
STREAMLINING THE TARGET FABRICATION REQUEST

AT THE NATIONAL IGNITION FACILITY (NIF)

C. Manin, E. Bond, A. Casey, R. Clark, G. Norman

Lawrence Livermore National Laboratory, Livermore, CA 94550 USA

Abstract
The NIF Shot Data Systems (SDS) team developed the

Target Request Tool (TRT) Web application for facilitating
the management of target requests from creation to ap-
proval. TRT provides a simple-to-use and user-friendly in-
terface that allows the user to create, edit, submit and with-
draw requests. The underlying design uses the latest Web
technologies such as Node.js, Express, jQuery and Java-
Script. The overall software architecture and functionality
will be presented in this paper.

INTRODUCTION

National Ignition Facility (NIF) targets are complex en-
gineering marvels in tiny packages. Creating them requires
interplay among target designers, materials scientists, and
precision engineers. The laser drives a target capsule in-
ward at nearly a million miles an hour. Because the targets
are subjected to extreme temperatures (greater than those
in the Sun) and pressures (similar to those found in the core
of Jupiter) during experiments, the targets must be de-
signed, fabricated, and assembled with extreme precision
[1].

The target production lifecycle begins with submission
of a formal target request. Experimentalists and project en-
gineers create the target feature definition based on dozens
of existing and/or new parameters determined by the phys-
ics requirements and the type of shot. When the shot calls
for an existing target, a previous target fabrication request
can be duplicated. However, when it calls for a new type of
target, a new request must be created. And in those cases,
supporting documentation must be provided describing the
custom parts that will be needed in the target build.

Before the commissioning of this project, experimental-
ists, project engineers and target fabrication team members
(“users”) first utilized a tool developed in Apex (Oracle Ap-
plication Express). This application was developed as part
of an existing tool suite called Production Optics Reporting
and Tracking (PORT). The PORT-based target request tool
had three major limitations: underlying data architecture
precluded future automation in target order processing,
data was usually duplicated, and page loading times were
very slow.

Given the above limitations of the PORT-based tool, and
with an estimated 500 targets needed to be produced each
year, it became clear that users urgently needed a new tool.
The decision was made to develop a completely new appli-
cation versus modifying the existing one.

APPLICATION REQUIREMENTS

A brief description of the core requirements for the TRT
is provided below:

1. Allow the requester to link the target request with an

experimental planning ID called Facility and Laser In-

tegrated Planning (FLIP) ID. This feature is critical

since every target that is built must be destined for use

on an experiment.

2. Display shot planning data. These data include

metadata about the experimental team, diagnostic in-

strumentation, and target fielding parameters.
3. Allow the requester to select target features from a

menu. Feature selection can either be started from a

blank template or with a pre-populated set of features

that the requester chooses.

4. Allow the requester to enter custom target features.

Allow the user to select ‘Other’ from the options and
enter a comment to describe the customized feature.

5. Provide the ability to upload attachments.
6. Provide target request status. Inform the user on the

status of the request and drive when specific panels of

the application can be edited.

7. Implement roles and permissions. Enable or disable

UI capabilities (e.g., changing a field, modifying tar-

get request (TR) status) given the user role.

8. Provide target orders search capability (with filters).

Provide a list of all orders and ability to filter by cer-

tain parameters, e.g., TR number, status, requester,

etc.

CHOICE OF TECHNOLOGY

The needs from the Target Fabrication organization re-
sulted in a schedule that allowed for only four months of
development time. This limited development time was a
key factor when selecting the technologies for this project.
We decided to work with modern Web technologies that
were familiar to the team and that would allow for reuse of
software from other SDS tools.

Node.js

We chose Node.js for the back-end because it is fast to
implement, is modern technology, and is supported by a
large community of developers. It also pairs well with Web
technologies we currently use and allows us to seamlessly
connect to existing databases. Node.js is an open-source,
cross-platform JavaScript run-time environment for exe-
cuting JavaScript code server-side [2].

