
USING LABVIEW TO BUILD DISTRIBUTED CONTROL SYSTEM OF A
PARTICLE ACCELERATOR

V. Aleinikov, I. Borina, A. Krylov, S. Pachtchenko, K. Sychev, FLNR JINR, Dubna, Russia

Abstract
New isochronous cyclotron DC-280 is being created at

the FLNR, JINR. Total amount of the process variables is
about 4000. The variety of field devices of different types
is 20. This paper describes architecture and basic princi-
ples of the distributed control system using LabVIEW
DSC module.

INTRODUCTION
Charged particle accelerator is a large automation sub-

ject that contains hundreds of devices and thousands of
signals to control and monitor. To simplify design and
maintenance of a control system it is convenient to divide
it into parts or subsystems. Every subsystem is dedicated
to number of common tasks. They are simply as follow:
produce, inject, accelerate, extract and transport the beam
to the target. Based on our experience, we decided to
consider 3 subsystems: Injection (ECR source, axial in-
jector), Accelerator (cyclotron, extraction, transport) and
Low level RF. Each subsystem includes its own vacuum
control, water cooling, beam diagnostics and so on.

This approach gave as:
 Independent step by step development, debugging

and commissioning of every subsystem.
 Fast response of the system as a whole due to the dis-

tribution of computing among several computers.
 Modular structure is easier to maintain and upgrade.

LABVIEW? WHY NOT?
This question we asked at the start of the project. Fif-

teen years ago it would be too risky solution. LabVIEW
has not been widely accepted for control systems of ac-
celerators and large experimental control systems due to
limitations in performance, scalability, and maintainabil-
ity of large LabVIEW designs. Some of this limitations
were far-fetched, some real.

Since 1999 we have been using SCADA FlexControl
that runs under QNX operating system [1, 2]. Over time,
the lack of support for both products forced us to consider
replacing the development tool. At present, we see con-
tinuously increasing of processing power and significant
evolution of the LabVIEW. For example, appearance of
the Datalogging and Supervisory Control (DSC) module
made it full featured SCADA. It includes tools for log-
ging data to a networked historical database, tracking
real-time and historical trends, managing alarms and
events, and adding security to user interfaces [3]. It has
powerful mathematical, graphical support and experience
of thousands of users. Support is provided for a huge
number of device drivers and protocols. It has good con-

nectivity and openness which are very important for us
due to big variety of the hardware we use.

Ten years’ experience of using LabVIEW for various
projects, completion of National Instrument training
courses, has encouraged us to select LabVIEW as the
development tool for new control system.

SHARED VARIABLES
The control system of DC-280 is a project that is dis-

tributed over a network. Its essence (all signals) can be
described by means of process variables. Every subsys-
tem consists of variables which are deployed on the dedi-
cated host. To share data across the network or between
applications, LabVIEW offers NI Publish-Subscribe Pro-
tocol (NI-PSP). NI-PSP is a proprietary technology that is
optimized to be the transport for network shared variables
and provides fast and reliable data transmission for large
and small applications. It is installed as a service on the
computer when you install LabVIEW [4]. It provides
network-published shared variables that publish data over
a network through a software component called the
Shared Variable Engine (SVE). The SVE manages shared
variable updates. Publishers send updates to a server,
SVE, and subscribers receive those updates from the
server. Shared variable can be connected to a front panel
control or to another variable. We use this concept to
provide communication between device drivers, applica-
tions on localhost and remote computers of the control
system of DC-280 cyclotron.

ARCHITECTURE
The control system of DC-280 has client-server archi-

tecture. Every parameter of a subsystem is deployed as
shared variable in memory of the dedicated computer
where SVE hosts it.

SVE is the server for a shared variable and all refer-
ences are the clients, regardless of whether they write to
or read from the variable. All applications are clients or
subscribers to the SVE. Being network published, varia-
bles of every subsystem can be accessed from any node.
The set of all process variables are distributed across the
nodes of each subsystem. They are deployed at the system
start up and available for the operator panel or automation
algorithms.

DEVICE DRIVERS
In order to unify device driver development we use

modular and object oriented approach with plug and play
ideas. To provide simultaneous managing of many devic-
es of the same type or manufacturer we use Driver Load-
ers. For example, to control of 20 power supplies from

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA128

TUPHA128
714

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

EVPU Company, in parallel mode, the Driver Loader
starts 20 clones of a single power supply device driver.
Every virtual instrument runs independently with unique
parameters that come from the Loader’s initialization file.

LabVIEW provides the aliasing one to another shared
variable with scaling. For example, using linear conver-
sion, a raw value of ADC code can be automatically cal-
culated to the engineering value (voltage) if value chang-
es. At start up every device driver creates network-
published shared variables for supported hardware. These
raw variables are connected to engineering process varia-
bles by means of alias mechanism (See Figure 1).

Figure 1: Data flow.

After connection to the device is established the driver
cyclically reads its status and writes it to the correspond-
ing input shared variables. It also receives notifications of
the value change of the output variables, which causes the
driver to send commands to the device respectively with
communication protocol.

LOGICAL OBJECTS
Some objects require more complex calculations or

control logic. For example, to switch the device you need
to generate a 2-second pulse output signal or state value -
the result of calculating several Boolean ones. For this
purpose, we have created a set of control algorithms for
the most typical objects of automation. This object-
oriented driver uses polymorphism and supervises in-
volved variables depending on the device type at the start
up. All objects and their variables are described in the
initialization file. The Loader starts services for all objects
as independent processes accordingly to this file.

OPERATOR’S INTERFACE
The user interface application (UI) is intended to visu-

alize control and monitoring of each subsystem for the
operator and can be executed on any node of the control
system network. It uses Data Binding technic to connect
front panel controls and indicators to the process varia-
bles.

The user interface screen is divided into several areas
with different purposes (See Figure 2):
 General acceleration parameters, operator name,

date, time, etc.
 Menu with buttons for selecting the front panel of the

subsystem for control.
 Front panel with controls and indicators of subsys-

tems.
 The context line contains useful service information

about the object under the mouse cursor.
 System events and alarms windows.

Figure 2: The user interface layout.

The display of objects is realized in the form of graph-
ical elements similar to real devices. Their state is dis-
played by the colour and shape of the picture.

In addition to the standard services offered by the user
interface for the operator (visualization of the control

process, printing of reports, alarms, etc.) we have imple-
mented useful functions for servicing and repairing the
system in the event of a malfunction.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA128

Integrating Diverse Systems
TUPHA128

715

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

When a driver loses connection to its device, all con-
trols and indicators that represent this device become
disabled and grayed out (See Figure 3).

Figure 3: Online and offline states of objects.

If the operator position mouse cursor over an object, the
context string displays actual values of raw variables on
which that object depends, for example, ADC code.

For safety reasons the interlocking system has a lot of
signals that block the operation of some important ob-
jects. The operator can easily check the list of all actual
interlocks in the popup window by using context menu on
the selected object (See Figure 4).

Figure 4: Popup window with the list of interlocks.

These functions were obtained thanks to our experience
in the development of visualization programs for control
systems of operated cyclotrons. They greatly simplify the
work of engineers to find and eliminate any hardware
problems.

CONCLUSION
The control system of DC-280 cyclotron as well as the

software for it is in a state of development. Most of the
technologies have already been worked out. More than
ten device drivers were developed and tested. The soft-
ware for Low level RF and the Injection subsystems have
been created and tested in emulation mode. The Accelera-
tor subsystem is creating now.

Since the system is growing, we still have to develop
software for creating and remotely monitoring the histori-
cal database, the ECR source spectrum acquisition pro-
gram and many other applications.

The UI contains about 1000 controls and indicators
now. Simultaneous work of visualization and more than a
hundred processes of drivers on one computer (2.5 GHz
AMD, 4-cores) did not reveal delays in the response and
interruptions of communication with the equipment.

REFERENCES
[1] V. Aleinikov, S. Paschenko, “Using commercial SCADA

in control system for ECR CyLab.” PCaPAC 2000, Ham-
burg, Germany.

[2] V. Aleinikov, A. Nikiforov, “QNX based software for
particle accelerator control system of FLNR”, NEC’2007,
Varna, Bulgaria.

[3] National Instruments. LabVIEW Datalogging and Super-
visory Control (DSC) Module,
http://www.ni.com/labview/labviewdsc/

[4] National Instruments. Network Variable Technical Over-
view, http://www.ni.com/white-paper/5484/en/

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA128

TUPHA128
716

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Integrating Diverse Systems

