
VERIFICATION OF THE FAIR CONTROL SYSTEM USING
DETERMINISTIC NETWORK CALCULUS

M. Schütze∗, S. Bondorf†, DISCO Lab, University of Kaiserslautern, Kaiserslautern, Germany
M. Kreider‡, GSI, Darmstadt, Germany; Glyndŵr University, Wrexham, Wales

Abstract
The FAIR control system (CS) is an alarm-based design

and employs White Rabbit time synchronization over a GbE
network to issue commands executed accurate to 1 ns. In
such a network based CS, graphs of possible machine com-
mand sequences are specified in advance by physics frame-
works. The actual traffic pattern, however, is determined at
runtime, depending on interlocks and beam requests from
experiments and accelerators. In ’unlucky’ combinations,
large packet bursts can delay commands beyond their dead-
line, potentially causing emergency shutdowns. Thus, prior
verification if any possible combination of given command
sequences can be delivered on time is vital to guarantee
deterministic behavior of the CS. Deterministic network cal-
culus (DNC) can derive upper bounds on message delivery
latencies. This paper presents an approach for calculating
worst-case descriptors of runtime traffic patterns. These
so-called arrival curves are deduced from specified partial
traffic sequences and are used to calculate end-to-end traffic
properties. With the arrival curves and a DNC model of the
FAIR CS network, a worst-case latency for specific packet
flows or the whole CS can be obtained.

INTRODUCTION
Non-functional aspects of large distributed systems often

define the most safety-critical properties of such systems.
For instance, the avionics sector employs x-by-wire appli-
cations with strict reliability and safety requirements [1].
Another area where formal verification is an important part
of the development and operation are industrial facilities [2,
3]. Their uninterrupted operation is subject to fulfilment of
predefined performance metrics, foremost w.r.t. to their con-
trol system (CS). This also holds true for the GSI Helmholtz
Centre for Heavy Ion Research, a particle accelerator facility
in Darmstadt, Germany. Its largest component, the Facility
for Antiproton and Ion Research (FAIR), will contain 3.5 kilo-
metres of piping [4], several kilometres of cabling and more
than 2000 endpoints [5]. Part of the development of FAIR
has been the introduction of a highly accurate, low-latency
CS system employingWhite Rabbit [6] time synchronization
over Gigabit Ethernet [7]. The FAIR CS demands that, at any
given time of operation, messages sent to any end point can
reach their destination within 500 microseconds despite the
presence of further messages in the network. While viable
machine command sequences are specified in advance by
physics frameworks, they might translate into a vast number
∗ m_schuetze13@cs.uni-kl.de
† bondorf@cs.uni-kl.de, supported by the Carl Zeiss Foundation
‡ m.kreider@gsi.de

of different traffic patterns. These are only determined at
runtime and depend on interlocks and beam requests from
experiments and accelerators. In the worst case, this might
result in messages being delayed beyond their respective
deadline, potentially causing emergency shutdowns of the
entire system. To verify that the given timing constraint
invariantly holds, all possible message sequences for an ex-
periment need to be verified. For this, traffic specifications in
a graph-based format as shown in Figure 1 were introduced.

The Deterministic Network Calculus (DNC) [8] has been
used to verify deadlines in distributed avionics systems for
quite some time [9]. DNC is an application-agnostic math-
ematical framework for worst-case modelling and analysis
of distributed systems. More recently, it has also been ap-
plied to large industrial systems [10]. In this paper, we will
provide its application to the FAIR CS. Among DNC’s two
parts, modelling and analysis, the latter has seen most atten-
tion. The literature set its focus on improving the accuracy
of worst-case bounds on the end-to-end delay as well as com-
putational aspects of deriving them (see [11] for recent and
comprehensive results). In contrast, we extend the system
modelling capabilities of DNC. To be precise, we contribute
a method to convert the graph-based specification of possi-
ble machine command sequences to the deterministic upper
bound on traffic flows at the location they enter the system.
The DNC analysis takes the network topology, forwarding
capabilities of the network, flows’ path and these bounds,
so-called arrival curves, to bound worst-case message delays.
Arrival curves have been derived from input specifications
before, however, such approaches often required explicit gen-
eration of compliant traffic traces that were then transformed
into the arrival curves [12]. As these traces are finite, the
domain of the resulting curves is finite, too. This may impact
the validity of derived performance bounds and needs to be
handled with care [13]. We avoid these problems by directly
deriving arrival curves from the specification such that these
are valid for indefinite length of operation of the system.

