
SIP4C/C++ AT CERN – STATUS AND LESSONS LEARNED

S. Jensen, J-C Bau, A. Dworak, M. Gourber-Pace, F. Hoguin, J. Lauener,
F. Locci, K. Sigerud, W. Sliwinski, CERN, Geneva, Switzerland

Abstract
After 4 years of promoting the Software Improvement

Process for C/C++ (SIP4C/C++) initiative at CERN, we
describe the current status for tools and procedures along
with how they have been integrated into our environment.
Based on feedback from four project teams, we present rea-
sons for and against their adoption. Finally, we show how
SIP4C/C++ has improved development and delivery pro-
cesses as well as the first-line support of delivered prod-
ucts.

BACKGROUND
A C/C++ software improvement process (SIP4C/C++)

has been promoted in the CERN Accelerator Controls
group since 2011, addressing technical and cultural aspects
of our software development work. A first paper was pre-
sented at ICALEPCS 2013 [1]. On the technical side, a
number of off-the-shelf software products have been de-
ployed and integrated, including Atlassian Fisheye/Cruci-
ble (code review), Google test and Google mock (unit test),
Valgrind (memory debugging/profiling) and SonarQube
(static code analysis). Likewise, certain in-house develop-
ments are now operational such as a generic Makefile,
Makefile.generic, (compile/link/deploy), CMX (for pub-
lishing runtime process metrics) and Manifest (capturing
library dependencies). In addition, SIP4C/C++ has influ-
enced our culture by promoting integration of said products
into our binaries and workflows.

Four projects have adopted SIP4C/C++ to various de-
grees:

CMW delivers C and C++ libraries providing transport
facilities as extendible classes, letting the user create re-
motely accessible servers which expose data according to
the device/property model employed in our controls sys-
tem.

FESA a C++ framework based on CMW libraries, for-
malizing the creation of device/property-based servers.

SILECS resembles FESA, but focuses on letting users
expose PLC data according to the device/property model.

TIMING provides and operates a number of executables
used to sequence and synchronise CERN’s accelerator
complex, along with libraries for other developers to use.

OBJECTIVES
The objectives of the SIP4C/C++ initiative are: 1) agree

on and establish best software quality practices, 2) choose
tools for quality, and 3) integrate these tools into the soft-
ware development process.

RESULTS
For each participating project, the SIP4C/C++ products

and procedures mentioned above were evaluated in terms

of uptake as either “Strong”, “Medium” and “Weak”. Rea-
sons for and against adoption were collected along with
suggestions for future improvements.

Common Build Tool
Status: The Makefile.generic is stable. Includes targets

for compiling, linking, SVN commits with support for tags
and branching, deploying, documentation, test execution
and launch of the Valgrind memory debugger/profiler.
Also, provides automatic generation of the Manifest (see
below).

Uptake: Strong in all four projects, with all products
managed using Makefile.generic

Pros: Essential for uniform approach to release manage-
ment and testing, which in turn facilitates cross-project de-
velopment teams. Once adopted, it greatly simplifies inte-
gration of new target platforms. It meets the requirements
of many users and as it was implemented in-house, we can
readily adapt it to future needs and new platforms.

Cons: Approaches the limits for what Make is intended
for. Its complexity makes it hard to know what is possible
and how to achieve it – in particular for inexperienced us-
ers. It was very time consuming to adopt and hence best
suited for projects of a substantial size where the effort was
found to be worthwhile. Projects risk losing time on refac-
toring if the Make system changes. Our implementation is
non-standard and hence requires dedicated resources for
evolution. The current solution depends on remote re-
sources, i.e. network (NFS) access is required.

Future: Moving towards a higher-level service based on
standard, open-source products (e.g. cmake) with support
for dependency management would help decrease confu-
sion and errors. There should be support for working of-
fline, i.e. to download all resources once.

The Manifest, Dependency Capture
Status: Stable, with a few known issues, in particular

problems in correctly navigating symbolic links. Depend-
ency information is captured as XML at build-time, via
Makefile.generic, and visualized as shown in Figure 1.