It has the following characteristics:
• Uses V8 engine by Google.
• Is a good fit for real-time applications.
• Is suitable for non-CPU-intensive operations.
• Provides an effective single codebase with JavaScript

in server and client, making it easy to send and synchronize
data between these two points.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL04

TUBPL04
176

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

• Provides access to an array of open-source code
through its package manager (npm).

Express

This technology was an obvious choice because it is con-
sidered the de facto framework for Node.js applications. It
is a minimal and flexible Node.js web application frame-
work [3] written in JavaScript. Also, it is free and open-
source software.

It has the following characteristics:
• Helps manage everything, from routes to handling re-

quests, views and errors.
• Provides a thin layer of fundamental Web application

features without obscuring Node.js features.
• Has a myriad of HTTP utility methods and middleware

that have access to the request and response objects.
• Has multiple methods for querying the request and

constructing the result.

JavaScript and Kendo UI
As JavaScript was selected for the back-end, JavaScript

was also chosen for the front-end. To complement JavaS-
cript, we selected Kendo UI for the user interface. Kendo
UI is a commercial off-the-shelf product that provides more
than 70 customizable UI components. We chose this tech-
nology because it shortened development time, provided a
nice look-and-feel to the user interface, and was already
being used by other SDS applications. Some of the Kendo
UI components used were grids (with filters, sorting, page
count, and search), buttons, dropdown menus, and date text
fields with calendar selector, among others.

Docker

This technology provided rapid deployment to all envi-
ronments (development, QA, and production) and image
portability (the same image could be deployed to all envi-
ronments). It also gave us the option to roll back a release
if needed without having to run a new code build. In addi-
tion, we could have multiple containers from different ap-
plications running on the same machine, allowing us to
have multiple tools running in the same server machine.

ARCHITECTURE

The TRT architecture is composed of three main pieces
(see Fig. 1).

Back-end

The back-end was built using Node.js and Express. We

used the Node.js-required file “package.json” for listing
application dependencies and scripts for start, build, and

clean.

The basic routing was done by creating an instance of

Express (var app = express()) and using the following

structure: app.http-request-method(path, handler). Indi-

vidual pages were given their own path, i.e.: ‘/TRT/ view-

all-orders’ for displaying all TR orders.

The Web server behavior and URL configurations were

done with the help of a few Node.js and Express middle-

ware modules: ‘body-parser’ for handling JSON, Raw,
Text and URL encoded form data, and ‘express.static’ for
serving static files such as images and third-party libraries.

The templating language we used for the view engine

was Embedded JavaScript (EJS). It is very easy to use,

complies with the Express view system, and allows us to

have nested views. At runtime, the template engine re-

places variables in a template file with actual values, and

transforms the template into an HTML file sent to the client

[4].

The handling of data was done with routes/web services

by creating a router object (var router = express.Router())

and adding middleware and HTTP method routes in the

form of: router.get(path, [callback, ...] callback) for pull-

ing data, and router.post(path, [callback, ...] callback) for

inserting data. If the response is successful, the resulting

data are sent to the front-end as a JSON object. Otherwise,

errors are handled and logged.

Database

Data managed by TRT are stored in an Oracle database.

The schema used for the PORT-based application had to be

refactored to avoid data duplication and take advantage of

the current target fabrication process. Communication of

the back-end with the database was done with

“node-oracledb” and “orawrap.” The former creates the
connection to the database and the latter creates a listening

pool on the provided port. When querying data, orawrap

methods take an SQL command and parameter value(s) (if

any) to generate the results. This is done using the execute()

method embedded in the body of the router methods

(shown above).

Front-end

The front-end was developed with a model-view-con-

troller pattern using JavaScript, jQuery, Kendo UI, Boot-

strap, HTML, and CSS. This pattern was selected to pro-

vide a clear separation between view and logic, to easily

subdivide the UI into multiple sections and panels, and to

provide flexibility to divide the work among developers.

