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Abstract

- The NIF Shot Data Systems (SDS) team developed the
~ Target Request Tool (TRT) Web application for facilitating
%the management of target requests from creation to ap-
£ proval. TRT provides a simple-to-use and user-friendly in-
< terface that allows the user to create, edit, submit and with-
S draw requests. The underlying design uses the latest Web
‘E technologies such as Node.js, Express, jQuery and Java-
£ Script. The overall software architecture and functionality
2 will be presented in this paper.

INTRODUCTION

National Ignition Facility (NIF) targets are complex en-
gineering marvels in tiny packages. Creating them requires
S interplay among target designers, materials scientists, and
k9 precision engineers. The laser drives a target capsule in-
£ ward at nearly a million miles an hour. Because the targets
.2z are subjected to extreme temperatures (greater than those
& in the Sun) and pressures (similar to those found in the core
of Jupiter) during experiments, the targets must be de-
signed, fabricated, and assembled with extreme precision
[1].

The target production lifecycle begins with submission
2z of a formal target request. Experimentalists and project en-
< gineers create the target feature definition based on dozens
& of existing and/or new parameters determined by the phys-
& ics requirements and the type of shot. When the shot calls
© for an existing target, a previous target fabrication request
§ can be duplicated. However, when it calls for a new type of
8 target, a new request must be created. And in those cases,
o supporting documentation must be provided describing the
& custom parts that will be needed in the target build.

M Before the commissioning of this project, experimental-
S ists, project engineers and target fabrication team members
£ (“users”) first utilized a tool developed in Apex (Oracle Ap-
%5 plication Express). This application was developed as part
g of an existing tool suite called Production Optics Reporting
8 and Tracking (PORT). The PORT-based target request tool
£ had three major limitations: underlying data architecture
ks precluded future automation in target order processing,
£ data was usually duplicated, and page loading times were
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Given the above limitations of the PORT-based tool, and
with an estimated 500 targets needed to be produced each
year, it became clear that users urgently needed a new tool.
The decision was made to develop a completely new appli-
cation versus modifying the existing one.

APPLICATION REQUIREMENTS

A brief description of the core requirements for the TRT
is provided below:
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1. Allow the requester to link the target request with an
experimental planning ID called Facility and Laser In-
tegrated Planning (FLIP) ID. This feature is critical
since every target that is built must be destined for use
on an experiment.

2. Display shot planning data. These data include
metadata about the experimental team, diagnostic in-
strumentation, and target fielding parameters.

3. Allow the requester to select target features from a
menu. Feature selection can either be started from a
blank template or with a pre-populated set of features
that the requester chooses.

4. Allow the requester to enter custom target features.
Allow the user to select ‘Other’ from the options and
enter a comment to describe the customized feature.

5. Provide the ability to upload attachments.

6. Provide target request status. Inform the user on the
status of the request and drive when specific panels of
the application can be edited.

7. Implement roles and permissions. Enable or disable
UI capabilities (e.g., changing a field, modifying tar-
get request (TR) status) given the user role.

8. Provide target orders search capability (with filters).
Provide a list of all orders and ability to filter by cer-
tain parameters, e.g., TR number, status, requester,
etc.

CHOICE OF TECHNOLOGY

The needs from the Target Fabrication organization re-
sulted in a schedule that allowed for only four months of
development time. This limited development time was a
key factor when selecting the technologies for this project.
We decided to work with modern Web technologies that
were familiar to the team and that would allow for reuse of
software from other SDS tools.

Node.js

We chose Node.js for the back-end because it is fast to
implement, is modern technology, and is supported by a
large community of developers. It also pairs well with Web
technologies we currently use and allows us to seamlessly
connect to existing databases. Node.js is an open-source,
cross-platform JavaScript run-time environment for exe-
cuting JavaScript code server-side [2].

It has the following characteristics:

» Uses V8 engine by Google.

* Is a good fit for real-time applications.

* Is suitable for non-CPU-intensive operations.

* Provides an effective single codebase with JavaScript
in server and client, making it easy to send and synchronize
data between these two points.
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* Provides access to an array of open-source code
through its package manager (npm).

Express

This technology was an obvious choice because it is con-
sidered the de facto framework for Node.js applications. It
is a minimal and flexible Node.js web application frame-
work [3] written in JavaScript. Also, it is free and open-
source software.

It has the following characteristics:

* Helps manage everything, from routes to handling re-
quests, views and errors.

* Provides a thin layer of fundamental Web application
features without obscuring Node.js features.

» Has a myriad of HTTP utility methods and middleware
that have access to the request and response objects.

* Has multiple methods for querying the request and
constructing the result.

JavaScript and Kendo Ul

As JavaScript was selected for the back-end, JavaScript
was also chosen for the front-end. To complement JavaS-
cript, we selected Kendo UI for the user interface. Kendo
Ul is a commercial off-the-shelf product that provides more
than 70 customizable UI components. We chose this tech-
nology because it shortened development time, provided a
nice look-and-feel to the user interface, and was already
being used by other SDS applications. Some of the Kendo
UI components used were grids (with filters, sorting, page
count, and search), buttons, dropdown menus, and date text
fields with calendar selector, among others.

Docker

This technology provided rapid deployment to all envi-
ronments (development, QA, and production) and image
portability (the same image could be deployed to all envi-
ronments). It also gave us the option to roll back a release
if needed without having to run a new code build. In addi-
tion, we could have multiple containers from different ap-
plications running on the same machine, allowing us to
have multiple tools running in the same server machine.

