16th Int. Conf. on Accelerator and Large Experimental Control Systems

5 ISBN: 978-3-95450-193-9

Abstract

- The NIF Shot Data Systems (SDS) team developed the
~ Target Request Tool (TRT) Web application for facilitating
%the management of target requests from creation to ap-
£ proval. TRT provides a simple-to-use and user-friendly in-
< terface that allows the user to create, edit, submit and with-
S draw requests. The underlying design uses the latest Web
‘E technologies such as Node.js, Express, jQuery and Java-
£ Script. The overall software architecture and functionality
2 will be presented in this paper.

INTRODUCTION

National Ignition Facility (NIF) targets are complex en-
gineering marvels in tiny packages. Creating them requires
S interplay among target designers, materials scientists, and
k9 precision engineers. The laser drives a target capsule in-
£ ward at nearly a million miles an hour. Because the targets
.2z are subjected to extreme temperatures (greater than those
& in the Sun) and pressures (similar to those found in the core
of Jupiter) during experiments, the targets must be de-
signed, fabricated, and assembled with extreme precision
[1].

The target production lifecycle begins with submission
2z of a formal target request. Experimentalists and project en-
< gineers create the target feature definition based on dozens
& of existing and/or new parameters determined by the phys-
& ics requirements and the type of shot. When the shot calls
© for an existing target, a previous target fabrication request
§ can be duplicated. However, when it calls for a new type of
8 target, a new request must be created. And in those cases,
o supporting documentation must be provided describing the
& custom parts that will be needed in the target build.

M Before the commissioning of this project, experimental-
S ists, project engineers and target fabrication team members
£ (“users”) first utilized a tool developed in Apex (Oracle Ap-
%5 plication Express). This application was developed as part
g of an existing tool suite called Production Optics Reporting
8 and Tracking (PORT). The PORT-based target request tool
£ had three major limitations: underlying data architecture
ks precluded future automation in target order processing,
£ data was usually duplicated, and page loading times were

tle of the work, publisher, and D

1

must maintain attr;)

distribution of th

<
[¢]
=
<
<
=}
|

Given the above limitations of the PORT-based tool, and
with an estimated 500 targets needed to be produced each
year, it became clear that users urgently needed a new tool.
The decision was made to develop a completely new appli-
cation versus modifying the existing one.

APPLICATION REQUIREMENTS

A brief description of the core requirements for the TRT
is provided below:

Content from this work may be used

TUBPL04

@ 176

[0)

ICALEPCS2017, Barcelona, Spain ~ JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2017-TUBPLO4

STREAMLINING THE TARGET FABRICATION REQUEST
AT THE NATIONAL IGNITION FACILITY (NIF)

C. Manin, E. Bond, A. Casey, R. Clark, G. Norman
Lawrence Livermore National Laboratory, Livermore, CA 94550 USA

1. Allow the requester to link the target request with an
experimental planning ID called Facility and Laser In-
tegrated Planning (FLIP) ID. This feature is critical
since every target that is built must be destined for use
on an experiment.

2. Display shot planning data. These data include
metadata about the experimental team, diagnostic in-
strumentation, and target fielding parameters.

3. Allow the requester to select target features from a
menu. Feature selection can either be started from a
blank template or with a pre-populated set of features
that the requester chooses.

4. Allow the requester to enter custom target features.
Allow the user to select ‘Other’ from the options and
enter a comment to describe the customized feature.

5. Provide the ability to upload attachments.

6. Provide target request status. Inform the user on the
status of the request and drive when specific panels of
the application can be edited.

7. Implement roles and permissions. Enable or disable
UI capabilities (e.g., changing a field, modifying tar-
get request (TR) status) given the user role.

8. Provide target orders search capability (with filters).
Provide a list of all orders and ability to filter by cer-
tain parameters, e.g., TR number, status, requester,
etc.

CHOICE OF TECHNOLOGY

The needs from the Target Fabrication organization re-
sulted in a schedule that allowed for only four months of
development time. This limited development time was a
key factor when selecting the technologies for this project.
We decided to work with modern Web technologies that
were familiar to the team and that would allow for reuse of
software from other SDS tools.

Node.js

We chose Node.js for the back-end because it is fast to
implement, is modern technology, and is supported by a
large community of developers. It also pairs well with Web
technologies we currently use and allows us to seamlessly
connect to existing databases. Node.js is an open-source,
cross-platform JavaScript run-time environment for exe-
cuting JavaScript code server-side [2].