This section separation was made according to the type of

data displayed. The result is an interactive UI with panels

that appear from left to right building the sections gradually

after the user’s selection.
The view is mainly composed by a mix of HTML items

(“div”, “table” and “list”). The model is created from a set
of mapping files for each of the UI sections where the

HTML elements in the view are mapped to fields in the

database (HTML ID to database column). The controller

handles field updates, registers event handlers, loads and

injects templates, and renders panels.

The most basic view (the first panel on the left is dis-

played) happens when a new TR is created. From there,

there is a minimum amount of menu options the user must

select to save the TR. This initial state is the “Draft” state,

which means that the TR is still in progress and the user

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL04

User Interfaces and User eXperience (UX)
TUBPL04

177

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

can close the TR and open it later to continue working be-

fore submitting it. Also, only the creator and a member of

the experimental team have the required permissions to edit

the TR. All permissions are handled by the UI using the

role information obtained from the back-end and logic ap-

plied to each panel.

The full UI view is composed of the following sections:

Shot Pairing, Shot Planner Data, Target Menu, and Target

Status (see Fig. 2). The resulting application is a website

that runs in Chrome and Firefox.

Figure 1: Architecture overview.

BUILD AND DEPLOYMENT

We used Docker for deploying TRT to the Development,
QA and Production environments. To facilitate this, we
used Git and Atlassian tools (Bitbucket, Bamboo and Jira)
for full build and deployment integration.

Bamboo allowed for predefining the build and deploy-
ment plans, so that once a build succeeds, it is ready to cre-
ate a Docker image for deployment to a temporary ma-
chine. In this machine, the Docker image is saved to a tar
file with a single-line command and retrievable from all
three environments. From a particular environment, a script
is run to create and start the Docker container derived from
the previous image. This gives the flexibility to deploy a
container to one machine at a time and run different re-
leases in all three if needed. Docker also provides the ben-
efits of being able to easily revert to older versions, stop/de-
lete containers, and share the same server machines with
other applications.

CURRENT STATUS AND FUTURE
WORK

TRT is currently used by more than 50 users on a regular
basis. Older TRs have been ported and are accessible
through TRT. It is hosted in the internal NIF site together

with other applications. Launching the application is done
by clicking the “Target Orders (TRT)” link under the “Tar-
gets & Orders” menu. It is actively maintained and sup-
ported by the SDS team. Since its first release, a few addi-
tions have been made, such as automatic generation of TRs
when a new experiment is created and automatic logging
of user actions that affect the state of the TR.

Some work will be needed to modify the current back-
end code that uses orawrap. At the time of writing, the
orawrap library is no longer being maintained. It has been
added to the core Oracle database driver (node-oracledb).

CONCLUSION

We have developed a software tool that supports a more
streamlined target fabrication process. The tool provides
faster loading time, great user interaction, and data integra-
tion. The use of modern technologies allowed the software
team to meet the overall project goals primarily within the
development time allocated.

ACKNOWLEDGEMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. LLNL-
CONF-739192.

REFERENCES

[1] NIF Target Fabrication, https://lasers.llnl.gov/about/how-
nif-works/seven-wonders/target-fabrication

[2] Node.js Wiki, https://en.wikipedia.org/wiki/Node.js
[3] Express Wiki, https://en.wikipedia.org/wiki/Express.js
[4] Express template guide, http://expressjs.com/en/guide/us-

ing-template-engines.html

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL04

TUBPL04
178

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces and User eXperience (UX)

Figure 2: An approved TR is shown. (a)Top menu with navigation links, user information and log-out button, TR search

field, and action buttons. The main sections are: (b)Shot Pairing, (c)Shot Planner Data, (d)Target Menu, and (e)Target

Status.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain JACoW Publishing
ISBN: 978-3-95450-193-9 doi:10.18429/JACoW-ICALEPCS2017-TUBPL04

User Interfaces and User eXperience (UX)
TUBPL04

179

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

17
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