ARCHITECTURE

The TRT architecture is composed of three main pieces
(see Fig. 1).

Back-end

The back-end was built using Node.js and Express. We
used the Node.js-required file “package.json” for listing
application dependencies and scripts for start, build, and
clean.

The basic routing was done by creating an instance of
Express (var app = express()) and using the following
structure: app.http-request-method(path, handler). Indi-
vidual pages were given their own path, i.e.: */TRT/ view-
all-orders’ for displaying all TR orders.
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The Web server behavior and URL configurations were
done with the help of a few Node.js and Express middle-
ware modules: ‘body-parser’ for handling JSON, Raw,
Text and URL encoded form data, and ‘express.static’ for
serving static files such as images and third-party libraries.

The templating language we used for the view engine
was Embedded JavaScript (EJS). It is very easy to use,
complies with the Express view system, and allows us to
have nested views. At runtime, the template engine re-
places variables in a template file with actual values, and
transforms the template into an HTML file sent to the client
[4].

The handling of data was done with routes/web services
by creating a router object (var router = express.Router())
and adding middleware and HTTP method routes in the
form of: router.get(path, [callback, ...] callback) for pull-
ing data, and router.post(path, [callback, ...] callback) for
inserting data. If the response is successful, the resulting
data are sent to the front-end as a JSON object. Otherwise,
errors are handled and logged.

Database

Data managed by TRT are stored in an Oracle database.
The schema used for the PORT-based application had to be
refactored to avoid data duplication and take advantage of
the current target fabrication process. Communication of
the back-end with the database was done with
“node-oracledb” and “orawrap.” The former creates the
connection to the database and the latter creates a listening
pool on the provided port. When querying data, orawrap
methods take an SQL command and parameter value(s) (if
any) to generate the results. This is done using the execute()
method embedded in the body of the router methods
(shown above).

Front-end

The front-end was developed with a model-view-con-
troller pattern using JavaScript, jQuery, Kendo UI, Boot-
strap, HTML, and CSS. This pattern was selected to pro-
vide a clear separation between view and logic, to easily
subdivide the UI into multiple sections and panels, and to
provide flexibility to divide the work among developers.
This section separation was made according to the type of
data displayed. The result is an interactive UI with panels
that appear from left to right building the sections gradually
after the user’s selection.

The view is mainly composed by a mix of HTML items
(“div”, “table” and “list”). The model is created from a set
of mapping files for each of the UI sections where the
HTML elements in the view are mapped to fields in the
database (HTML ID to database column). The controller
handles field updates, registers event handlers, loads and
injects templates, and renders panels.

The most basic view (the first panel on the left is dis-
played) happens when a new TR is created. From there,
there is a minimum amount of menu options the user must
select to save the TR. This initial state is the “Draft” state,
which means that the TR is still in progress and the user
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E can close the TR and open it later to continue working be-
;;:f fore submitting it. Also, only the creator and a member of
.4 the experimental team have the required permissions to edit
%the TR. All permissions are handled by the UI using the
s role information obtained from the back-end and logic ap-
§ plied to each panel.

2 The full UI view is composed of the following sections:
% Shot Pairing, Shot Planner Data, Target Menu, and Target
2 Status (see Fig. 2). The resulting application is a website
= that runs in Chrome and Firefox.
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] | ]
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Figure 1: Architecture overview.

BUILD AND DEPLOYMENT

We used Docker for deploying TRT to the Development,
QA and Production environments. To facilitate this, we
used Git and Atlassian tools (Bitbucket, Bamboo and Jira)
for full build and deployment integration.

Bamboo allowed for predefining the build and deploy-
ment plans, so that once a build succeeds, it is ready to cre-
ate a Docker image for deployment to a temporary ma-
chine. In this machine, the Docker image is saved to a tar
file with a single-line command and retrievable from all
three environments. From a particular environment, a script
is run to create and start the Docker container derived from
the previous image. This gives the flexibility to deploy a
container to one machine at a time and run different re-
leases in all three if needed. Docker also provides the ben-
efits of being able to easily revert to older versions, stop/de-
lete containers, and share the same server machines with
other applications.

CURRENT STATUS AND FUTURE
WORK
TRT is currently used by more than 50 users on a regular

basis. Older TRs have been ported and are accessible
through TRT. It is hosted in the internal NIF site together
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with other applications. Launching the application is done
by clicking the “Target Orders (TRT)” link under the “Tar-
gets & Orders” menu. It is actively maintained and sup-
ported by the SDS team. Since its first release, a few addi-
tions have been made, such as automatic generation of TRs
when a new experiment is created and automatic logging
of user actions that affect the state of the TR.

Some work will be needed to modify the current back-
end code that uses orawrap. At the time of writing, the
orawrap library is no longer being maintained. It has been
added to the core Oracle database driver (node-oracledb).

CONCLUSION

We have developed a software tool that supports a more
streamlined target fabrication process. The tool provides
faster loading time, great user interaction, and data integra-
tion. The use of modern technologies allowed the software
team to meet the overall project goals primarily within the
development time allocated.
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Figure 2: An approved TR is shown. (a)Top menu with navigation links, user information and log-out button, TR search

field, and action buttons. The main sections are: (b)Shot Pairing, (c)Shot Planner Data, (d)Target Menu, and (e)Target

Status.
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