
EXPERIENCE WITH MACHINE LEARNING IN ACCELERATOR

CONTROLS
∗

K.A. Brown , S. Binello, T. D’Ottavio, P. S. Dyer, S. Nemesure, D. J. Thomas,†

Collider-Accelerator Department, BNL, Upton, NY, USA

Abstract

The repository of data for the Relativistic Heavy Ion Col-

lider and associated pre-injector accelerators consists of

well over half a petabyte of uncompressed data. Some of

this data is viewed and analyzed in the course of accelera-

tor operations. Other data has been retrospectively analyzed

offline. However, a large fraction of that data has never been

analyzed. Even data that has been analyzed may contain ad-

ditional useful information that did not come to the surface

during initial processing. We will describe in this paper our

efforts to use machine learning techniques to pull out new in-

formation from existing data. Our focus has been to look at

simple problems, such as associating basic statistics on cer-

tain data sets and doing predictive analysis on single array

data. The tools we have tested include unsupervised learn-

ing using TensorFlow™, multimode neural networks, and

hierarchical temporal memory techniques using NuPIC.

INTRODUCTION

Statistical machine learning uses automated techniques

for predictive modeling [1]. What distinguished these ap-

proaches from classical statistical methods is they are data

driven. No linear or specific structure is imposed on the

interpretation of the data. Machine learning is focused

on developing efficient algorithms to optimize a predictive

model.

In our business, we put much effort into real-time pro-

cessing of data, in order to present to operators, engineers,

and scientists results that allow them to either diagnose the

health of the system or have a signal on which to perform

some optimization process. For example, most of us moni-

tor (on some comfort display in the main control room) the

beam current or intensity in the accelerator in real time. Peo-

ple become “trained” in recognizing when these signals are

doing the wrong thing. For example, operators get to be

extremely good at making the very abstract connection of

the behavior in the beam current signal to particular fault

conditions in the accelerator.

Our job, here, is to ask whether we can use machine learn-

ing to recognize (or train, if you like) in software what a

person is able to detect visually. An advantage to such an

approach is the computer can be looking all the time, while

people tend to get distracted. Also, a computer can, pos-

sibly, react much more quickly than a person, if a learned

response is given to the algorithm.

∗ Work performed under Contract Number DE-SC0012704 with the aus-

pices of the US Department of Energy.
† kbrown@bnl.gov

We break up machine learning for accelerator controls

into two domains; recognizing anomalies (true anomalies

and outlier values) and developing learned “responses”.

One example of a learned response is to consider the use

of machine learning for correcting the beam trajectory in

a beam line. This highlights well how machine learning

uses no model but just learns the statistics of a signal and

adapts a response based on setting target statistical values

(e.g., bring a given signal to within n sigma of a target value

of x by adjusting parameter a).

RELATED WORK

Machine learning, as a field, has grown out of advances in

Artificial Intelligence research, particularly in the areas of

pattern recognition and computational learning theory. The

term, coined by Arthur Samual, IBM, goes back to 1959,

where the idea was to give “computers the ability to learn

without being explicitly programmed” [2]. The Machine

Learning journal has been in publication since 1986. So

there is a long and interesting history to this field.

For particle accelerators, the use of Machine Learning

techniques goes back as far as 1987, when T. Higo, H.

Shoaee, and J. E. Spencer, SLAC, discussed applications

of artificial intelligence to problems in accelerators [3]. In

1989, J. E. Spencer, SLAC, discussed using Neural Net-

works techniques in accelerator controls [4]. Two years

later, D. Nguyen, M. Lee, R. Sass, and H. Shoaee, SLAC,

used Neural Network techniques to develop a dynamic feed-

back system for beam line controls [5].

More recently, A. L. Edelen, et al., have been experiment-

ing with the use of machine learning techniques for RF gun

temperature control [6]. At the SwissFEL, A. Rezaeizadeh,

T. Schilcher, and R. Smith, PSI, used a model-free iterative

learning approach to produce flat-topped RF pulses. The

method iteratively updated the input pulse shape to gener-

ate the desired output pulse shapes in the RF system [7].