Uptake: Medium in FESA and TIMING, weak in CMW
and SILECS. FESA uses the manifest ad hoc to manually
spot end-user dependency conflicts, whereas TIMING
parses the XML to automatically configure source direc-
tory paths for gdb. CMW saw little interest, finding the de-
pendency information of committed Makefiles to be more
reliable.

Pros: Provides useful information in case of certain un-
explained run-time behaviours and it is effortless to use due
to integration with Makefile.generic

Cons: The solution is non-standard. A system like pkg-
config could be interesting, but would require a rewrite of
Makefile.generic

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA161

Software Technology Evolution
TUPHA161

785

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Future: The mechanism should alert users on depend-
ency conflicts, rather than silently capturing them – possi-
bly by breaking the build process.

Figure 1: Dependency graph showing conflicts in red.

Unit Testing and Mocking
Status: Stable and available. Google test [2] and Google

mock [3] targets are part of Makefile.generic and can there-
fore be triggered from our continuous integration service.

Uptake: Strong in FESA (~950 tests) and CMW (~3500
tests), Medium in TIMING, but includes C software (~250
tests), Weak in SILECS (~10 tests)

Pros: CMW described unit testing as “slow but safe”,
forcing developers to think about concrete, testable cases
which solidifies code. It gives confidence that changes
have not introduced regression. Tests often ramify further
into the software than foreseen, which helps justify the in-
vestment. Several cases were reported where testing found
bugs that would have compromised operation if deployed.
Also, the approach fits the work habits of younger devel-
opers.

Cons: Implementation of tests takes time and the invest-
ment may be hard to justify, especially since benefits often
appear only in the long term and are not always quantifia-
ble. One project reported having a 1:1 ratio between lines-
of-tested-code and test-code. One project found that it
takes too much effort to manage dependencies. Implement-
ing tests will always come second to fixing operational is-
sues. Some (historical) code is not suited for unit testing
without refactoring and it is uncertain if such an effort is
justified. TIMING found unit testing to be most justified
for libraries offered to many users, and less so when it
comes to delivering executables. TIMING noted a risk in
believing that if all tests pass, all is good – one should stay
critical and not forget that tests do not cover all cases.

Future: Better integration and more automation in terms
of dependency management is needed, allowing develop-
ers to focus on implementing the test code.

Continuous Integration
Status: The continuous integration (CI) service, pro-

vided by the Atlassian Bamboo [4] product in our case, is

stable and available, triggered by commits to SVN and ca-
pable of invoking targets in Makefile.generic.

Uptake: Strong in FESA (~400 tests in ~20 plans, auto-
matic launch on commit as fail-early is essential), CMW (
~3500 tests in ~20 plans), preventing release if any test
fails) and TIMING (~600 tests in ~20 plans) and weak in
SILECS (~20 tests in ~10 plans)

Pros: TIMING reported value in repeating certain tests
as sometimes a functionality may fail “only on the 101st
call” due to changes in the execution environment. FESA
noted the importance of “fail-early” achieved by having
SVN commits immediately triggering Bamboo build plans.
FESA noted that CI helps avoiding “operational testing” by
first-adopter users and important for testing un-noticed
ramifications of changes. TIMING uses CI as a sort of
watchdog via a test which regularly calls an operational
service known to fail periodically – thereby being notified
on service failure. FESA and CMW reported that although
implementation and maintenance is very time consuming,
the operational stability gained justifies the investment.

Cons: CI was found to be very heavy to adopt initially
(FESA reported 2 person-months of effort) and also to
maintain due to current limitations in the integration with
our environment. Implementing a test takes approximately
the same time as implementing the feature being tested.

Future: There is a need to decrease the effort required
to create and maintain test plans. This will be addressed via
new targets in the common build tool.

Code Review
Status: We perform code reviews using the Atlassian

FishEye/Crucible tool [5]. This service is stable and avail-
able.