The remainder of this paper is structured as follows: A
background section presents the basics on DNC, the FAIR
traffic specification and a formalization that we use for deriva-
tion of arrival curves. The derivation is contributed in the
subsequent section. We aim for most accurate arrival curves,
resulting in pseudo-periodic shapes. Yet, tools providing
automated DNC analysis, foremost the DiscoDNC [14, 15],
may be restricted to aperiodic arrival curves. Thus, we pro-
vide a concave hull algorithm to convert to arrival curves
with a finite amount of piecewise affine segments. We
present practical considerations concerning our generic al-
gorithm and parameter ranges found in a FAIR traffic spec-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPL06

TUCPL06
238

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

1 1 5

b0 b1

Figure 1: An example of a specification in graphical format.
We assume that edges always leave blocks on the right and
enter on the left.

ification before we evaluate our findings and conclude the
paper.

BACKGROUND
Deterministic Network Calculus
DNC is a mathematical framework for deriving upper

bounds on the end-to-end delay of messages in networks.
Given a cumulative function describing the traffic entering
the system at any given time, A : R+ → R+, the arrival
curve α describes an upper limit on the traffic entering the
system in any given interval: α(s) ≥ A(t + s) − A(t) for
all t ≥ 0. Combined with a service curve β, which is a
lower bound on the forwarding capabilities of the system,
this allows derivation of upper bounds on the end-to-end
delay and backlog of messages [8].

The FAIR Traffic Specification
The FAIR traffic specification represents several possible

machine command sequences in a graph-based format. Each
node in the graph represents a deterministic sequence of mes-
sages of some fixed length. Messages inside a block have a
size, representing an abstract measure of size (for example
the number of bytes) and an offset from the beginning of the
block. Therefore, if a block is entered at time t, a message
with offset τ is considered to be sent at time t + τ. Machine
command sequences start at the beginning of some prede-
fined initial block. At the end of each block, several possible
next blocks might exist as indicated by edges with multiple
destinations in the graphical representation (see Figure 1).
The choice is only made at runtime of the system. Overall
the actually emitted command sequence can therefore be
considered non-deterministic. For example, see the several
possible cumulative models of Figure 2a. In this paper, we
contribute a deterministic upper bound on the traffic, a DNC
arrival curve α.

Problem Formalization
Specifications We model specifications as a directed

graph (B, E), where B is the set of blocks of the specification
and E is the successor relationship between blocks.
Each block contains an ordered sequence of messages

being sent in that blockM ⊆ M, where M is the set of all
messages. We assume that each message belongs to exactly
one block.

Time

C
um

ul
at
iv
e
Tr
affi

c

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(a) Potential cumulative models for Figure 1.

Interval Length

M
ax
im

um
Tr
affi

c

1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(b) Arrival curve of Figure 1.

Figure 2: Curves derived from Figure 1.

We therefore define the following attributes for blocks
b ∈ B:

Duration δ : B→ N+
Messages µ : B→ P(M)

We also define the following attributes for messages m ∈
M:

size : M → N0

offset : M → N0

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPL06

Timing and Synchronization
TUCPL06

239

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

We define the traffic generated by some block b as

τ(b) B
∑

m∈µ(b)

size(m).

Flows In order to capture the worst-case traffic genera-
tion deterministically, we extend our concept of blocks to
arbitrary flows between blocks. The central part of a flow is
uniquely characterized by the messages it contains1, but we
might need padding at the front and back when a flow starts
or ends between two messages instead of borders of blocks.
We will call the padding at the front of the flow padl and the
padding at the end padr.

We therefore call a 3-tuple f = (padl, σ, padr) from (N0×

M∗ × N0) a flow if there is a decomposition σ = σ0 · · ·σn

such that

∃bs ∈ B : σ0 is a suffix of µ(bs)
∃be ∈ B : σn is a prefix of µ(be)

∀0 < i < n ∃bi ∈ B : σi = µ(bi)

∀i < n : (bi, bi+1) ∈ E

padl < offsetrel(σ[0])
padr < offsetrel(next(σ[−1])

Note that this definition does not allow us to represent
flows that end between two messages m,m′ if offset(m) =
offset(m′). However, this is not a crucial restriction since
we are generally interested in the maximum traffic generated
in any given interval. This worst case will not be achieved
by excluding some concurrent messages from the flow.
We say a flow begins on a block border if padl =

offset(σ[0]) and ends on a block border if padr = δ(be) −
offset(σ[−1]) − 1.

