
SOFTWARE QUALITY ASSURANCE FOR THE DANIEL K. INOUYE
SOLAR TELESCOPE CONTROL SOFTWARE

A. Greer, A. Yoshimura, Observatory Sciences Ltd, Cambridge, UK
B. Goodrich, S. Guzzo, C. Mayer, DKIST, Tucson, AZ 85719, USA

Abstract
The Daniel K. Inouye Solar Telescope (DKIST) is cur-

rently under construction in Hawaii. The telescope control
system comprises a significant number of subsystems to co-
ordinate the operation of the telescope and its instruments.
Integrating delivered subsystems into the control framework
and managing existing subsystem versions requires careful
management, including processes that provide confidence
in the current operational state of the whole control system.
Continuous software Quality Assurance provides test met-
rics on these systems using a Testing Automation Framework
(TAF), which provides system and assembly test capabilities
to ensure that software and control requirements are met.
This paper discusses the requirements for a Quality Assur-
ance program and the implementation of the TAF to execute
it.

INTRODUCTION
During the software conceptual design phase DKIST

elected to use a Common Services model as a basis for
the standard distributed software infrastructure used to build
the control subsystems. The Common Services Framework
(CSF) was developed as a result of this decision, providing
a standard framework supported in three programming lan-
guages (Java, C++ and Python) [1]. The framework offers
many features including deployment support, communica-
tions support, persistence support, as well as application
support and a broad library of additional tools. All of the
DKIST control software subsystems are built using the CSF.
Figure 1 shows a block-representation of the layout of the
CSF. This infrastructure software, and the software required
to control a large telescope such as DKIST presents develop-
ers and maintainers with a substantial level of testing needed
to ensure the quality of the software remains at a satisfactory
level throughout the lifetime of the project.

Figure 1: Layout of Common Services Framework.

DEVELOPMENT AND TEST SET-UP
The DKIST project offices in Tucson, Arizona and Boul-

der, Colorado have been equipped with the necessary control
hardware to be capable of running the entire control soft-
ware stack. This includes the required network infrastructure,
Data Handling System (DHS) servers, CSF servers, an op-
erator’s station, 4k monitors and network hub [2]. The hub
is provided for future expansion. This hardware installation
is called the End To End (E2E) simulator. Every subsystem
accepted by DKIST must be delivered with the ability to
simulate all hardware at the interface level. This requirement
allows the development team to run the simulated subsystem
within the E2E environment. It is possible to run all of the
subsystems together natively on the hardware, or spawn vir-
tual machines to execute a subsystem in isolation. A network
of virtual machines can be spawned to verify messaging and
database logging across operating system and software ver-
sions. The virtual machines are created and executed using
the VMWare commercial product VMWare Workstation [3].
VMWare has been developed for more than 15 years and
aims to provide the most stable and secure local desktop
virtualization platform in the industry. The E2E rack and
operator’s basic layout is shown in Figure 2. The rack shows
the required network infrastructure, DHS, and CSF servers.
The operator’s station is shown with its two 4k monitors,
desktop, and network hub. The instrument operator’s posi-
tion is shown with its Quality Assurance computer and 2
HD monitors. Figure 3 is a screen shot taken from the two
4k monitors with the subsystems and simulators running,
and has a photo of the server rack overlaid in the top right
hand corner.

Figure 2: End to End hardware schematic.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA008

Systems Engineering, Collaborations and Project Management
TUPHA008

385

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 3: Screen shot taken of the E2E with a photo of the hardware in the top right corner.

SOFTWARE QUALITY REQUIREMENTS
The DKIST control software is supported in three lan-

guages, with differing levels of support for each. The com-
munications and middleware independent layers have been
developed in-house by DKIST staff, but many individual
telescope subsystem software modules have been developed
by external commercial companies and delivered as part of
the whole subsystem. Upon delivery these modules must
be integrated into the overall control software system and
then maintained by DKIST staff. Each module has passed
the factory acceptance tests (FAT) prior to delivery but for
every new release of the infrastructure software the tests
must be executed and the results verified once more. Add to
this the need to regression test for any bugs and subsequent
bug-fixes found in either the subsystems or the infrastruc-
ture software itself, and the matrix of tests becomes large.
For this reason investment was made to produce a software
quality assurance (QA) program which allows all tests to
be grouped, executed, monitored and logged in a consistent
manner, with continuous integration and automated noti-
fication of failures. Unit, regression and system tests can
be scheduled to execute at predetermined times, with spe-
cially marked benchmarking tests executed multiple times
and then statistical analysis of the results performed. Test
reports should contain a concise summary, with detailed re-
port information available if required. Below is a summary
of the requirements identified:

• Consistent reports generated for all tests.
• Unit test framework required for each supported lan-
guage.