Uptake: Strong in FESA and CMW (all changes re-
viewed by at least 2 persons within the week), Weak in
TIMING and SILECS (only on a few occasions).

Pros: FESA and CMW found nothing but positive ef-
fects, although the time investment is only recovered in the
longer term. The value lies mostly in improving the soft-
ware architecture and design, though some bugs have been
found, leading to additional unit tests. CMW found value
in conveying coding style to newcomers. TIMING re-
ported interest since reviews help distribute knowledge of
functionality between team members, which in turn will
help removing single-point-of-failures in the team. How-
ever, TIMING reported reluctance to adopting a regular
procedure due to operational pressure and resource scarcity
combined with code size and complexity. SILECS reported
interest and saw a big advantage in using a tool like
FishEye/Crucible (Figure 2), bringing down the barrier to
adopting the process and particularly expected value from
homogenizing coding style.

Cons: The process is time consuming – for TIMING
prohibitively so. FESA found the Crucible navigation fea-
tures to be limited, without an “IDE feeling”. Overall, code
reviews demand discipline and there is risk of friction as
some may take reviews personal.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA161

TUPHA161
786

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Future: The review process could be increasingly for-
malized, specifying criteria such as “maximum delay al-
lowed” and “minimum participation for acceptance”,
though such criteria should likely be defined per project.

Figure 2: Code reviews.

Static Code Analysis
Since the 2013 article [1], we have moved from the com-

mercial tool Coverity [6] to the open-source SonarQube [7]
due to licensing considerations.

Status: Not yet fully integrated for C/C++.
Uptake: Not used actively in any project.
Pros: SILECS saw an interest for cleaning up the code

base, but was so far unable to allocate time to do it. FESA
noted the visual appeal of reports, but found them of little
use as they mostly detect aesthetic problems rather than ac-
tual bugs.

Cons: The code base of the four projects is large and
long-standing. Running a code analysis tool on it yields an
overwhelming amount of errors and warnings – mostly of
an aesthetic nature - too big to address.

Future: With better integration, automation and fine-
tuned configuration, the tool may gain usefulness but we
are not currently able to say if the effort is justified.

Memory Debugging/Profiling
Status: The Valgrind [8] installation is stable and avail-

able via targets in Makefile.generic.
Uptake: Strong in CMW (integrated as automated post-

commit tests), weak in TIMING (due to a principle of not
using any dynamic memory allocation), weak in FESA (ad
hoc performance tests and spotting problems in client
code), not used in SILECS.

Pros: FESA and CMW reported value by detecting
slower forms of memory leaks, which may go undetected
by unit tests as these execute over short periods of time.

Cons: FESA reported too many false positives due to use
of shared memory. CMW reported many false positives
caused by CMW’s extensive use of timeout mechanisms
combined with the fact that a binary executes slower under
Valgrind – thereby triggering the timeouts.

Future: Automated memory debugging/profiling is be-
ing considered, but may be too complex to implement due
to different configuration needs across projects. A mecha-
nism to select between different configurations could be
envisaged.

Runtime Process Metrics
Status: CMX [9] is stable and available, allowing exe-

cuting processes to write internal variables to shared
memory from where they can be accessed by various
means, such as the “CMX Viewer” (Figure 3).

Uptake: Medium in TIMING and FESA, not used in
CMW as similar functionality was already implemented.
Not yet used in SILECS due to lack of time to implement.

Pros: Easy to use, providing for a good value-to-effort
ratio. It provides non-intrusive diagnostics on a running
process without the need to restart under debugger. Both
TIMING and FESA reported most value when applied to
libraries used by clients. FESA reported around 5 yearly
cases of detecting client software too slow to consume cer-
tain events.

Cons: FESA found the integration with the control sys-
tem to be sub-optimal. They expressed interest in a mech-
anism for (re-)setting CMX values as well as in support for
data structures. TIMING noted that exposed metrics show
the current state and that value lies in periodically logging
CMX metrics to allow seeing trends over time.

