Event to read acquisition values from

hardware

• A Timer for status updates

A FESA software program may be responsible for

equipment in different Timing Groups and responding to

different Timing Events. Additionally there may be

multiple FESA binaries running on a single SCU. This

gives rise to the requirement that multiple processes can

control the Timing Receiver and listen to Events without

disturbing each other.

SAFTLIB DESIGN

The interface to the timing receiver is managed by a

single process – saftd. This process contains the interrupt

handler and performs all communication to the timing

hardware over the PCI-express bus.

Clients connect to saftd via the d-bus Interprocess

Communication (IPC) standard. All clients request

conditions: Hardware Conditions for timing event to

hardware action and Software Conditions for timing event

to software action. Saftd checks requests do not create

conflicts between processes and compiles the set of

conditions to a format that may be sent to the ECA unit.

The timing receiver uses interrupts to signal incoming

data. The satfd interrupt handler is responsible for sorting

interrupts from different channels, requesting data and

forwarding it to the clients. By having only a single

process receive the interrupts and use the Etherbone

interface contention is avoided. (It is still possible for

another process, such as a legacy application, to use the

Etherbone interface and cause a conflict.)

Driver and Proxy Client Interface

Saftd provides an object-based interface for clients.

Objects exist in the saftd process and can be accessed via

d-bus IPC. Clients create Proxy objects that manage the

details of communication with saftd. The interfaces are

specified in XML format similar to the D-Bus reference

implementation but specialised to the expected use cases.

A code generation tool generates C++ code for both the

driver service and proxy side hiding the complexities of

interacting with the d-bus argument marshalling.

Drivers are part of the saftd process. Driver developers

must complete the implementation behaviour defined by

the interface definition and adapt to specific hardware.

Client applications link to a library containing Proxy

classes that handle all interactions on the message bus.

Clients can call methods, register for callbacks and read

properties. Properties are cached locally by the proxy;

changes to a property are sent on the bus to all registered

proxies.

SAFTLIB PERFORMANCE

For hard real-time requirements that need latencies of

microseconds or lower hardware events must be used.

These can reliably operate at very low latency, but

dedicated hardware has a longer development time and is

more costly and less flexible. Reducing the latency of

software events makes them useful to a wider set of tasks

and increases the flexibility of the entire control system.

The delay between a Timing Event triggering and the

hardware outputting to the SCU bus is of the order of

100 ps. A software interrupt in the Linux kernel has a

delay of the order of 100 μs. Figure 1 shows a distribution

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA168

TUPHA168
810

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

of latency measurements from hardware to the FPGA

softcore, Linux kernel, User-mode driver and FESA

processes.

Figure 1: Latency measured by oscilloscope.

Table 1 shows the approximate 95th percentile latencies

measured for the stages of a timing event notification

message. Significant outliers were excluded and are

discussed later in the prioritisation topic.

Table 1: Latencies (95 percentile): d-busth

Event Time

Timing Event to Interrupt Handler 80 μs

Driver reads hardware 80 μs

D-bus (de)marshalling 200 μs

D-bus Transfer 600 μs

Proxy to FESA Eventsource 100 μs

FESA Action Scheduler 300 μs

Timing Event to FESA Action 1.5 ms

A particular performance issue is the handling of

simultaneous end-of-cycle interrupts. The Function

Generator unit can produce 12 simultaneous interrupts –

delays whilst processing these cause the software and

hardware state to disagree, which has caused faults where

hardware has been incorrectly shown as busy and new

data sets rejected.

The greatest gains can be achieved by optimising the d-

bus IPC mechanism. Sending a d-bus message requires

several context switches between user-space processes

and conversion of data objects to and from the d-bus wire

format. We investigated several areas looking for

improvements in transfer speed and average and worst-

case latency.

IMPROVMENTS INVESTIGATED

For most operations the size setting or acquisition data

is so small that latency dominates. When sending the

parameter sets for Function Generators, however, data

throughput was found to be too slow.

D-bus File Descriptor

The d-bus standard allows processes to share file

descriptors across the bus. As file descriptors are an index

that only works in the context of a single process, file

descriptors must be handled differently than other data

types and the SAFTlib d-bus implementation had to be

changed.

For the first investigation, file descriptors were used to

open a pipe between saftd and the client proxy which then

carried the waveform data.

Figure 2: Data Transfer speed: d-bus vs. pipe.

As seen in Fig. 2, this significantly reduced the time

taken for the data transfer, sufficiently to allow the control

system to operate CRYRING successfully during early

tests. However the setup time remains relatively high.

Grouping D-bus Operations

To take advantage of the higher throughput of the file

descriptor and pipe mechanism, SAFTlib was extended

with a Master Function Generator interface that is capable

of sending commands to and aggregating replies from

multiple function generator units in a single d-bus

operation.