We now extend the measures of duration and traffic from
blocks to flows by defining the traffic generated by f as

τ(f) B
∑
m∈σ

size(m)

and the duration of f as

δ(f) B t +

(∑
0<i<n

δ(bi)

)
+ u

where t = δ(bs)−offset(σ[0])+padl and u = offset(σ[−1])+
1 + padr.

Maximum traffic The maximum traffic generated in an
interval of length n is

α(n) B max { τ(f) | f ∈ F ∧ δ(f) ≤ n }

and the flows with the maximum traffic are

flowsα(n) B arg max
δ(f)≤n

τ(f).

1 Unless it passes through no messages at all – but in this case, all such
flows have the same behaviour. They are also typically not of interest
when trying to approximate worst-case traffic.

By definition, α is an arrival curve, and it is also sub-
additive: Consider a flow f of length n + k with f ∈
flowsα(n + k). We can decompose f into an initial part
f1 of length n and a final part f2 with a duration of k. By
definition we know that τ(f1) ≤ α(n) and τ(f2) ≤ α(k).
Therefore τ(f) = α(n + k) ≤ α(n) + α(k).

DERIVING ARRIVAL CURVES FROM
MACHINE SEQUENCE SPECIFICATIONS
Pseudo-periodic Input Approximations

Given the restrictions of the DiscoDNC, we need to derive
a concave hull of the arrival curve. This concave hull is
particularly easy to calculate for ultimately pseudo-periodic
functions. Let d ∈ R+ be the period, c ∈ N0 be the increment
and T ∈ N0 be the offset of the periodic part. We call g an
ultimately pseudo-periodic function [16] if

∃T ∈ N0 : ∃(c, d) ∈ R×N0 : ∀t ≥ T, g(t + d) = g(t) + c.

Using the sub-additive property of arrival curves, we can
approximate α by observing that

α(i · k + n) ≤ α(i · k) + α(n)

≤ i · α(k) + α(n).

We pick some threshold k and define αapx to be an ulti-
mately pseudo-periodic function with initial offset 0, period
k and increment α(k) with αapx(i) = α(i) for i < k.

Ultimately Affine Concave Hull
Based on the ultimately pseudo-periodic approximation

of the arrival curve we next derive an arrival curve that is
compliant with the DiscoDNC tool [14, 15]. The DiscoDNC
demands concave arrival curves that are composed of a finite
number of linear segments. We therefore need to further
process our function. This step is based on the fact that every
curve that is larger than the given arrival curve is also a valid
arrival curve for the system (although model accuracy is
decreased by over-approximation).

The concave hull h f of a function f is a piecewise affine
and concave function, where the endpoint of each affine
segment is the initial point of the next segment and at all
points it holds that h f (i) ≥ f (i). In particular, we want a
function h f that intercepts f at as many points as possible to
reduce the over-approximation introduced by the hull. If f
is ultimately pseudo-periodic with parameters c, d,T (recall
section), we can easily calculate such a tight concave hull:
Let h1, . . . hn be the segments of the concave hull with

intervals [x0, x1), [x1, x2), . . . [xn−1,∞). By concavity we
know that slope(hi) ≥ slope(hi+1). The last affine segment
of the concave hull h f has a slope of c

d , an a y-offset of
y0 = max { f (x) − x · c

d | x < T + d } and begins at
xn−1 = min

{
arg max

{
f (x) − x · cd | x ≤ T + d

} }
.

If h f = (hi)i≤n is a tightest concave hull over f , then
hi(xi) = f (xi). From this, we develop Algorithm 1 (Con-
sider also Figure 3 for a visualization of the steps of the
algorithm).

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPL06

TUCPL06
240

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

(a) Initial step. (b) Monotonicity violated. (c) Skipping a segment. (d) Final hull.

Figure 3: Concave hull algorithm.