It has the following characteristics:

» Uses V8 engine by Google.

* Is a good fit for real-time applications.

* Is suitable for non-CPU-intensive operations.

* Provides an effective single codebase with JavaScript
in server and client, making it easy to send and synchronize
data between these two points.

User Interfaces and User eXperience (UX)

16th Int. Conf. on Accelerator and Large Experimental Control Systems

ISBN: 978-3-95450-193-9

* Provides access to an array of open-source code
through its package manager (npm).

Express

This technology was an obvious choice because it is con-
sidered the de facto framework for Node.js applications. It
is a minimal and flexible Node.js web application frame-
work [3] written in JavaScript. Also, it is free and open-
source software.

It has the following characteristics:

* Helps manage everything, from routes to handling re-
quests, views and errors.

* Provides a thin layer of fundamental Web application
features without obscuring Node.js features.

» Has a myriad of HTTP utility methods and middleware
that have access to the request and response objects.

* Has multiple methods for querying the request and
constructing the result.

JavaScript and Kendo Ul

As JavaScript was selected for the back-end, JavaScript
was also chosen for the front-end. To complement JavaS-
cript, we selected Kendo UI for the user interface. Kendo
Ul is a commercial off-the-shelf product that provides more
than 70 customizable UI components. We chose this tech-
nology because it shortened development time, provided a
nice look-and-feel to the user interface, and was already
being used by other SDS applications. Some of the Kendo
UI components used were grids (with filters, sorting, page
count, and search), buttons, dropdown menus, and date text
fields with calendar selector, among others.

Docker

This technology provided rapid deployment to all envi-
ronments (development, QA, and production) and image
portability (the same image could be deployed to all envi-
ronments). It also gave us the option to roll back a release
if needed without having to run a new code build. In addi-
tion, we could have multiple containers from different ap-
plications running on the same machine, allowing us to
have multiple tools running in the same server machine.

ARCHITECTURE

The TRT architecture is composed of three main pieces
(see Fig. 1).

Back-end

The back-end was built using Node.js and Express. We
used the Node.js-required file “package.json” for listing
application dependencies and scripts for start, build, and
clean.

The basic routing was done by creating an instance of
Express (var app = express()) and using the following
structure: app.http-request-method(path, handler). Indi-
vidual pages were given their own path, i.e.: */TRT/ view-
all-orders’ for displaying all TR orders.

User Interfaces and User eXperience (UX)

ICALEPCS2017, Barcelona, Spain ~ JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2017-TUBPLO4

The Web server behavior and URL configurations were
done with the help of a few Node.js and Express middle-
ware modules: ‘body-parser’ for handling JSON, Raw,
Text and URL encoded form data, and ‘express.static’ for
serving static files such as images and third-party libraries.

The templating language we used for the view engine
was Embedded JavaScript (EJS). It is very easy to use,
complies with the Express view system, and allows us to
have nested views. At runtime, the template engine re-
places variables in a template file with actual values, and
transforms the template into an HTML file sent to the client
[4].

The handling of data was done with routes/web services
by creating a router object (var router = express.Router())
and adding middleware and HTTP method routes in the
form of: router.get(path, [callback, ...] callback) for pull-
ing data, and router.post(path, [callback, ...] callback) for
inserting data. If the response is successful, the resulting
data are sent to the front-end as a JSON object. Otherwise,
errors are handled and logged.

Database

Data managed by TRT are stored in an Oracle database.
The schema used for the PORT-based application had to be
refactored to avoid data duplication and take advantage of
the current target fabrication process. Communication of
the back-end with the database was done with
“node-oracledb” and “orawrap.” The former creates the
connection to the database and the latter creates a listening
pool on the provided port. When querying data, orawrap
methods take an SQL command and parameter value(s) (if
any) to generate the results. This is done using the execute()
method embedded in the body of the router methods
(shown above).

Front-end

The front-end was developed with a model-view-con-
troller pattern using JavaScript, jQuery, Kendo UI, Boot-
strap, HTML, and CSS. This pattern was selected to pro-
vide a clear separation between view and logic, to easily
subdivide the UI into multiple sections and panels, and to
provide flexibility to divide the work among developers.
This section separation was made according to the type of
data displayed. The result is an interactive UI with panels
that appear from left to right building the sections gradually
after the user’s selection.

The view is mainly composed by a mix of HTML items
(“div”, “table” and “list”). The model is created from a set
of mapping files for each of the UI sections where the
HTML elements in the view are mapped to fields in the
database (HTML ID to database column). The controller
handles field updates, registers event handlers, loads and
injects templates, and renders panels.