• Use existing tools and frameworks where possible.
• Ability to group different test types and languages.
• Ability to install relevant software subsystems for tests.
• Continuous execution of tests.
• Notifications of test results.

Existing Tools
For the development of test frameworks it was clear that

making use of existing test frameworks would reduce costs
and provide well supported libraries to use. For the contin-
uous execution of tests there were also products available
but the decision was made to develop a thin Python layer

that made use of the existing VMWare virtual machines that
were already in use within the DKIST project. VMWare
Workstation provides an API for interacting with the virtual
machines which made it easy to control them, as well as
interact with the sessions running on the virtual machines
from the host. The benefit of this is to be able to coordinate
test execution and result collection across multiple virtual
machines.

TEST REPORTING FORMAT
To ensure that test reports are easily compiled and pro-

cessed from multiple test frameworks and languages it was
necessary to settle on an agreed standard report format for
recording the results of all tests. This test reporting format
was agreed upon before any development of testing frame-
works had begun. To make the reports easily parsed by
automated metric generating software, but also relatively
human readable it was agreed that an XML format should
be used. This format provided scalability for storage of test
reports; a file could contain a single report or many hun-
dreds of reports and each report could contain every type
of attribute available or just a subset. Each report contains
information that can be used to identify which test the report
relates to, where and when the test was executed, the ver-
sion control tag of the test script (to ensure exactly the same
version of tests can be re-run if required), and the results
of the test execution. Other metadata associated with a test
can be added to the report as required. Figure 4 shows an
example test report of a test that has failed. The example
contains additional information describing which versions
of software packages were checked out for the test execution,
along with details of the specific failure.

TESTING FRAMEWORK FOR MULTIPLE
LANGUAGES

All languages have existing testing frameworks available
and for the QA programme DKIST wanted to make use of
these where possible. When selecting a framework there was
a requirement to customise the generated output and so this
was one of the major factors that contributed to the decision.
The overall QA infrastructure and tools were developed using

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA008

TUPHA008
386

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations and Project Management

<?xml version="1.0" ?>
<TEST>

<ID>
SYS_REQ_4.1_1110

</ID>
<CVSID>

$Id: SYS_REQ_4.1_1110.py,v 1.2
2015/09/10 08:27:35 Exp $

</CVSID>
<DESCR>

Disconnection - Invocation of target
public interface method shall no
longer be possible after
disconnection.

</DESCR>
<TYPE>system</TYPE>
<TIME>2017-05-17 07:31:25.662</TIME>
<MACHINE>localhost.localdomain</MACHINE>
<VERSION name="CSF">HEAD</VERSION>
<VERSION name="Base">HEAD</VERSION>
<RESULT>

FAIL
</RESULT>
<FAILURES>

<FAILURE>
<STEP>

18
</STEP>
<REASON>

qas.test.41.1110.java
.comp.client.javacomp
shouldn’t have been added
by ’get’.

</REASON>
<LOCATION>

StepFailGetTest
</LOCATION>

</FAILURE>
</FAILURES>

</TEST>

Figure 4: Test report example.

python, as the language suited the requirement to coordinate
multiple applications, and as a mature scripting language
has built in support for many of the tasks that were required
to operate the QA programme.

C++ Testing
The testing framework that was selected for executing C++

tests was CxxTest [4]. CxxTest has a good set of assertion
macros, is distributed as header files and has no other depen-
dencies. CxxTest also allows for the creation of a custom
test runner that can be compiled into the test application and
also the registration of a test listener, used to catch failed

tests and generate reports of the correct format. A custom
executor and listener were constructed for the DKIST QA
framework, providing the C++ unit tests with the capability
of generating the expected XML report format. This method
of building the custom test runner into the framework means
that the end user who is constructing tests does not need
to write any specific boiler plate code for the tests to be
compatible with the DKIST QA framework. The resulting
executable test applications generated by CxxTest can be
executed from the command line and as part of a larger suite
of tests. TinyXML-2 [5] was selected as the library for the
production of XML reports. TinyXML-2 is a small and
efficient C++ XML parser, it was easy to use and consists of
a single header and single cpp file which could be compiled
into the test applications.