Algorithm 1 Concave Hull for Pseudo-Periodic Functions
1: function ConcaveHull(seg_end, min_slope) →

segment offsets
2: # Compare Figure 3a
3: seg_begin = seg_end − 1
4: if seg_begin = 0 then
5: return [0]
6: end if
7: max_slope =∞
8: # Abort when no valid segments left
9: while slope(seg_begin, seg_end) ≥ min_slope do
10: slope = slope(seg_begin, seg_end)
11: if slope ≤ max_slope then # Check interception
12: hull = ConcaveHull(seg_begin, slope)
13: if hull , “concave hull not found” then
14: # Found a valid hull, compare Figure 3d
15: return hull + [seg_begin]
16: end if
17: # Cannot have higher slope than this for the current

segment without intercepting at seg_begin
18: max_slope = slope
19: end if
20: # Consider the next segment, compare Figure 3c
21: seg_begin = seg_begin − 1
22: end while
23: # Compare Figure 3b
24: return “concave hull not found”
25: end function

PRACTICAL CONSIDERATIONS
Realistic machine command sequences for the FAIR CS

reveal that brute-forcing the calculations will cause infea-
sible computational effort. Typical values for the length of
blocks for the GSI control system are in the range of 109

nanoseconds. However there are usually only 102 to 103

messages in a block. We can therefore cache the times at
which the curve increments and the corresponding value at
these points in time.

Listing 1: Step Function
s t r u c t S t e pFun c t i o n {

s t epT imes : L i s t [long]
s t e pVa l u e s : L i s t [double]

}

This representation has some nice properties, namely for
a function of n steps we can:

1. Find the value at time t in O(log n) via binary search
over stepTimes.

2. Find the first time the function exceeds some value in
O(log n) via binary search over stepValues.

3. Find the maximum traffic over all intervals of some
fixed length in O(n log n) via self-deconvolution.

Of particular interest for optimization is Property 2: As-
sume we have some block b with a total traffic τ(b) and
a maximum prefix function maxprefix with a maximum
value of v. When calculating the time this function increases
next, we just need to check all successor blocks for the time
their maxprefix first exceeds v − τ(b).
If we additionally cache values of maxprefix that had

been calculated before, we can effectively calculate α(i) by
pre-calculating maxprefix(i + δ(b)) for each block and then
querying each blocks maxprefix for the maximum interval
of length i where the start of the interval does not exceed
δ(b).

We now extend present an algorithm to compute the max-
imum prefix in a single block that makes use of these opti-
mizations.

Theorem 1 Let s(b, t) be the number of steps in the prefix
function of block b up to and including time t. Let t be fixed
and the maximum number of steps be S = maxb∈B { s(b, t) }.
Calculating maxtraffic for all blocks up to time t has a
runtime bound of O(|B |2 · S · log S + |B | · S2 · log S).

Proof Consider a single call of maxprefix(t). This results
in at most S calls of firstTimeExceeding: each call of
firstTimeExceeding with its current maximum value as
parameter provides exactly one step to the step function.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPL06

Timing and Synchronization
TUCPL06

241

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Algorithm 2 Calculating maxprefix
1: function Block::firstTimeExceeding(traffic)→ time
2: while maxprefix.maxValue ≤ traffic do # Find the

next step of the function
3: ttr = maxprefix.maxValue − totalBlockTraffic
4: min = minnext b.firstTimeExceeding(ttr)
5: generatedTraffic = maxnext b.maxprefix(min)
6:
7: time = period + min
8: value = totalBlockTraffic + generatedTraffic
9: add step to maxprefix at time time to value

value
10: end while
11: return maxprefix.firstTimeExceeding(traffic)
12: end function
13:
14: function Block::maxprefix(time)→ traffic
15: while maxprefix.validTo is not defined up to time

do
16: firstTimeExceeding(maxprefix.maxValue)
17: end while
18: return maxprefix.valueAt(time)
19: end function

Each call of firstTimeExceeding results in up to |B | calls
of firstTimeExceeding on other blocks. Each of these may
result in another |B | calls of firstTimeExceeding. These
calls however will return immediately in log S, resulting in
a runtime of O(|B |2 · log S):
After a call of firstTimeExceeding(u) for some block

b and some traffic u, the step function of all other blocks is
calculated at least up to firstTimeExceeding(u−τ(b)). The
next call of firstTimeExceeding(u+u′) will query the other
blocks b′ at t + u′ − τ(b), which will, in turn, query other
blocks at u + u′ − τ(b) − τ(b′). Since the traffic generated
in a single step can not exceed the traffic generated in any
block, this means that u′ ≤ τ(b′) and therefore u + u′ −
τ(b) − τ(b′) ≤ u − τ(b). In other words, it falls below the
pre-calculation threshold and the call returns immediately.
Total time to calculate maxprefix(t) is therefore bounded by
O(|B |2 · S · log S): S steps, each of which can be calculated
in O(|B |2 log S)).
Now consider the calls of maxprefix(t) on the other