The most basic view (the first panel on the left is dis-
played) happens when a new TR is created. From there,
there is a minimum amount of menu options the user must
select to save the TR. This initial state is the “Draft” state,
which means that the TR is still in progress and the user

TUBPL04
177

©= Content from this work may be used under the terms of the CC BY 3.0 licence (© 2017). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

16th Int. Conf. on Accelerator and Large Experimental Control Systems ICALEPCS2017, Barcelona, Spain ~ JACoW Publishing

5 ISBN: 978-3-95450-193-9

@)

E can close the TR and open it later to continue working be-
;;:f fore submitting it. Also, only the creator and a member of
.4 the experimental team have the required permissions to edit
%the TR. All permissions are handled by the UI using the
s role information obtained from the back-end and logic ap-
§ plied to each panel.

2 The full UI view is composed of the following sections:
% Shot Pairing, Shot Planner Data, Target Menu, and Target
2 Status (see Fig. 2). The resulting application is a website
= that runs in Chrome and Firefox.

Front-end

{(JSON)

Node.js

] |]
1 E
I orawrap : 1
1 1
e |

Back-end

Oracle DB

Database

Figure 1: Architecture overview.

BUILD AND DEPLOYMENT

We used Docker for deploying TRT to the Development,
QA and Production environments. To facilitate this, we
used Git and Atlassian tools (Bitbucket, Bamboo and Jira)
for full build and deployment integration.

Bamboo allowed for predefining the build and deploy-
ment plans, so that once a build succeeds, it is ready to cre-
ate a Docker image for deployment to a temporary ma-
chine. In this machine, the Docker image is saved to a tar
file with a single-line command and retrievable from all
three environments. From a particular environment, a script
is run to create and start the Docker container derived from
the previous image. This gives the flexibility to deploy a
container to one machine at a time and run different re-
leases in all three if needed. Docker also provides the ben-
efits of being able to easily revert to older versions, stop/de-
lete containers, and share the same server machines with
other applications.

CURRENT STATUS AND FUTURE
WORK
TRT is currently used by more than 50 users on a regular

basis. Older TRs have been ported and are accessible
through TRT. It is hosted in the internal NIF site together

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2017). Any distribution of this work must maintain attribution to the author(s)

 TUBPL04
@ 178

[0)

doi:10.18429/JACoW-ICALEPCS2017-TUBPLO4

with other applications. Launching the application is done
by clicking the “Target Orders (TRT)” link under the “Tar-
gets & Orders” menu. It is actively maintained and sup-
ported by the SDS team. Since its first release, a few addi-
tions have been made, such as automatic generation of TRs
when a new experiment is created and automatic logging
of user actions that affect the state of the TR.

Some work will be needed to modify the current back-
end code that uses orawrap. At the time of writing, the
orawrap library is no longer being maintained. It has been
added to the core Oracle database driver (node-oracledb).

CONCLUSION

We have developed a software tool that supports a more
streamlined target fabrication process. The tool provides
faster loading time, great user interaction, and data integra-
tion. The use of modern technologies allowed the software
team to meet the overall project goals primarily within the
development time allocated.

ACKNOWLEDGEMENT

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. LLNL-
CONF-739192.

REFERENCES

[1] NIF Target Fabrication, https://lasers.11n1.gov/about/how-
ni f-works/seven-wonders/target-fabrication

[2] Node.js Wiki, https://en.wikipedia.org/wiki/Node.js
[3] Express Wiki, https://en.wikipedia.org/wiki/Express.js

[4] Express template guide, http://expressjs.com/en/guide/us-
ing-template-engines.html

User Interfaces and User eXperience (UX)

JACoW Publishing

ICALEPCS2017, Barcelona, Spain

16th Int. Conf. on Accelerator and Large Experimental Control Systems

ISBN: 978-3-95450-193-9

‘10d pue ‘1aysiqnd Y1om 9y Jo 9N ‘(s)Ioyine Y 0} UONNQLNIE UTBIUIRU ISNW YI0M ST} JO UONNQINSIP AU *(L[07 @) 99U 0°E A DD Y} JO SULIA) 3Y) I9PUN Pasn 9q ABW YI0m SIY) WO JUIUOD) FETE)

doi:10.18429/JACoW-ICALEPCS2017-TUBPLO4

fuewud Wy Dd22d5 000w/s Beg ey LBV
| omsul aiana _umul

Al diN4 pelesies o] palied sy

ouuE|d jous

0020902107 OAIR0S AAOWAS - ysanbay jotise).

SWweWIEY @
H_ shod pRY
Auwmizr o) paie aney av 2umaid & 8s0jaue.
- | 'SLE-08 PUB 2,706 10} SMOGNIM [812ads
~ Wnwarnon [esS) 4102490 Sispiauyas] | 007 sjusuLo)
WD @

