
A GENERIC REST API SERVICE FOR CONTROL DATABASES*

Wenge Fu†, Ted D'Ottavio, Seth Nemesure
Brookhaven National Laboratory, Upton, NY 11793, USA

Abstract
Accessing database resources from accelerator controls

servers or applications with JDBC/ODBC and other
dedicated programming interfaces have been common for
many years. However, availability and performance
limitations of these technologies were obvious as rich web
and mobile communication technologies became more
mainstream. The HTTP Representational State Transfer
(REST) services have become a more reliable and
common way for easy accessibility for most types of data
resources include databases. Commercial products to
quickly setup database REST services have become
available in recent years, each with their own pros and
cons. This paper presents a simple way for setting up a
generic HTTP REST database service with technology
that combines the advantages of application servers (such
as Glassfish/Payara), JDBC drivers, and REST API
technology to make major RDBMS systems easy to
access and handle data in a secure way. This allows
database clients to retrieve data (user data or meta data) in
standard formats such as XML or JSON.

INTRODUCTION
As a common resource of data, the usage of databases

are essential for accelerator control systems. The way to
access databases from all parts of the controls system,
locally or remotely, can greatly affect the overall
performance of the accelerator controls system.
Traditional ways of accessing databases with JDBC or
ODBC from different programming languages works fine
in most cases. However, the rising and widespread use of
mobile and web applications requires more sophisticated
ways of accessing database resources for network-based
programs. The Representational State Transfer (REST)
API paves a universal way for this purpose. While several
commercial products (such as RESTIFYDB[1],
Drupal[2], Firebase[3] etc.) are available on the market,
most of these REST API building products are based on
JPA or Hibernate technology, and each product has its
own advantages with rich functionality. However, there
are also some disadvantages, requiring a constant and
significant amount of maintenance work for dynamically
changing control database systems such as the ones we
are using.

In our controls system, we have several MySQL
database servers and SAP Sybase ASE database servers,
encompassing several hundred databases. Some databases
are for storing the control system configuration data and
others are for use to store real-time controls data. In

addition, we have many controls application developers
with different programming language backgrounds (C.
Java, Matlab etc.), that work on different projects on
different OS platforms, some locally and others remotely.
This requires an easy and generic way to universally
expose different kinds of database resource data to all
kinds of clients.

Based on our database resource types and user
environments, we developed a simple REST API service
for our users to access controls databases. In the API
design, we try to avoid the shortcomings of
JPA/Hibernate technology on frequently changing
database structures (such as dynamically mapping
database objects into Java objects), while keeping the full
syntax, flexibility and power of SQL language. This
ensures that users and program developers can always get
whatever database resource data they want, no matter how
a database's structure changes overtime.

The API presents the resource data in either XML or
JSON format along with the meta data, so users get
everything they needed in a single API call. The data
security issue of the REST APIs are also taken into the
consideration in the API design.

APPLICATION SERVER SETUP
REST API services are normally delivered by an

application server system. Our server system setup is
shown in Figure 1 below. Here are some details:

• The main database servers and application servers are
located inside our network firewall. The firewall is
primarily responsible for basic system security and
only allows authenticated users to access the REST
API service.

• We make use of several MySQL (V5.1.73) and SAP
Sybase ASE (V15.7) back end database servers.
Since the core of this REST API is using the standard
JDBC to make database server connections, and
doing all CRUD database operations through JDBC
underneath, this API can be extended to any JDBC
supported database servers.

• The application server is running on a Red Hat Linux
V6.5 OS. The application software is a version of the
open source Payara application server form the
Payara Foundation. The Payara server is derived
from GlassFish, and provides developer support. [4]

• An internal reverse proxy server (NGINX) provides
an HTTP gateway for all internal users behind a local
firewall to access the REST API services available on
the application server.

• An external reverse proxy (NGINX) server provides a
secure HTTP gateway to allow authenticated users to
access the REST API service inside the firewall.