At Los Alamos, Sung-il Kwon, et al., used iterative learn-

ing techniques for modeling the SNS SRF cavity feedback

controls [8].

At TRIUMF, M. Laverty and K. Fong used an iterative

learning feedforward LLRF controller to improve the beam

stability in the e-linac [9].

The use of machine learning for orbit control goes back to

the work at SLAC, but has been investigated by many others

over the years. In 2012, E. Meier, Australian Synchrotron,

studied the use of neural networks for orbit correction [10].

Going back further in time, in 1994 E. Bozoki and A. Fried-

man, BNL, studied the use of neural networks for orbit con-

trol in the National Synchrotron Light Source [11].

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA03

TUCPA03
258

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics

A number of other examples showing how people have

made use of Machine Learning techniques can be found in

the various conference proceedings on the JACoW site [12].

A few we found are listed here [13–19]

A LITTLE ON THEORY

The probability that the next observation in some data

will be a certain value, given some set of previously ob-

served data, can be derived from our knowledge of the data

up to this time and how it impacts the probability of a given

observation. This may sound like a circular definition, but

it is simply a statement on how we make predictions based

on what we already know. This is better known as Bayes’

theorem and can be written as,

P(H |E) =
P(E |H)

P(E)
· P(H) (1)

With this notation, you read (H|E) as a conditional. So

P(H|E) is the probability of H given E and P(E |H)/P(E)

is a way of saying the impact of E on the probability of H.

Why are we starting out with Bayes’ theorem?

There are basically two ways to make predictions based

on prior knowledge. One is known as the Frequentists ap-

proach, which is what we know as a historical way of analyz-

ing data and focuses on the frequency or proportion of the

data. The basic idea here is that any two repetitions of the

same experiment should produce statistically independent

results. This is known as statistical inference. Bayesian in-

ference, the second approach, uses Bayes’ theorem to up-

date the probability as more data is collected.

In the introduction we introduced Statistical machine

learning, which, as we stated, is a technique for predictive

modeling. Here we are discussing pure Machine Learning,

which is really about algorithms that can learn from data.

Machine learning, some parts of pattern recognition, and

some aspects of neurocomputing are all subtopics of artifi-

cial intelligence. Without going too deep in this direction,

the basic point here is, machine learning uses analysis of

prior data to learn the characteristics of that data and en-

able predictions to be made about future data. Artificial

intelligence takes that data and through some algorithm de-

vises a basis for taking a decision. Now pattern recognition

and neurocomputing are also subtopics of machine learning.

They also use prior data to make predictions about future

data.

Statistical Machine Learning

Let’s take some vector of values, called a record, and

classify that record with how similar records are classified.

To do this we will use ensemble learning and form a de-

cision tree. In ensemble learning we use many models to

form a prediction. What we are after is to form a predic-

tive model and we will focus on the statistics in the data to

look at the underlying structure of the model. The simplest

method to do this is called K-Nearest neighbors. Neighbors

are records that have similar predictor values. A predictor

value is basically a feature of the record (e.g., the ratio of

two values or an average of some set of values).

A simple example might be to take a series of accelerator

cycles where the record contains the beam current, the mea-

sured vertical tune, and whether the beam was successfully

extracted or not (e.g., beam was lost before extraction). We

can create predictor values from just the beam current and

the vertical tune. We can predict whether the next cycle will

succeed based on the new beam current and tune value, by

comparing those values to a handful of similar values from

the past (the nearest neighbors). Our prediction can be im-

proved if we collect more data and average over records (i.e.,

binning the data). Since we likely want to achieve the high-

est beam current, we would look for nearest neighbors at

high currents that are more likely to succeed. The process

is not much different from what an operator would do to

keep the operation of the machine stable but at the highest

level of performance.