Java Testing
For Java unit testing JUnit [6] was used, which is a unit

testing framework for the Java programming language. JU-
nit provides an interface for creating and executing custom
test runners providing the necessary hooks to be able to cus-
tomise the tests. A custom runner was produced that could
create test reports with the same format as those produced by
C++ tests. Once again JUnit tests can be executed from the
command line. Java provides native support for generating
XML documents.

Python System Testing
There was no requirement to provide unit tests for Python

as the CSF main classes provide only Java and C++ support.
Python is used by DKIST for scripting at the system level,
with a Jython interpreter providing the interface between the
python scripts and the CSF framework. Therefore for the
python tests it was only necessary to create the relevant test
classes to assist with testing standard system level operations.
This included testing methods for loading and initialising
subsystems, connecting to the subsystems and verifying the
health, submitting command configurations and testing suc-
cess and failure of those configurations, setting and getting
data items, verification of expected log messages and other
permanent storage interactions, publishing and receiving
events. Custom Python classes were created to generate the
required XML report files and these were kept consistent
with the C++ and Java generated reports.

TESTING AUTOMATION FRAMEWORK
Having developed testing capabilities for all three lan-

guages supported by the DKIST CSF control software, the
next step was to support the execution of suites of tests. Each
of the test scripts can be executed from the command line
and so the decision was made to create a framework that
can execute tests of any language. The Testing Automation
Framework (TAF) is responsible for coordinating a large set
of tests. It consists of a set of Python scripts, Java unit tests
and CPP unit tests that are executed on the (virtual) machine
where the tests are to be run. The TAF has developed into a

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA008

Systems Engineering, Collaborations and Project Management
TUPHA008

387

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

tool that can perform installation of any system or subsystem
of the DKIST software including the installation of the CSF
software itself. The TAF runs under the assumption that tests
are to be executed from a clean system. The TAF checks
its configuration file to find out which version or versions
of the DKIST CSF and subsystem code should be installed
and tested. The TAF will then check out the required soft-
ware versions from the DKIST software repositories into
the designated directory and perform all installation steps
required to have a fully operational CSF installation. Once
the installation is complete the TAF runs in sequence all
of the pre-selected system tests, followed by the unit tests.
Tests that execute on a particular instance of the TAF are
entirely configurable. Multiple TAF instances can run simul-
taneously within separate virtual machines so that several
versions of CSF can be regression tested at the same time
(subject to the physical memory constraints of the underly-
ing hardware). It is possible to configure an instance of the
TAF to not execute any tests at all, instead checking out the
required versions of the DKIST software and performing the
installation only. This is useful for a situation where tests
executing under another TAF instance on a separate virtual
machine expect to connect to remote application instances.
A set of virtual machines can be configured to mimic a fully
networked system ready for network tests. This is not suit-
able for testing the network architecture, only for testing the
software behaviour within a distributed deployment. The
TAF is responsible for collecting and processing all of the
individual reports from the tests which are saved to disk at a
specified location. The TAF is not responsible for compiling
the final report or sending the emails containing the reports;
that is the responsibility of the End To End Test Executor
described below.

END TO END TEST EXECUTOR
The final component required to complete the QA soft-

ware infrastructure was a tool that could coordinate the exe-
cution of TAF instances, spin up and down virtual machines,
parse the test reports and send out notifications of test sum-
maries. The E2E Test Executor (ETE) was developed to
perform this list of tasks, and is responsible for all of the
tasks mentioned above. The ETE comprises a set of Python
scripts and configuration files that are executed as part of
a cron job and can be easily configured from a command
line tool. The ETE can be configured to start up a test run
at any pre-defined time on any available virtual machines.
When the specified time is reached the ETE will wake up,
start the necessary virtual machines and then copy the TAF
scripts and configuration files to the virtual machines. After
the copies have completed the ETE will execute TAF scripts
on the virtual machines and wait for the completion of all
tests. Once the tests have been completed the ETE will shut
down the virtual machines and then perform the appropriate
notifications of the test results. The ETE will be responsible
for ensuring only one test run is performed at any one time
on one virtual machine, but will not stop multiple virtual

machines from being active and running separate test runs
at any one time. From the command line it is possible for an
operator to invoke the ETE to start a test run immediately.
For situations where real hardware might be used for testing
the ETE would not be required, instead configured instances
of the TAF would be manually executed on physical ma-
chines. The result is a full set of tests run with real hardware
and reports stored in the configured location.