blocks. The maxprefix step function has already been calcu-
lated up to firstTimeExceeding(u − τ(b)) where u is the
maximum value of maxprefix for block b. For all other
blocks b′, calls of firstTimeExceeding(u−τ(b)+u′) query
the other blocks at u − τ(b) + u′ − τ(b′), which falls below
the pre-calculation threshold. This call therefore terminates
in O(|B | log S). Iterating over all blocks gives a runtime of
O(|B |2 log S), which must, in turn, be repeated for all steps
between firstTimeExceeding(u−τ(b)) and t, which cannot
be more than S. Therefore, calculating maxprefix(t) for all
other blocks also takes O(|B |2 · S · log S).

Finally, calculating maxtraffic for one block takes O(S ·
log S), so for all block this is O(|B | · S · log S). Doing this

for all steps of α from 0 to t has therefore a runtime of
O(|B | · S2 · log S).

EVALUATION
We now evaluate the feasibility of our proposed approach.

For this, we consider two dimensions: How accurate the
algorithm is, and how fast it terminates, in both cases with
respect to a given evaluation threshold. We leave dimen-
sions that are potentially of interest, for instance density of
messages, the number of blocks in the specification or the
average branching factor of blocks, for future work.
Our evaluation is based on a fictional yet representative

specification for the FAIR CS and its CRYRING component,
a heavy ion storage ring (see Figure 4 and [17]). For it, the
sequence with the highest average traffic emits B_CRY_HALT
1 message per 5 · 105 ns, and the longest block has a length
of 2.75 · 109 ns. The shown error is calculated based on the
approximated slope of the final segment and compared to
the “true” slope of the final segment (2 · 10−6).

B_CRY_INIT
2 messages, period 106

B_CRY_0
21 messages, period 2.75 · 109

B_CRY_1
19 messages, period 2.75 · 109

B_CRY_HALT
1 message, period 5 · 105

Figure 4: The CRYRING specification.

Accuracy
Table 1 and Figure 5 show that our sub-additive approxi-

mation lets the error quickly approach zero.

Table 1: Accuracy

Threshold Final Slope Error (abs.) Error (rel.)

2.75 · 102 1.45 · 10−2 1.45 · 10−2 7272.5
2.75 · 104 1.45 · 10−4 1.43 · 10−4 72.7
2.75 · 106 4 · 10−6 2 · 10−6 2.0
2.75 · 108 2.01 · 10−6 1.09 · 10−8 1.006

2.75 · 1010 2.0001 · 10−6 1 · 10−10 1.0001
Error (abs.) derived slope minus ground truth
Error (rel.) calculated slope divided by ground truth

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPL06

TUCPL06
242

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

Figure 5: Accuracy of sub-additive approximation with re-
spect to thresholds. Red line is “true” slope given by the
concave hull over α at 2 · 10−6.

However, the error will never reach zero as the sub-
additive approximation pays bursts for each multiple of the
threshold instead of only once.

Execution Time
The following tests were run on a Windows 10 computer

with a quad-core Intel i7-4710HQ CPU. The processor has a
clock speed of 2.5GHz and made use of 16GB RAM running
at 1600MHz. While the presented results are not meant to
be authoritative, they provide insight on the speed of our
algorithm. Results are shown in Table 2 and Figure 6.

Table 2: Execution Time of Sub-additive Approximation for
Different Thresholds, Average over 10 Repetitions

Threshold Mean time Standard deviation (SD)

2.75 · 102 6ms 19ms
2.75 · 104 6ms 17ms
2.75 · 106 8ms 22ms
2.75 · 108 36ms 38ms

2.75 · 1010 1.154s 537ms

The (optimized) sub-additive approximation can be com-
puted very fast, returning very accurate results within a cou-
ple of milliseconds. While the worst-case analysis of our
algorithm’s computational effort show that it might suffer
from quadratic scaling, we observed fast evaluation times
for realistic specifications for machine command sequences.
In our example, execution time increases roughly linear with
the threshold though at low terms a fixed overhead domi-
nates.