Neural Nets

The traditional way of viewing a neural net is as an inter-

connected group of artificial neurons in which each neuron

receives weighted values from other neurons and an activa-

tion function defines when the neuron ’fires’. The weights

are learned during a training period. Training periods can

be supervised or unsupervised (self-learning).

Consider, for example, a simple feedforward network. A

layer of input neurons receive one input signal per neuron.

All other layers of neurons can receive an arbitrary number

of input signals, which are outputs of other neurons. For

each neuron, the inputs are weighted. How the neurons

are interconnected defines the topology of the network and

there can be hidden layers or signals can be cascaded. Typ-

ically, there is a desired output of the network (e.g., a beam

position at a given point is 0). The training processes learn

the weights that best achieve the desired result. However,

there can be many parameters to optimize, depending on

the network model.

Modern neural networks are used to model complex re-

lationships in data, for example in pattern recognition or

to untangle the statistics in overlapping probability distribu-

tions. They are naturally good at modeling data that has

non-linear statistical properties. We usually represent neu-

ral networks as directed graphs, but the graph models can

be highly complex and contain non-linearity’s. There are

many kinds of networks; Bayesian, Markov random field,

bipartite (e.g., restricted Boltzmann machine), chain graphs

(e.g., a Markov or Bayesian chain), and so on. The tradi-

tional feedforward neural network is a form of a Bayesian

network, which is a directed acyclic graph.

The beam current and vertical tune example from the pre-

vious section is an example that can be described with a

Bayesian network. Given values from the beam current and

the tune we can either have or not have successful extraction.

The joint probability function is;

Pj(S, B,T) = P(S |B,T)P(B|T)P(T), (2)

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA03

Data Analytics
TUCPA03

259

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

where S = Successful extraction, B represents the beam cur-

rent safe level, and T is the tune safe level. Statistical learn-

ing could be used to determine these values. A safe level

could be thought of as a probability for that variable to be

in a safe or unsafe range. We can now ask what the prob-

ability will be that we have successful extraction, using a

conditional probability function. As a neural network we

want to have B and T to be learned such that S is always

successful, while maximizing, if you will, both B and T.

TensorFlow™

TensorFlow™, an open-source library developed by

Google [20], is a framework for creating deep learning

models. Deep learning models are basically multi-layered

neural networks. In TensorFlow™a computational graph is

built, which is basically a network of computational nodes.

The difference between what has been described so far,

machine learning with neural networks, and what is done

in more general, with deep learning tools, is to break up the

learning into a process. In a TensorFlow ™model, a neu-

ral network model is constructed by the user, which then

gets compiled into a dataflow graph. There are many neural

network models to choose from; feedforward models such

as autoencoders, probabilistic, or time delay, and recurrent

neural network models, such as fully recurrent, long short-

term memory (LSTM), hierarchical, or stochastic. For the

work we have done, we have focused on the use of (unsu-

pervised) autoencoders and LSTM, both of which map a

set of input signals to a set of output signals with the intent

to reconstruct both sets of signals in such a way that [Input

≈ Output]. LSTM has the added ability to learn context in

time series data through the use of remember/forget gates.

In the neural network discussion, we described how the

training process can be supervised or unsupervised. In su-

pervised learning, we want to learn weights such that we

construct a map from some set of inputs to a desired set of

outputs. In unsupervised learning, we are basically looking

for hidden patterns in the data (to find anomalies, for exam-

ple). There is also reinforcement learning, in which some

kind of feedback is provided to direct the learning (e.g., self-

driving vehicles obtain constant feedback as to what is a

correct or incorrect response.) For deep learning, tasks are

often categorized (e.g., is an image a car or a cat? If those

are the only two choices, does a dog get categorized as a

car?) So in classification there is a model for the learner

to follow. Supervised learning often uses regression to con-

verge on the best map representation.