__

* Work supported by Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy.
† Email: fu@bnl.gov

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA038

Data Management and Processing
TUPHA038

465

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

 In addition to serving the database REST API service,
the Payara application server also provides several other
REST API services as well. The system network firewall
provides basic security checking for any possible illegal
access of the system. The DB REST API has additional
security measures to protect back end database resources.

THE DATABASE REST API
This database REST API attempts to cover all user
requirements for normal database operation without the
need to worry about changes to the database structure
over time. This is accomplished by implementing all
REST API features and functionality with standard JDBC
connections at the back end.
 This REST API service includes the following features:

• Query a database on meta data for a target
database object (GET)

• Database CRUD operations through the HTTP
protocol based operations (GET, PUT, POST and
DELETE):

• Create/Insert - (PUT/POST) insert new
data into database

• Read/Query - (GET) Query a database
with desired data

• Update - (PUT/POST) Update database
data

• Delete - (DELETE) Delete database
data

• User authentication on CRUD operations. This
is an additional security measure on the database
server layer to secure the database resources.

• Service call error handling.

• Database change history logging for all
successful database changes through the REST
API calls.

• Format the returned data as XML or JSON.

 All APIs share a common base HTTP URL path.
Assuming this base path is defined as:

 BASEPATH = http://host_domain_name:port/DBServer/

Below are three examples of the REST API service call
URLs:

• Query/GET - Query a database with desired
data
e.g. BASEPATH/api/query?server=<server>
&db=<db>&sql=<sql>&maxRecords=<maxrow
>&page=<pageNumber>

• Insert/POST insert new data into a database
e.g. BASEPATH/api/insert?server=<server>&
db=<db>&table=<table>&datapairs=<column-
value data pairs in JSON>&pid=
<client_pid>&procname=<client_proc_name>

• SQL/POST - Data change with SQL
statement directly
e.g BASEPATH/api/sql?server=<server>&db=
<db>&table=<table>&sql=<sql>&pid=<client_p
id>&procname=<client_proc_name>

There are also more other auxiliary REST APIs server
wide data such as list of all databases, all tables and
objects in a database, etc.

Figure 1: Diagram of Database REST API Service System.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA038

TUPHA038
466

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

The API parameters used in above APIs are listed in
Table 1 below.

Table 1: Description of Parameters used in all REST APIs

Name Description Example

server The name of the
database server :
host name and
port

host_name:5000

db Name of a
database to be
queried

testdb

sql SQL statement
NOTE: The SQL
statement is
verified on server
side before
execution for
security and
avoid possible
SQL injection
attacks.

select * from
authors;

table Name of a table authors

datapairs Column vs value
data pairs in
JSON format

{"data":
[{"field1":"value
1"},
{"field2":"value2
"},
{"field3":"value3
"},...]" }

where The where clause
for an update or
delete SQL
statement.

"where
last='Smith' "

pid client PID "23456"

procname client proc name "UIDemo"

When a REST API call is made, all data is returned as
JSON or XML string data. By default, the data is returned
using JSON format. Users can explicitly specify the data
format by setting the request header to either “Accept:
application/json” or “Accept: application/xml”.

 On the server side, client requests are authenticated to
prevent data resources from receiving denial of service
(DOS) attacks or SQL injection attacks.
The returned data consists of three parts:

• Meta data provides the properties of the
requested data.

• Data page information provides information such
as page number, page row count, etc.

• Result data contains the requested data

THE REST API SECURITY CONTROL
The REST API service provides a convenient way to

access database data. However, security is a significant
concern. Although the API is designed to be used inside
the normal network firewall, an additional API layer
supporting user authentication is crucial to protect against
unauthorized access.

Several technologies exist to enhance the REST API
security. These include the use of API keys, openID
Connect/OAuth2/SAML (A Security Assertion Markup
Language), and session state management. Each system
has its own pros and cons, and each adds additional
complexity to the REST API system.