Future: A better integration with the controls system is
desirable, facilitating for instance configuration of how
CMX data is acquired and persisted centrally over time.
However, this relates more to external tools and services
than to CMX.

Figure 3: Run-time metrics via CMX.

CHALLENGES
The challenges encountered in applying the SIP4C/C++

procedures and tools can be summarized as follows:

Resources Driving SIP4C/C++
Understanding requirements, developing, integrating,

adapting and evolving the various tools require significant

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA161

Software Technology Evolution
TUPHA161

787

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

time and effort, in particular initially. Once operational, re-
sources are needed for tool maintenance and evolution.
Otherwise, project teams will refrain from using the tools.
Time must be allocated from persons who well understand
project needs and who are also knowledgeable about the
tools employed. Finally, team leaders must dedicate time
to repeatedly and actively promote the initiative.

Technical
Maximizing value and minimizing adoption barriers re-

quires detailed knowledge about the individual and some-
times conflicting project needs. It is a fine balance to strike
between providing simple, smooth and intuitive user expe-
riences while covering the requirements of heterogeneous
projects – both of which are essential for promoting uptake.

Cultural
Some team procedures are coupled to decade-old soft-

ware and changing this may depend on refactoring the soft-
ware. If operational pressure is high, projects struggle to
create the “space” required to adopt these “finer” aspects
of software development. Management must facilitate by
supporting and encouraging that projects plan accordingly.
Concerning code reviews, the challenge is to instil routine
and discipline with respect to participation and deadlines.
There seems to be consensus that this is beneficial.

Personal
It takes courage and an open mind to have one’s software

reviewed by peers. Code reviews can cause frictions as crit-
icism may be perceived to be personal. Focusing on the
common ownership of the code and knowledge-sharing as-
pects can mitigate such situations and hence must be en-
couraged by team leaders.

FUTURE PLANS
In parallel to continued promotion of SIP4C/C++, the

barrier to adopting its procedures and tools must be mini-
mized. Specifically, we see a need to improve the build/re-
lease chain to improve user experience and increase func-
tionality, in particular with respect to dependency manage-
ment. To address these concerns, a new activity was started
named CODEINE.

CONCLUSION

After four years of applying SIP4C/C++ there is consen-
sus in our project teams that the benefits - despite being
difficult to quantify - undoubtedly justify the investment in
the longer term: Code robustness has increased, leading to
fewer operational incidents and we have seen increased
cross-project knowledge sharing amongst developers.

Yet, we realize that flexibility is a must – in procedures
and tools alike - in that each project has inherent character-
istics influencing what is optimal and even possible. Lee-
way must be given in project planning for them to adopt
SIP4C/C++. The initiative requires a continued, active ef-
fort for promotion and facilitation at management, tech-
nical and cultural levels.

REFERENCES
[1] K. Sigerud et al., “Tools and Rules to Encourage Quality for

C/C++ Software”, http://accel-
conf.web.cern.ch/AccelConf/ICALEPCS2013/pa-
pers/moppc087.pdf , http://accel-
conf.web.cern.ch/AccelConf/ICALEPCS2013/post-
ers/moppc087_poster.pdf

[2] GoogleTest, https://code.google.com/p/goog-
letest/

[3] GoogleMock, https://code.google.com/p/google-
mock/

[4] Bamboo, http://www.atlassian.com/software/bam-
boo

[5] Crucible, https://www.atlassian.com/soft-
ware/crucible

[6] Coverity, http://www.coverity.com/products/cov-
erity-save.html

[7] SonarQube, https://www.sonarqube.org/

[8] Valgrind, http://valgrind.org/

[9] F. Ehm et al., “CMX - A Generic In-Process Monitoring So-
lution for C and C++ Applications”, in Proc. ICALEPCS’13,
San Francisco, CA, USA, October 2013.
https://gitlab.cern.ch/cmx/cmw-cmx/wikis/home

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA161

TUPHA161
788

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

