
CONCEPT AND FIRST EVALUATION OF THE ARCHIVING SYSTEM

FOR FAIR

V. Rapp, GSI, Darmstadt, Germany

V. Čuček, XLAB d.o.o., Ljubljana, Slovenia

Abstract
Since the beginning of computer era the storing and

analyzing the data was one of the main focuses of IT

systems. Therefore, it is no wonder that the users and

operators of the coming FAIR complex have expressed a

strong requirement to collect the data coming from

different accelerator components and store it for the

future analysis of the accelerator performance and its

proper function. This task will be performed by the

Archiving System, a component, which will be developed

by FAIRs Controls team in cooperation with XLAB

d.o.o., Slovenia. With more than 2000 devices, over

50000 parameters and around 30 MB of data per second

to store, the Archiving System will face serious

challenges in terms of performance and scalability.

Besides of the actual storage complexity, the system will

also need to provide the mechanisms to access the data in

an efficient matter. Fortunately, there are open source

products available on the market, which may be utilized

to perform the given tasks. This paper presents the first

conceptual design of the coming system, the challenges

and choices met, as well as the integration in the coming

FAIR system landscape.

INTRODUCTION

 Previous experience with the existing GSI facility

showed the necessity of a centralized storage of historical

data obtained and generated by individual accelerator

components and their control system at a permanent

location. The main focus of such data archive is to

provide the possibility to correlate the actual and historic

data in order to analyze the accelerator performance and

its proper function. In the coming FAIR [1] facility this

function will be offered by the Archiving System, which

is currently developed by the Control Systems

department, together with XLAB from Slovenia.

This system will allow storing the data on a configurable

base of resolution in time, triggered by timing events or

on-change. Collected data may be either values gathered

from devices, higher level data like computed physics

properties or generated abstract data. The Archiving

System will include functionality to query, filter, correlate

and display historical data. For data identification and

synchronization purposes the system should be able to

query, receive and store data from other control sub-

systems, such as the accelerator’s settings management
system LSA [2], the Beam Transmission Monitor system

or the Post-Mortem system.

The aim is to collect all the relevant data form the

devices of the controls system. In numbers it means

around 2000 devices, producing more than 30 MB of data

per seconds. If stored plain, this amount of data will, in

the long term, exceed the capacity possibilities of the

controls systems infrastructure. Therefore the system

must provide functionality to aggregate the historic data

to reduce the required storage size.

SYSTEM OVERVIEW

In order to fulfill all requirements and manage the

existing and future challenges in a fast changing

environment, the archiving system is designed in a

scalable and modular way. It consists of several

components, which communicate with each other.

Conceptually those components can be split in following

functional parts:  Downstream flow: collecting the data  Storage component: storing the data  Upstream flow: extracting the data from the

storage

Figure 1: General system overview

In addition to those core parts, different supporting

components will be a part of the Archiving System.

The basic idea of the whole systems architecture is to

design and implement those components independent

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA043

TUPHA043
486

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

from each other and clearly define the communication

interface between them.

Generally, the workflow of the archiving systems starts

with the collection of the relevant data. The actual

retrieving of it is described here [3]. Basically, the

archiving system must subscribe for all relevant device

properties in order to get the desired information. This

part of the system is performed by the component called

Data Collector, which is a part of the downstream flow.

The information collected by the Data Collector may be

of general interest in the future. Therefore, the collected

data is disseminated using a message broker. Considering

different broker products on their performance, available

documentation as well as their current distribution in the

market, the Apache Kafka [4] seems to be the most

suitable solution for performing of this task. The Data

Broker component aggregates all data received from the

Data Collector component, originating from multiple

sources. It provides a common interface for other

components to retrieve data and acts as an optimal

consumer for the components underneath, reducing data

flow congestion.

The actual writing of the data into the database is

performed by the Data Writer component, which acts as a

consumer to the Data Broker and wraps all the database

calls used for storing the data in Short-Term Storage

(STS). From the database point of view, the storage is

split into 2 parts. One is the Short-Term storage

containing the fine granular data and the other is the

Long-Term Storage (LTS), where the data is compressed

over fixed time intervals, e.g. by storing only selected

aggregated values of those time interval. The Data

Reductor component collects and reduces data from the

Short-Term Storage and stores it in the Long-Term

Storage component.