In this API design, we use HTTP Basic
Authentication[5], enhanced with an API key, data
concatenation patterns, and dynamical double data
encoding. The client side and server side share the same
secrete API key and secrete data processing knowledge,
and the right procedure for data parsing, encoding and
decoding.

The procedure used to implement these security
measures is outlined below.
On client side:
Step1: Prepare user credential data that includes:

• userID (OS layer user id. In most cases, this is
normally known after a user passed the firewall
layer security.)

• dbID (Database server layer user ID)
• dbPassword (Database user password)

Concatenate these 3 parts into a single string with a
designed concatenation pattern (shared by client and
server only) and encode the concatenated string into string
#1.

Step 2: Get the system current time stamp string and
encode it into string #2.

Step 3: Concatenate the secrete API key (shared only by
client and server), string#1 and string#2 with a designed
concatenation pattern (shared by client and server) , and
encode it into string#3.

Step 4: Send the REST API call request along with above
encoded user info in HTTP Request Header.

 "Authorization" = "Basic " + string#3

 The above procedure can be easily implemented in any
programming language. The double encoded user
information can be sent over the network and can not be
decoded easily without knowing the API key, string
concatenate patterns, double data encoding and data
parsing procedure.

On the server side, the users credential data and client
submitted time stamp data can be decoded back by
reversing the procedure. These decoded data are verified
again on server side, and additional security controls can
be applied on server side to prevent DOS attacks or
throttle the server working loads. Client IP filter checking
on the server side can also be used to further limit the

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA038

Data Management and Processing
TUPHA038

467

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

clients if necessary. The OS level user verification on the
server side also ensures the users are among the legal
audience. In this design, using simple Base64 [6]
encoding/decoding technology, we can reach a reasonably
high level of database protection.

Client side Base64 based encoding is available for
almost all programming languages such as Java, Perl,
PHP, Python, Bash, XQuery, openSSL etc.

REST API ERROR HANDLING
HTTP errors (communication issues, time outs, etc.) are

returned as standard HTTP error codes. This REST API
follows the generic HTTP return status code settings:

• 200 indicates an OK status;
• Statuses >= 400 indicates a generic HTTP

problem.

• A 500 status represents database SQL errors, and
the errors are returned in the HTTP response
header as a string with the title "DB-Server-Error".

• Client should catch the exception and check the
HTTP response header to find out the details of
the error message from the database server.

SUMMARY
REST API services provide a convenient way to make

data resources of many kinds available through the HTTP
protocol over the network with standard data exchange
format such as XML and JSON. This bridges the gaps
between different OS systems and platforms, and makes
data operations especially easy through mobile and web

applications. This API design takes advantage of the
REST API capability and combines the power of other
technology such as JDBC. With the Database REST API
service, we are able to communicate with different
database systems using a common method, eliminating
the need to know how to connect to each database server.
This makes database data retrieval and CRUD operations
much easier from systems like mobile and web
applications, Matlab applications, and other accelerator
control applications using different programming
languages. With a little more effort, this REST API can
be applied to all JDBC supported database systems.

It is also worth noting that this convenience comes with
a cost due to the additional layer between clients and the
data resources. Resource intensive database operations
could lead to a performance overhead, forcing developers
to use judgement when selecting between a REST API
service or direct communication with the database
resources.

REFERENCES
[1] restifydb, http://restifydb.com/

[2] Drupal, https://www.drupal.org/

[3] Firebase Database REST API,
https://firebase.google.com/docs/reference/rest/dat
abase/

[4] Payara Server Data Sheet.
http://info.payara.fish/payara-server-data-sheet

[5] Basic access authentication.
https://en.wikipedia.org/wiki/Basic_access_authenti
cation

[6] Base64, https://en.wikipedia.org/wiki/Base64

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA038

TUPHA038
468

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management and Processing