Hierarchical Temporal Memory

Hierarchical temporal memory (HTM) is an example of

a neurocomputing approach to machine learning. The ap-

proach is described in the book, “On Intelligence”, by Jeff

Hawkins and Sandra Blakeslee [21]. Basically, they built a

library that models the way the human cortex learns and by

using this library methods for machine learning can be de-

veloped. To be clear, HTM is not a deep learning or machine

learning technology. It is a machine intelligence framework,

based on models of how animal brains function. This li-

brary is an open source project and there are various imple-

mentations (C++, Python, Java, Clojure) [22]. The develop-

ers of this system are mostly focused on researching ways

to model the brain. The use of these libraries for things like

machine learning is a spinoff of their research.

Deep Learning

For deep learning there are many tools. TensorFlow™is

currently one of the most popular of these tools, especially

since it is built to run on multiprocessor and GPU systems.

Since machine learning is being used in so many areas, in-

cluding speech recognition, image recognition, natural lan-

guage processing, web searching, world wide web data min-

ing, etc., many methods have been developed to turn a sim-

ple neural network into a hierarchical learning machine. In

a hierarchical system there are many hidden layers and sys-

tems can combine supervised, unsupervised, and reinforce-

ment learning into a single tool.

We will introduce just two deep learning tools, Theano

and Keras. In our investigations we have used Theano and

Keras, but we are still learning how these tools may or may

not be useful in processing accelerator data.

Theano [23] is a Python library for defining and evaluat-

ing computations on multi-dimensional arrays. It was de-

signed to support the rapid development of machine learn-

ing algorithms, with a focus on processing large amounts of

data.

Keras [24] is a Python deep learning library meant to

be easy to use. It is also designed to work on top of Ten-

sorFlow™or Theano, with a focus on enabling exploration

without having to be an expert in machine learning.

TENSORFLOW™

TensorFlow™is, at its core, written in a combina-

tion of highly optimized C++ and CUDA as a library

known as Eigen [25], as well as NVIDIA™’s cuDNN

[26], an optimized DNN (deep neural network) library for

NVIDIA™GPU’s. Python is used by the user for neural

network model expression, which TensorFlow™compiles

to a dataflow graph in C++ and CUDA. It should be noted

that TensorFlow™has out of the box neural network struc-

tures, but combining those into a usable model of multiple

layers along with training and optimization algorithms is

done by hand. If the user is willing to sacrifice some de-

gree of versatility and learning ability/speed, there are third

party libraries that can be used on top of TensorFlow™to

construct models for you. Two of these being Theano and

Keras. Both support TensorFlow™’s ability to take advan-

tage of NVIDIA™GPU’s.

Figure 1 shows the machine learning processing data flow

model using TensorFlow™modules. The main modules are

neuralframe.py, generic.py, analysis.py, and procdata.py.

Userscript.py is how an application would process using

these modules.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA03

TUCPA03
260

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics

Figure 1: TensorFlow™based ML processing for C-AD data.

Neuralframe.py contains functions that represent and are

used to construct and train specific types of networks. Neu-

ralframe.py replaces a set of predefined neural networks.

In this specific example a call is being made to cae(), a

constructor and trainer for a Contractive Autoencoder [27].

This function takes arguments from userscript.py. A data

file is read and converted to a numpy ndarray with the func-

tion np.loadtxt(). Preprocessing is then done inside of cae().

This may include altering the shape of the ndarray and

other needed corrections. While still inside cae(), multiple

calls are made to generic.py to build and train the network.

Anomaly detection is also done inside cae() with a call to

analysis.py. cae() returns anomaly results along with the

fit-subtracted data to userscript.py so that the user can make

use of the results.

Generic.py contains functions for constructing networks,

choosing cost functions and optimization routines, and

training the network. The network constructor nfBuild() is

very generic as there are no predefined networks. nfBuild()

is responsible for feeding TensorFlow™information regard-

ing the shape of the network along with information about

what type of distribution the weights/bias’ will be initialized

with and their range. nfCost() and nfOpti() contain routines

for constructing different types of cost and optimization

functions respectively. nfTrain is used to initialize all Ten-

sorFlow™variables, start the actual TensorFlow™session,

and train the neural network. The type of cost function be-

ing used is the Mean Squared Error [28]. The Frobenius

norm [27] is added to this term using nfReg(), which is what

defines this autoencoder as contractive.