CONCLUSION
In this paper, we presented an approach to deterministi-

cally bound the traffic generated by the FAIR control system.
We developed an algorithm to convert the graph-based rep-
resentation of all attainable machine command sequences

Figure 6: Runtime of sub-additive approximation with re-
spect to thresholds.

possibly emitted during runtime as this representation entails
non-determinism. Giving a worst-case bound on the gen-
erated traffic in terms of a Deterministic Network Calculus
arrival curve, we enable worst-case analysis of the entire CS
in a timing verification step prior to system runtime. Results
of this step, namely bounds on the end-to-end delay of mes-
sage transmissions, can be compared to command deadlines
and thus help to avoid potential emergency shutdowns of the
system.

REFERENCES
[1] F. Geyer and G. Carle, “Network engineering for real-time

networks: Comparison of automotive and aeronautic indus-
tries approaches,” IEEE Communications Magazine, Feb.
2016.

[2] J. Yoo, S. Cha, and E. Jee, “A verification framework for fbd
based software in nuclear power plants,” in Proc. of the 15th
Asia-Pacific Software Engineering Conference (APSEC),
Dec. 2008.

[3] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, “Com-
putational techniques for the verification of hybrid systems,”
Proceedings of the IEEE, vol. 91, no. 7, Jul. 2003.

[4] How FAIR is being built. http://www.fair-center.eu/
construction/how-fair-is-being-built.html

[5] R. Huhmann et al., “The Fair Control System - System Ar-
chitecture and First Implementations,” in Proc. of the 14th
International Conference on Accelerator & Large Experi-
mental Physics Control Systems (ICALEPCS), Oct. 2013.

[6] P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and G.
Gaderer, “White rabbit: Sub-nanosecond timing distribution
over ethernet,” in Proc. of the International Symposium on
Precision Clock Synchronization for Measurement, Control
and Communication (ISPCS), Oct. 2009.

[7] M. Kreider, “On Time, in Style: Nanosecond Accuracy in
Network Control Systems,” PhD thesis, Glyndŵr University,
Wrexham, Wales, Aug. 2017.

[8] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet. Springer,
2001.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPL06

Timing and Synchronization
TUCPL06

243

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[9] J. Grieu, “Analyse et évaluation de techniques de commuta-
tion ethernet pour l’interconnexion des systèmes avioniques,”
PhD thesis, Institut National Polytechnique de Toulouse,
Toulouse, France, Sep. 2004.

[10] X. Jin, N. Guan, J. Wang, and P. Zeng, “Analyzing multi-
mode wireless sensor networks using the network calculus,”
Journal of Sensors, vol. 2015, Feb. 2015.

[11] S. Bondorf, P. Nikolaus, and J. Schmitt, “Quality and Cost
of Deterministic Network Calculus – Design and Evaluation
of an Accurate and Fast Analysis,” in Proc. of the ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS), Jun.
2017.

[12] S. Künzli and L. Thiele, “Generating event traces based on
arrival curves,” in Proc. of the 13th GI/ITG Conference on
Measuring, Modelling and Evaluation of Computer and Com-
munication Systems (MMB), Mar. 2006.

[13] K. Lampka, S. Bondorf, and J. Schmitt, “Achieving efficiency
without sacrificing model accuracy: Network calculus on

compact domains,” in Proc. of IEEE International Sympo-
sium on Modelling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), Sep. 2016.

[14] J. Schmitt and F. A. Zdarsky, “The DISCO Network Calcula-
tor - A Toolbox for Worst Case Analysis,” in Proc. of the 1st
ICST International Conference on Performance Evaluation
Methodologies and Tools (ValueTools), ACM, Nov. 2006.

[15] S. Bondorf and J. Schmitt, “The DiscoDNC v2 – A Com-
prehensive Tool for Deterministic Network Calculus,” in
Proc. of the 8th EAI International Conference on Perfor-
mance Evaluation Methodologies and Tools (ValueTools),
Dec. 2014.

[16] A. Bouillard and É. Thierry, “An algorithmic toolbox for
network calculus,” Discrete Event Dynamic Systems, vol. 18,
no. 1, Mar. 2008.

[17] M. Schütze,Modelling and Analysis of Timing Constraints
of an Industrial Control System, Bachelor thesis, University
of Kaiserslautern, Kaiserslautern, Germany, Oct. 2017.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPL06

TUCPL06
244

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Timing and Synchronization