ETE AND TAF WORKING TOGETHER

In summary the following QA test runs are performed
each day as follows:

• The ETE checks its configuration files and starts any
virtual machines as appropriate.

• The ETE copies the TAF source distribution and the
specified TAF configuration file onto the virtual ma-
chine.

• The ETE executes a script on the virtual machine which
runs up the TAF.

• The ETE instance then waits for a signal from the vir-
tual machine that marks completion of the TAF execu-
tion.

• The TAF instance executing on the virtual machine
reads the configuration file which was transfered to the
machine by the ETE.

• The TAF checks out the software modules specified in
the configuration file (unless specified not to).

• The TAF updates any configuration parameters re-
quired to run the software on the specified virtual ma-
chine (such as location of event servers, database IP
address).

• The TAF builds the DKIST control software (unless
specified not to).

• The TAF initiates tools required to run the DKIST con-
trol software (starts database and event servers).

• The TAF runs system tests and unit tests, generating
the reports and storing them on the host machine.

• If there are more virtual machines to run, the ETE
executes them as before.

• When there are no more virtual machines to run, the
ETE shuts down all the virtual machines, writes the
final report and, optionally, emails the report.

BENCHMARK TESTS

After the initial QA software infrastructure release had
been operating for some time a request was made to be able
to add benchmarking tests. The testing code was updated to
allow the notification of a benchmark value from a test and
the TAF updated to allow configuration of a benchmarked
test. Essentially the TAF configuration can specify how
many times to execute a benchmark test, and the results are
not treated as separate test results; instead the benchmark
statistics are calculated and added to the report.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA008

TUPHA008
388

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Systems Engineering, Collaborations and Project Management

FUTURE ENHANCEMENTS
The following enhancements are on the roadmap for the

DKIST QA software:
• It would be useful to be able to configure the TAF to
ignore a specific test failure, if the test always fails and
it is understood why the test fails. This would allow
the known test failure to be ignored in the final test
report so that any new test failures are prominent and
not masked by existing failures.

• Disk space monitoring will be added to the TAF to stop
disk full errors if logs have been filled. During previous
test runs a particular error that occurred would result in
a tight loop writing errors to a log file. This eventually
resulted in the disk filling up and locking up of the
virtual machine. The TAF could monitor the available
disk space and safely shut down a virtual machine prior
to the disk becoming full.

• The TAF will have permanent storage of results history
added so that any significant changes to benchmark
results can be recorded and appropriate notifications
sent.

• The implementation of a standard set of system test
methods and associated templates to simplify the writ-
ing of subsystem tests is currently ongoing. The tem-
plates can be used by test developers and will ensure
that the same kind of tests are carried out in exactly the
same way for each subsystem. Examples of the sort of
tests include checking health transitions and associated
log messages, starting and stopping subsystems and en-
suring correctly formatted command configurations are
accepted by subsystems within allowed time budgets.

CONCLUSION
DKIST have fully invested in the software QA programme

for project control software. As a result of this investment, a
QA infrastructure tailored to the needs of the DKIST project
has been developed, leveraging on the power and flexibility
of existing virtualisation and testing tools. Many hundreds
of tests are automatically executed on the DKIST servers
throughout every day, with key project members receiving
detailed email reports of the results. DKIST control software
developers can commit new features with the confidence that
all existing requirements will be re-verified and that any fail-
ures will be reported. Additionally new unit or system tests
can be integrated into the test suite and either executed in
complete isolation or as part of the full E2E control software
deployment.

REFERENCES
[1] S. Guzzo, S. Wampler, B. Goodrich, “Common Services

Framework Design Requirements”, August 5, 2016.
[2] B. Goodrich, “Boulder End-to-End Test Bed Design”, Novem-

ber 18, 2016.
[3] VMWare, https://www.vmware.com/.
[4] CxxTest, http://cxxtest.com/.
[5] TinyXML-2,

http://www.grinninglizard.com/tinyxml2/.
[6] JUnit, http://junit.org/.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUPHA008

Systems Engineering, Collaborations and Project Management
TUPHA008

389

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