Analysis.py contains routines for data analysis. An im-

portant function in this script, zoutlier(), is used by cae()

in neuralframe.py. zoutlier(), when given fit-subtracted

data along with arguments for tail number and significant

z-score, will detect anomalies in a data set using z-score=(x-

mean)/(standard deviation). A common value that indicates

a significant deviation from a normal distribution is a z-

score of 3.0.

Figures 2,3, and 4 show results of finding anomalies us-

ing this TensorFlow™approach. In the first case we see how

the system is able to detect two quench events. In the second

case it is used to detect anomalous server activity.

NUPIC

The Numenta Platform for Intelligent Computing

(NuPIC) is an implementation of Hierarchical Temporal

Memory (HTM), a memory-prediction framework with

the goal of creating general intelligence by mimicking the

learning processes of the human neocortex. It employs

Sparse Distributed Representations (SDRs) along with a

network of Spatial Pooler and Temporal Memory regions

to learn patterns in temporal data. One typical use-case

for an HTM system is anomaly detection; HTM will learn

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA03

Data Analytics
TUCPA03

261

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 2: RHIC Yellow Ring Main Dipole Current, with

two quench events.

Figure 3: TensorFlow™anomalies identifying the quench

events.

what is “normal” for a signal and flag significant deviations

as anomalies.

The HTM paradigm postulates that the SDR is the natu-

ral data type of the human brain. SDRs can be visualized as

sparse arrays filled with 1’s and 0’s, wherein less than 20%

of the cells are 1’s. SDRs provide a huge storage capacity

for encoding input data, as well as a large tolerance for noise.

In a simple HTM network, the input space contains input

data encoded as binary arrays, which is connected to a Spa-

tial Pooler. The Spatial Pooler is a stack of SDRs, in which

each “column” of cells connects to a subsample of cells in

the input space. These connections, or synapses, are mod-

ified during the learning process to pool spatial patterns in

the input. Each column will learn to be “active” when it

detects its specific pooled pattern in the input.

The Temporal Memory region learns sequences of the ac-

tive columns in the Spatial Pooler. While the Spatial Pooler

learns to identify patterns, Temporal Memory learns the se-

quential contexts of those patterns. For example, suppose

the Spatial Pooler has learned the patterns A-D, and the in-

put signal varies between one of two sequences: ABCD or

Figure 4: TensorFlow™Analysis of server activity over

nine months. Almost every transient dip gets flagged as an

anomaly.

DBCA. Temporal Memory learns that C can occur in two

different contexts and subsequently what pattern should fol-

low C in each context. This is achieved by using the individ-

ual cells of the Spatial Pooler’s SDR stack to represent the

contexts. One combination of cells across specific columns

will represent C in the AB context while a different com-

bination across the same columns will represent C in the

DB context. A specific set of active columns represents C,

but the specific active cells in those columns determines the

context.

While Spatial Pooling relies on proximal synapses from

cells in lower levels of the network hierarchy (e.g. in-

put/sensor regions), Temporal Memory relies on distal

synapses from cells in the same hierarchical level. During

learning, these synapses are modified to strongly connect

context cells to their sequential successors. In the example

mentioned, the cells representing B in the Spatial Pooler

will create strong distal synapses to the cells representing

C. Thus, when B occurs those B cells will pre-activate C

cells, in effect predicting that C should occur next.

Anomaly detection compares the predicted cells against

the next set of active cells. The non-overlap, or number of

predicted cells that do not become active on the next step,

is used to calculate an anomaly score (little overlap means

poor prediction and implies anomalous behavior). These

anomaly scores are collected over time to build a distribu-

tion. Once a sufficient number are collected, new anomaly

scores are compared against the distribution; if the score is

well outside the norm, the observation is said to have a high

anomaly likelihood and flagged as anomalous (the standard

threshold is >0.9999 on a scale of 0 to 1). This process of

anomaly detection implies that subsequent similar anoma-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA03

TUCPA03
262

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics

lous events will not be flagged as anomalies because the

incorporation of the anomaly scores into the distribution

will eventually define a new norm (i.e. if you see the same

kind of anomaly multiple times, by definition it becomes

normal).