Reducing D-bus Load

The SAFTlib design includes many actions and metrics

that may be used to monitor the status of the timing

receiver. The Function Generator signals state transitions

and data requests. Under high load it was found that

registering to these signal could use enough extra CPU

time to impair the performance of the critical events.

Figure 3 shows the effect on performance of running an

extra process that uses d-bus.

Figure 3: Data Transfer speed with concurrent d-bus users.

In the case of a 12-channel system, the Master Function

Generator interface reduces the number of d-bus calls per

cycle from 24 to 1 and the time taken from approx.

120 ms to under 25 ms.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA168

Software Technology Evolution
TUPHA168

811

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Multi-Session File Descriptor

To avoid the overhead of transferring file descriptors

via a d-bus transaction for each data exchange the d-bus

mechanism can be used to create a persistent pipe. The

driver and client must agree on a protocol for the data

stream and more care must be taken. This makes the

approach most suitable for the triggering of software

events in the FESA framework. Using d-bus only for the

initial negotiation phase produced the results in Table 2.

Table 2: Latencies (95 percentile): pipeth

Event Time

Timing Event to Interrupt Handler 80 μs

Driver reads hardware 80 μs

Pipe Transfer 50 μs

FESA Action Scheduler 350 μs

Timing Event to FESA Action 600 μs

Bypassing the d-bus mechanism gives significant

performance gains but care must be taken to avoid

conflicts. Interrupt-driven driver to client events are safe;

client requests to the driver are no longer forced to be

sequential by d-bus so access to hardware must be

checked. Further work is planned in this area.

WORK IN PROGRESS

System Priorities

In a real-time system worst-case latency is important as

late delivery of certain events is a failure. A single FESA

binary may have tens of threads at many priority levels.

Optimizing the relative priorities of the front-end

processes will help ensure correct operation at higher

CPU loads. Continuous high load needs to be avoided by

limiting the tasks assigned to an SCU. Prioritisation can

only mitigate the impact on critical services in the

absence of a true real-time operating system.

Saftd Internal Priorities

The initial design of Saftlib has a single process and

thread responsible for interrupt handling, servicing IPC

requests and interacting with the hardware devices. This

guarantees there is no contention on the Etherbone bus

but does not deliver optimal performance. Introducing

multithreading into a system introduces the complications

of locks and shared resources. The first steps to a more

parallel concept are the identification of critical pathways,

identification of isolated components and identification of

low-priority activities.

• High priority Software Action where delays cause

failure.

• Generic Software Action where best-effort is

acceptable.

• Idle Software Actions which may be re-scheduled

until resources are available.

 D-bus Prioritisation

A typical system may have time-critical actions to

control hardware and less-critical actions for monitoring

and diagnostics. D-bus itself does not support

prioritisation of messages. However, there is a system bus

and a user bus. This allows for two categories of message

that can be kept separate.

Kernel D-bus

Since the d-bus daemon is a user process, a d-bus

transaction will switch between kernel and user mode

several times. Kernel d-bus incorporates the d-bus

services into the Linux kernel and promises significant

latency reductions. The requirement to backport kernel

changes to the deployed Linux version has prevented

further investigation at the moment.

Data Acquisition Support

Further improvements to the function generator

hardware will include a Data Acquisition mode to provide

feedback for the control system. It may be possible to

integrate bi-directional streaming.

CONCLUSION

In this paper we have presented the current state of the

SAFTlib Timing Interface, examined some of its

performance characteristics and a number of ways of

improving the throughput and latency characteristics.

Improving the response speed of SAFTlib is required for

the later stages of the FAIR project.

There are several ongoing investigations that aim to

improve performance, both globally and targeted at

specific use-cases, whilst retaining a flexible API that can

handle multiple client processes and heterogeneous

hardware.

REFERENCES

[1] D. Beck et al., “The New White Rabbit Based Timing

System for the FAIR Facility”, FRIA01, Proceedings of

PCaPAC (2012) Kolkata, India.

[2] R. Huhmann et al. The FAIR Control System - System

Architecture and First Implementations, Proceedings of

ICALEPCS2013, San Francisco, CA, USA

[3] S.Rauch et al. “Facility-wide Synchronization of Standard

FAIR Equipment Controllers” Proceedings of PCaPAC

2012, Kolkata, India, WEPD48, p. 84

[4] J. Fitzek, R. Mueller, D. Ondreka, “Settings Management

within the FAIR Control System based on the CERN LSA

Framework”, Proceedings of PCaPAC 2010, Saskatoon,

Saskatchewan, Canada, WEPL008, p. 63

[5] A. Schwinn, S. Matthies, D. Pfeiffer, M. Arruat,L.

Fernandez, F. Locci “FESA3 the new Front-End Software

Framework at CERN and the FAIR Facility” Proceedings of

PCaPAC 2010, Saskatoon, Saskatchewan, Canada,

WECOAA03, p. 22

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA168

TUPHA168
812

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