The database storage components are based on the

Elasticsearch [5].

In the upstream data flow, the Data Extractor is

performing the actual database queries and aggregating

the data. Additionally a client library will be provided to

ease the data access. The Client makes requests to the

Data Extractor, which checks the user’s access level and

then extracts data from Short-Term Storage and

eventually Long-Term Storage and sends it back to the

client. The Data Extractor GUI Client can be used for

basic querying and visualization of extracted data. The

Extractor Client can also be used to implement custom

exports and make data available to other analytical tools.

Query optimization and resource usage monitoring are an

important task of the Data Extractor.

A number of supporting components called controllers

are used for configuring the Archiving System at different

stages. They can be accessed by the Administration Client

directly through the API Gateway for simple operations

that include only one controller.

Following the scalability concept the collector, writer

and the extractor components are developed for the multi

node deployment, i.e. multiple instances will be deployed

on different servers. To coordinate the tasks performed by

those particular components an Apache Zookeeper [6]

configuration service will be used.

CORE COMPONENTS

Data Collector

As described previously the Data Collector component is

responsible for subscribing and receiving the data coming

from different devices. Those devices may be based on

top of different communication protocols: RDA3 (FESA)

or Device Access [3]. To achieve this task the Collector

utilizes the JAPC interface, which provides a unified

subscription interface for continuous data gathering. The

Data Collector, as other Data Worker Group and Data

Worker Controller Group components and libraries, is

written using Java.

Each deployed Data Collector instance registers itself in

the Zookeeper Service, making its computing resources

(specified as number of threads) available to the Data

Collector Controller. The Data Collector Controller is

then able to send a list of device configurations to the

Data Collector for subscription and processing.

Implementing and deploying additional Data Collector

device connectivity do not induce changes in the

implementation of the controller or other components of

the Archiving System, because the whole component is

assembled modularly. Each Data Collector can subscribe

to several devices at once.

 Figure 2: Data Collector overview

Data Collector instances are controlled with the Data

Collector Controller component through the REST API.

Figure 2 shows the high-level overview of the

components and connections. Data acquired from the

devices are parsed and encoded in JSON format before

publishing them to the Kafka broker. The acquired data

may contain device settings as well as actual

measurements. The device settings go through an on-

change filter before they are pushed to the Meta-Data

topic on the Data Broker component. The measurements

are stored continuously and pushed to a separate Data

topic. The device parameter name and timestamp are

stored in each document, so fields from the same device

message can be rejoined in the Data Extractor, if needed.

The benefit of using separate topics and consequently

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA043

Data Management and Processing
TUPHA043

487

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

separate indices in the Short-Term Storage is that meta-

data will use much less storage, making filter queries -

their main usage - on them much more efficient.

Conversely, measurement data will mostly need to be

displayed per-point and usually occupy much wider

domain of ever changing values.

Each Data Collector receives the configuration at the start

of operation by watching for changes in configuration

service, as the Data Collector Controller updates the

record that the Data Collector has created upon startup.

The Data Collector Controller specifies the type of each

device field - whether it produces data, meta-data, or

timestamp.

Each Data Collector instance is also sending its utilization

and data flow rates to the broker component, which are

afterwards written to the database.

Multiple instances of the Data Collector nodes are

coordinated by the Data Collector Controller component.

The main purpose of this component is to distribute and

monitor connections between the devices and Data

Collector nodes. It is connected to Data Collector

instances by watching and using common nodes of the

Configuration Service, where it also watches for newly

registered Data Collector instances. Each Collector

instance is responsible for a specific set of devices and

parameters. The distribution of the load, i.e. subscriptions,

between those instances is done by the Controller

component.

Data Writer

The main objective of the Data Writer is to encapsulate

database specific calls. Similar to other components the

Writer is controlled by the Data Writer Controller. The

data from the Data Broker is consumed by the Data

Writer and inserted into the Short-Term Storage. The

meta-data is stored directly to both Short-Term and Long-

Term Storage simultaneously. The Status Library is used

to publish input and output data flow measurements from

all components involved in data processing. In addition it

also provides functionality for publishing notifications,

relevant for the Administrators, events for triggering

remote procedures and system messages, used for

monitoring infrastructure resources.

Apart from storing device data, the Writer is also

persisting component statuses, events and notifications in

Long-Term Storage.

The Writer component follow the same multi thread and

multi node approach as the Collector described

previously. Every thread of the Data Writer instance is

responsible for collecting the data from a particular Data

Broker Topic. Data Writer plays an important role during

the shutdown procedure, because it is responsible for

safely storing all the data, before the maintenance can

begin. The currently proposed idea is to shut down every

instance, only after the collector group reaches the last

record offset and after the Data Collector instances enter

the shutdown state. Operation will be coordinated by the

Data Writer Controller, using Configuration Service

component.

Storage

As mentioned previously the storage concept consists of

two parts: short and long term storage. First contains the

fine granular data received from the devices. Depending

on the device type and the accelerators mode the

incoming data rate may go up to 1 kHz. Since the

archiving system is aimed to store and manage the data

for time periods of multiple years, the data amount here

would exceed the data storing capacity which can be

supported by the current control system infrastructure.

Therefore a reduction of data needs to take place.

Compressed data is stored in the long term storage. The

compression and writing to the long term storage is

performed by the Data Reductor component.

Due to different infrastructural and organizational

constrains Elasticsearch database was chosen as a storage

backbone for both, long and short term storage. It

provides a simple and powerful interface for retrieving

and inserting data into the database. In addition to this, it

also has some basic analytic tools, which could simplify

and reduce code inside the Data Reductor component.

During the compression the data reduction algorithm may

change the structure of the data. One of the algorithms

which will be implemented is to take multiple beam chain

executions during a defined time interval and leave only

particular aggregated values of those: mean, standard

deviation, maximum and minimum values etc.

Data Extractor

The Data Extractor component is responsible for

seamlessly querying data archived in both the Short Term

and Long Term Storage. From the architectural point of

view the extractor component can be split in several

different parts, as shown on Figure 3.

Figure 3: Data Extractor overview

All requests from clients are processed by the Data

Extractor core service. Main role of this service is to

delegate operations to other sub-components, log user

usage statistics and to authorize request.

Data presenter is responsible for joining results from

different databases. The actual knowledge behind this

operation is possessed by the Data Reductor library,

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA043

TUPHA043
488

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

because data joining highly depends on the reduction

algorithm.

Data Extractor can request data from the databases of the

short and the long storage. Query engines are responsible

for interpreting requests and assembling consecutive

lookups and results for more complex queries. Data

Export service implements functionality to convert

archived data to other requested formats, e.g. CSV. The

Extractor provides RESTfull interface to query the data.

CURRENT STATUS AND FUTURE STEPS

Currently a prototype of the system was developed and

successfully deployed in the GSI environment containing

the future FAIR relevant components. The prototype

however, offers a limited functionality. So, as example all

components considering the long term storage are still in

the development. On the other hand it provides sufficient

functionality to judge over the overall stability and

suitability of the whole design concept. Additionally, it

allows the first performance tests of different parts of the

system. Especially the stability and the long term

performance of the Elasticsearch database will be in focus

of the coming evaluations. Currently however, the main

focus of testing lies in the functionality area.

Remaining functions of the system, described previously

are currently under development.

In general the controls system department at GSI plans

to use the prototype in the planned beam time in year

2018 at least for smaller amount of chosen devices. This

usage must show how well the overall systems

architecture is suited to the FAIR and GSI environment

constrains. The experience from the usage will also show

if the system must be redesigned in the future.

REFERENCES

[1] FAIR website: http://www.fair-center.de

[2] J. Fitzek et al., “Settings Management within the

FAIR Control System based on the CERN LSA

Framework”, WEPL008, PCaPAC’10,
http://www.jacow.org

[3] V. Rapp et al., “Controls middleware for FAIR”,
WCO102, PCaPAC’14, http://www.jacow.org

[4] Apache Kafka, website: https://kafka.apache.org/

[5] Elasticsearch, website:

https://www.elastic.co/products/elasticsearch

[6] Apache Zookeeper, website:

https://zookeeper.apache.org/

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA043

Data Management and Processing
TUPHA043

489

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