Getting started with NuPIC can be an involved process,

but Numenta provides three different ways of using their

code: the Online Prediction Framework (OPF), the Network

API, and the source code. The OPF is the easiest to use but

the least customizable, while the source code is the oppo-

site. The Network API provides a middle ground of cus-

tomizability and ease of use. We chose to work with the

OPF for our exploration.

To use the OPF, one has to specify many, many different

parameters to setup the different regions (e.g. number of

cells per column, the rate at which synapses grow and die,

etc). Fortunately, Numenta provides a straightforward tool

that “swarms” the parameter space and determines what

parameters are best for modeling the input data. One can

choose swarms of different sizes, the idea being that larger

swarms will find better parameters than smaller swarms. In

our experience, we found no huge improvements between

the two. Additionally, since we were specifically interested

in anomaly detection, we used a set of model parameters

provided by NuPIC that was reported to work well detect-

ing temporal anomalies from streams of scalar data.

To explore how HTM performs, we applied it to two

cases: learning an electromagnet’s current during a hystere-

sis ramp, and learning a data logger server’s activity over

time. In both cases, we were most interested in evaluating

HTM’s ability to predict anomalies.

0
1000
2000
3000
4000
5000

Cu
rre

nt
 (A

)

Model Results After 1 Pass of Data

−40
−20

0
20
40

Ac
tu

al
 -
Pr
ed
ict
ed

0 200 400 600 800 1000 1200
Time (s)

0.9999

1.0

An
om

al
y

Lik
el
ih
oo
d

Figure 5: After one pass on magnet data, the prediction lags

the actual value.

Using the OPF, we trained a network to learn how a elec-

tromagnet’s current behaves during a hysteresis ramp. The

input data included seconds elapsed from the beginning of

the ramp and the magnet’s current at that time. Because

the data set is so small, we ran multiple passes of the data

through the network. At the end of each pass, we reset

the Temporal Memory sequence states to prevent the sys-

tem learning that hysteresis ramps are followed by hystere-

sis ramps. As seen in Fig. 5, after one pass of the data the

prediction is poor (the prediction lags the actual value). Af-

ter 60 passes of the data (Fig. 6), the prediction is much

better (the prediction now generally leads the actual value).

In addition, no anomalies are detected using the standard

threshold of 0.9999, as expected.

0
1000
2000
3000
4000
5000

Cu
rre

nt
 (A

)

Model Results After 60 Passes of Data

−40
−20

0
20
40

Ac
tu

al
 -
Pr
ed
ict
ed

0 200 400 600 800 1000 1200
Time (s)

0.9999

1.0

An
om

al
y

Lik
el
ih
oo
d

Figure 6: After 60 passes of the data, the prediction now

leads the actual value.

To simulate an anomaly, we presented the network with a

hysteresis ramp during which the magnet quenches, causing

an interlock which drops the current to zero (aka a QLI).

Figure 7 shows this registered as an anomaly. Post-anomaly,

the prediction quickly began lagging the actual current as

the system began learning the new norm. Interestingly, even

though there were several (10) significant prediction spikes,

the system did not report these as anomalous.

In our second application, we trained a network on a

data logger server’s activity over the course of nine months.

Here we were not concerned with prediction; knowing what

the idle time of a logger will be is not useful for us. What

is useful is knowing if the server is experiencing anoma-

lous behavior. To get this information, we trained a net-

work using model parameters that NuPIC provides for gen-

eral anomaly detection on streams of scalar data. Unlike the

magnet current application, we did not run the data multiple

times through the network.