SuoN sieuREp [e103dS papualu]

uonduasaq Il se9 JeBiel
W amssaig saBipoeg
W I sBipReg
prpumlg amnssaig ainsded
PREDUEIS INSSRId WNRIMOH
TQupwoR %IgD WA amsded
$3H I wnenyoy
g amessduwal joug 19Brer
o edLious

2 1y uoddng
L 0y Burpoddns.

S18sn Jaauibuz aNold

leq Bany 196.E]

nobol (uTn) juew

=]

Aewd Yy Dd2edsaaowis Beiged 16VC PI2SN py0us
=S AL ardrnd| una pissn pea ubieduweg apeway
ML o1 peied sal 14 pea ublechue
6ol 1qqy ubjecwed
Gl AL 71 vonmnsul
N3dO LYeaid wea) Epewed
03s010 0 ELFT
N3ad0 LA 71%4 EWozuoN UOBEIURLO 51£-06 WI
Q3soT0 LE:qt>4 20S/0 WAWNASU| GLED6 WID
1480 © 2607 N uonsIENO bZ 108 IO
03010 © 6207 VN JueLInISU| 57106 WIG
.S HOS “ON HOS EWozUON UOHEUAUO 8/-06 WIO
- sdl seuomsod £0SI0 Juswingsu| g2-06 WIO
(su95) sisenbey Buey 1ous YN 1suogisog Aizpuooss
- ihe
Siceeis odAy jobiey w1 smsomsas s
= 1228 | Asojoed jebreL “BI0BJIEAE USUM /SaINIEA] NUSLL 1epdn 0] 1UEM Nok ogJ, 10} Saj 13895 aseald ‘suondo nualu
@551 Aupoly o1 11 @ Bumugns o} zoud pajepdn aq jsnuw Jey) Sanfen SinjEsy PiEAU SEAIPUI SBIBUEL] paJ puE MOYRA |1y @ 2 uogenbyuog yabie|
0052182004 159
PrE0340aNN siozeony (pesodeld ditd) aled ous.
“¥NYN-OOH suondQ nuapy —!
TErETEIONOPS Y SIE Loz (drna) g ous
WS uoxer Bumesq 19Biet wosng - seibaq vogeyEn
@ fieuondo) aeq 1eon
1000LHLS ON [euas Jabue
punoy 253 SBULIRG SO ON - O dINd ©F PN YL W0
00SIICETEOL ON LiEd 1eBiel nuapy uonsjeg aimesd 0k ®
$Z 1204 100mm] 4 VW DdRds O0owAS Beig ey | ldnd
L10z60i01 @veq Apeay 1abe) a oD wuopeid-ans.
daig sapeny N o Buued 10us ©
L10z2050 3480 FERA MO wiozeld 1aieL
©asn JauBisaq abimy Lsiess wong podon L Li0zEyED 319 19PI0
zissn sseuiBu3 e jeBaeL Jasn ioisan
0¥05151004 woiy paidod Nd 2 i6153nbay
Li0zEVED @Iea ses HL ot oy s 1841 U0 s Buua 1eBis, sas SBULIE] L dmpoeg | Aiewiig
souddy SMEIS HL £00031857)
PRy 1 Bugsixa ue Buifidos 4q 1o Boreiea [
. -anEATEES - smms wy vonsuElL . “EOEAISES T jaBie e Bungaseas Aq nuau sameay 1e6:e aus syeindod o1 uem ok og BT #HL
3 snegiebel [P sameay bl @ (| sepiQ 1e6e].
e (06] JequinN q 4L puly E x B =0 @

B Bupnjour 988d 14} UO PaJelus Ej8p AUe Y 9Seqelep 2y 3epdn o) IS Ssaid o JsquaLIEY

afeqasenbay <

1910 R0IRL

AN

Figure 2: An approved TR is shown. (a)Top menu with navigation links, user information and log-out button, TR search

field, and action buttons. The main sections are: (b)Shot Pairing, (c)Shot Planner Data, (d)Target Menu, and (e)Target

Status.

TUBPL04

(=)
o~
—

User Interfaces and User eXperience (UX)