Figure 8 shows that the network did very well flagging

as anomalies almost every transient dip in the signal. Note

that the decrease in the DC component just prior to Decem-

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA03

Data Analytics
TUCPA03

263

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

0
1000
2000
3000
4000
5000

Cu
rre

nt
 (A

)
Model Results on Simulated QLI

−400

−200

0

200

Ac
tu

al
 -
Pr
ed
ict
ed

0 200 400 600 800 1000 1200
Time (s)

0.9999

1.0

An
om
al
y

Lik
el
ih
oo
d

Figure 7: Simulated anomaly, magnet ramp with a quench.

Figure 8: Analysis of server activity over nine months. Al-

most every transient dip gets flagged as an anomaly.

ber was not detected, nor was the increase just after July.

These changes may be simply too subtle for the model to de-

tect, and different model parameters may yield better detec-

tion. Regardless, this performance is satisfactory as these

changes are not of the type needing to be addressed.

Overall, the NuPIC implementation is fairly easy to use

and produces acceptable results using pre-packaged models

with minimal adjustments. More investigation is needed to

see if similar performance can be achieved with other sig-

nals in the accelerator physics domain (e.g. orbit position

evolution, emittance growth).

FUTURE WORK

Our main focus remains on exploring how we can use

machine learning techniques with different kinds of accel-

erator data sets. However, we are discussing tools that can

be built for operations and for the control systems. For oper-

ations, we believe these techniques can be used to improve

data mining and may be useful in building early warning

systems. There is still more research needed on the practi-

cality of such systems.

REFERENCES

[1] P. Bruce and A. Bruce, Practical Statistics for Data Scien-

tists, Sebastopol, CA, USA, O’Reilly Media, Inc., 2017

[2] A. Munoz, https://www.cims.nyu.edu/~munoz/

files/ml_optimization.pdf

[3] T. Higo, H. Shoaee, and J. E. Spencer, in Proc. PAC’87,

pp.701-703

[4] J. E. Spencer, in Proc. PAC’89, pp.1642-1644

[5] D. Nguyen, M. Lee, R. Sass, H. Shoaee, in Proc. PAC’91,

pp. 1437-1439

[6] A. L. Edelen, et al., in Proc. IPAC’15, MOPWI028

[7] A. Rezaeizadeh, T. Schilcher, and R. Smith, in Proc.

IPAC’15, MOPTY060

[8] S. Kwon, et al., in Proc. LINAC’00, TUC13

[9] M. Laverty and K. Fong, in Proc. LINAC’16, TUPLR009

[10] E. Meier, Y. .E. Tan, and G. S. LeBlanc, in Proc. IPAC’12,

WEPPP057

[11] E. Bozoki and A. Friedman, in Proc. EPAC’94, pp.1589-

1591

[12] JACoW, http://www.jacow.org

[13] L. M. Kegelmeyer, et al., in Proc. ICALEPCS’13, THMIB04

[14] R. Flora, et al., in Proc. PAC’95, pp.2172-2174

[15] E. Meier, et al., in Proc. PAC’09, TU5RFP050

[16] Y. Kijima, et al., in Proc. EPAC’92, pp.1155-1157

[17] A. Gokhale, A. Sharma, and B. P. Dubey, in Proc. APAC’07,

THPMA073

[18] D. Schirmer, et al., in Proc. EPAC’06, WEPCH013

[19] Y. B. Kong, et al., in Proc. Cyclotrons’16, TUP19

[20] TensorFlow™, https://www.tensorflow.org

[21] J. Hawkins and S. Blakeslee, On Intelligence, New York, NY,

USA, Times Books, 2007

[22] Numenta.org, https://numenta.org

[23] Theano, http://deeplearning.net/software/

theano/

[24] Keras, https://keras.io

[25] Eigen3, http://eigen.tuxfamily.org/

[26] NVIDIA™cuDNN, https://developer.nvidia.com/

cudnn

[27] S. Rifai, et al., in Proc. 28th International Conference on

Machine Learning, Bellevue, WA, USA, 2011

[28] MSE, https://en.wikipedia.org/wiki/Mean_

squared_error

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUCPA03

TUCPA03
264

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics

